igital
IMage usiNG MATLAB
Processing

Rafael C. Gonzalez
Richard E. Woods
Steven L. Eddins p

Digital Image
Processing
Using MATLAB

Rafael C. Gonzalez

111111 ty of Tennessee

Richard E. Woods

MedData Interactive

Steven L. Eddins

The MathWorks, Inc.

PEARSON

Prentice
Hall

Upper Saddle River, NJ 07458

Library of Congress Cataloging-in-Publication Data on File

Vice President and Editorial Director, ECS: Marcia Horton
Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi
Publisher: Tom Robbins

Editorial Assistant: Carole Snyder

Executive Managing Editor: Vince O’Brien

Managing Editor: David A. George

Production Editor: Rose Kernan

Director of Creative Services: Paul Belfanti

Creative Director: Carole Anson

Art Director: Jayne Conte

Cover Designer: Richard E. Woods

Art Editor: Xiaohong Zhu

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Lisa McDowell

Senior Marketing Manager: Holly Stark

VIO © 2004 by Pearson Education, Inc.
Ul Pcarson Prentice-Hall
Prentice Pearson Education, Inc.
Hall Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
without permission in writing from the publisher.

Pearson Prentice Hall® is a trademark of Pearson Education, Inc.
MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The author and publisher shall not be liable in any event for incidental or consequential damages with, or
arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America
10 9 8 7 6 54 3 21

ISBN 0-13-008519-7

Pearson Education Ltd., London

Pearson Education Australia Pty., Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto

Pearson Education de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

Contents

Preface xi
Acknowledgments xii
About the Authors xiii

] Introduction 1
Preview 1
1.1 Background 1
1.2 What Is Digital Image Processing? 2
1.3 Background on MATLAB and the Image Processing Toolbox 4
1.4 Areas of Image Processing Covered in the Book 5
1.5 The Book Web Site 6
1.6 Notation 7
1.7 The MATLAB Working Environment 7
1.7.1 The MATLAB Desktop 7
1.7.2 Using the MATLAB Editor to Create M-files 9
1.7.3 Getting Help 9
1.74 Saving and Retrieving a Work Session 10
1.8 How References Are Organized in the Book 11
Summary 11

2 Fundamentals 12

Preview 12
2.1 Digital Image Representation 12
2.1.1 Coordinate Conventions 13
2.1.2 Images as Matrices 14
2.2 Reading Images 14
2.3 Displaying Images 16
2.4 Writing Images 18
2.5 Data Classes 23
2.6 Image Types 24
2.6.1 Intensity Images 24
2.6.2 Binary Images 25
2.6.3 A Note on Terminology 25
2.7 Converting between Data Classes and Image Types 25
2.7.1 Converting between Data Classes 25
2.7.2 Converting between Image Classes and Types 26
2.8 Array Indexing 30
2.8.1 Vector Indexing 30
2.8.2 Matrix Indexing 32
2.8.3 Selecting Array Dimensions 37

vi

Contents

29

Some Important Standard Arrays 37

2.10 Introduction to M-Function Programming 38

3.1
3.2

3.3

34

3.5

4.1
4.2
4.3

44
4.5

2.10.1 M-Files 38

2.10.2 Operators 40

2.10.3 Flow Control 49

2.10.4 Code Optimization 55

2.10.5 InteractiveI/O 59

2.10.6 A Brief Introduction to Cell Arrays and Structures 62
Summary 64

Intensity Transformations
and Spatial Filtering 65

Preview 65

Background 65

Intensity Transformation Functions 66

3.2.1 Function imadjust 66

3.2.2 Logarithmic and Contrast-Stretching Transformations 68
3.2.3 Some Utility M-Functions for Intensity Transformations 70
Histogram Processing and Function Plotting 76

3.3.1 Generating and Plotting Image Histograms 76

3.3.2 Histogram Equalization 81

3.3.3 Histogram Matching (Specification) 84

Spatial Filtering 89

3.4.1 Linear Spatial Filtering 89

3.4.2 Nonlinear Spatial Filtering 96

Image Processing Toolbox Standard Spatial Filters 99

3.5.1 Linear Spatial Filters 99

3.5.2 Nonlinear Spatial Filters 104

Summary 107

Frequency Domain Processing 108

Preview 108

The 2-D Discrete Fourier Transform 108

Computing and Visualizing the 2-D DFT in MATLAB 112

Filtering in the Frequency Domain 115

4.3.1 Fundamental Concepts 115

4.3.2 Basic Steps in DFT Filtering 121

4.3.3 An M-function for Filtering in the Frequency Domain 122

Obtaining Frequency Domain Filters from Spatial Filters 122

Generating Filters Directly in the Frequency Domain 127

45.1 Creating Meshgrid Arrays for Use in Implementing Filters
in the Frequency Domain 128

45.2 Lowpass Frequency Domain Filters 129

45.3 Wireframe and Surface Plotting 132

4.6

5.1
5.2

5.3

5.4
5.5
5.6
5.7
5.8
5.9

5.10
5.11

6.1

6.2

6.3
6.4

Contents

Sharpening Frequency Domain Filters 136
4.6.1 Basic Highpass Filtering 136

4.6.2 High-Frequency Emphasis Filtering 138
Summary 140

Image Restoration 141

Preview 141

A Model of the Image Degradation/Restoration Process 142

Noise Models 143

5.2.1 Adding Noise with Function imnoise 143

5.2.2 Generating Spatial Random Noise with a Specified
Distribution 144

5.2.3 Periodic Noise 150

524 Estimating Noise Parameters 153

Restoration in the Presence of Noise Only—Spatial Filtering 158

5.3.1 Spatial Noise Filters 159

5.3.2 Adaptive Spatial Filters 164

Periodic Noise Reduction by Frequency Domain Filtering 166

Modeling the Degradation Function 166

Direct Inverse Filtering 169

Wiener Filtering 170

Constrained Least Squares (Regularized) Filtering 173

Iterative Nonlinear Restoration Using the Lucy-Richardson

Algorithm 176

Blind Deconvolution 179

Geometric Transformations and Image Registration 182

5.11.1 Geometric Spatial Transformations 182

5.11.2 Applying Spatial Transformations to Images 187

5.11.3 Image Registration 191

Summary 193

Color Image Processing 194
Preview 194

Color Image Representation in MATLAB 194
6.1.1 RGBImages 194

6.1.2 Indexed Images 197

6.1.3 IPT Functions for Manipulating RGB and Indexed Images 199
Converting to Other Color Spaces 204

6.2.1 NTSC Color Space 204

6.2.2 The YCbCr Color Space 205

6.2.3 The HSV Color Space 205

6.24 The CMY and CMYK Color Spaces 206
6.2.5 The HSI Color Space 207

The Basics of Color Image Processing 215
Color Transformations 216

vii

viii

Contents

6.5

6.6

71
7.2

7.3

7.4
7.5

8.1
8.2

8.3
8.4
8.5

9.1

9.2

Spatial Filtering of Color Images 227

6.5.1 Color Image Smoothing 227

6.5.2 Color Image Sharpening 230

Working Directly in RGB Vector Space 231

6.6.1 Color Edge Detection Using the Gradient 232
6.6.2 Image Segmentation in RGB Vector Space 237
Summary 241

Wavelets 242

Preview 242

Background 242

The Fast Wavelet Transform 245

7.2.1 FWTs Using the Wavelet Toolbox 246

7.2.2 FWTs without the Wavelet Toolbox 252

Working with Wavelet Decomposition Structures 259

7.3.1 Editing Wavelet Decomposition Coefficients without
the Wavelet Toolbox 262

7.3.2 Displaying Wavelet Decomposition Coefficients 266

The Inverse Fast Wavelet Transform 271

Wavelets in Image Processing 276

Summary 281

Image Compression 282
Preview 282

Background 283

Coding Redundancy 286
8.2.1 Huffman Codes 289
8.2.2 Huffman Encoding 295
8.2.3 Huffman Decoding 301
Interpixel Redundancy 309
Psychovisual Redundancy 315
JPEG Compression 317

8.5.1 JPEG 318

8.5.2 JPEG 2000 325
Summary 333

Morphological Image Processing 334
Preview 334

Preliminaries 335

9.1.1 Some Basic Concepts from Set Theory 335

9.1.2 Binary Images, Sets, and Logical Operators 337
Dilation and Erosion 337

9.21 Dilation 338

9.2.2 Structuring Element Decomposition 341

9.2.3 The strel Function 341

9.24 Erosion 345

Contents 1X

9.3 Combining Dilation and Erosion 347
9.3.1 Opening and Closing 347
9.3.2 The Hit-or-Miss Transformation 350
9.3.3 Using Lookup Tables 353
9.3.4 Function bwmorph 356
9.4 Labeling Connected Components 359
9.5 Morphological Reconstruction 362
9.5.1 Opening by Reconstruction 363
9.5.2 Filling Holes 365
9.5.3 Clearing Border Objects 366
9.6 Gray-Scale Morphology 366
9.6.1 Dilation and Erosion 366
9.6.2 Opening and Closing 369
9.6.3 Reconstruction 374
Summary 377

] 0 Image Segmentation 378
Preview 378
10.1 Point, Line, and Edge Detection 379
10.1.1 Point Detection 379
10.1.2 Line Detection 381
10.1.3 Edge Detection Using Function edge 384
10.2 Line Detection Using the Hough Transform 393
10.2.1 Hough Transform Peak Detection 399
10.2.2 Hough Transform Line Detection and Linking 401
10.3 Thresholding 404
10.3.1 Global Thresholding 405
10.3.2 Local Thresholding 407
10.4 Region-Based Segmentation 407
10.4.1 Basic Formulation 407
10.4.2 Region Growing 408
10.4.3 Region Splitting and Merging 412
10.5 Segmentation Using the Watershed Transform 417
10.5.1 Watershed Segmentation Using the Distance Transform 418
10.5.2 Watershed Segmentation Using Gradients 420
10.5.3 Marker-Controlled Watershed Segmentation 422
Summary 425

]] Representation and Description 426
Preview 426
11.1 Background 426
11.1.1 Cell Arrays and Structures 427
11.1.2 Some Additional MATLAB and IPT Functions Used
in This Chapter 432
11.1.3 Some Basic Utility M-Functions 433

Contents

11.2 Representation 436
11.2.1 Chain Codes 436
11.2.2 Polygonal Approximations Using Minimum-Perimeter
Polygons 439
11.2.3 Signatures 449
11.2.4 Boundary Segments 452
11.2.5 Skeletons 453
11.3 Boundary Descriptors 455
11.3.1 Some Simple Descriptors 455
11.3.2 Shape Numbers 456
11.3.3 Fourier Descriptors 458
11.3.4 Statistical Moments 462
11.4 Regional Descriptors 463
11.4.1 Function regionprops 463
11.4.2 Texture 464
11.4.3 Moment Invariants 470
11.5 Using Principal Components for Description 474
Summary 483

] 2 Object Recognition 484
Preview 484
12.1 Background 484
12.2 Computing Distance Measures in MATLAB 485
12.3 Recognition Based on Decision-Theoretic Methods 488
12.3.1 Forming Pattern Vectors 488
12.3.2 Pattern Matching Using Minimum-Distance Classifiers 489
12.3.3 Matching by Correlation 490
12.3.4 Optimum Statistical Classifiers 492
12.3.5 Adaptive Learning Systems 498
12.4 Structural Recognition 498
12.4.1 Working with Strings in MATLAB 499
12.4.2 String Matching 508
Summary 513

AppendixA Function Summary 514

Appendix B ICE and MATLAB Graphical
User Interfaces 527

Appendix(M-Functions 552

Bibliography 594
Index 597

Preface

Solutions to problems in the field of digital image processing generally require
extensive experimental work involving software simulation and testing with large sets
of sample images. Although algorithm development typically is based on theoretical
underpinnings, the actual implementation of these algorithms almost always requires
parameter estimation and, frequently, algorithm revision and comparison of candidate
solutions. Thus, selection of a flexible, comprehensive, and well-documented software
development environment is a key factor that has important implications in the cost,
development time, and portability of image processing solutions.

In spite of its importance, surprisingly little has been written on this aspect of the
field in the form of textbook material dealing with both theoretical principles and soft-
ware implementation of digital image processing concepts. This book was written for
just this purpose. Its main objective is to provide a foundation for implementing image
processing algorithms using modern software tools. A complementary objective was to
prepare a book that is self-contained and easily readable by individuals with a basic
background in digital image processing, mathematical analysis, and computer pro-
gramming, all at a level typical of that found in a junior/senior curriculum in a techni-
cal discipline. Rudimentary knowledge of MATLAB also is desirable.

To achieve these objectives, we felt that two key ingredients were needed. The
first was to select image processing material that is representative of material cov-
ered in a formal course of instruction in this field. The second was to select soft-
ware tools that are well supported and documented, and which have a wide range
of applications in the “real” world.

To meet the first objective, most of the theoretical concepts in the following chapters
were selected from Digital Image Processing by Gonzalez and Woods, which has been
the choice introductory textbook used by educators all over the world for over two
decades. The software tools selected are from the MATLAB Image Processing Toolbox
(IPT), which similarly occupies a position of eminence in both education and industrial
applications. A basic strategy followed in the preparation of the book was to provide a
seamless integration of well-established theoretical concepts and their implementation
using state-of-the-art software tools.

The book is organized along the same lines as Digital Image Processing. In this way,
the reader has easy access to a more detailed treatment of all the image processing
concepts discussed here, as well as an up-to-date set of references for further reading.
Following this approach made it possible to present theoretical material in a succinct
manner and thus we were able to maintain a focus on the software implementation as-
pects of image processing problem solutions. Because it works in the MATLAB com-
puting environment, the Image Processing Toolbox offers some significant advantages,
not only in the breadth of its computational tools, but also because it is supported
under most operating systems in use today. A unique feature of this book is its empha-
sis on showing how to develop new code to enhance existing MATLAB and IPT func-
tionality. This is an important feature in an area such as image processing, which, as
noted earlier, is characterized by the need for extensive algorithm development and
experimental work.

After an introduction to the fundamentals of MATLAB functions and program-
ming, the book proceeds to address the mainstream areas of image processing. The

xi

xii

Preface

major areas covered include intensity transformations, linear and nonlinear spatial fil-
tering, filtering in the frequency domain, image restoration and registration, color
image processing, wavelets, image data compression, morphological image processing,
image segmentation, region and boundary representation and description, and object
recognition. This material is complemented by numerous illustrations of how to solve
image processing problems using MATLAB and IPT functions. In cases where a func-
tion did not exist, a new function was written and documented as part of the instruc-
tional focus of the book. Over 60 new functions are included in the following chapters.
These functions increase the scope of IPT by approximately 35 percent and also serve
the important purpose of further illustrating how to implement new image processing
software solutions.

The material is presented in textbook format, not as a software manual. Although
the book is self-contained, we have established a companion Web site (see Section 1.5)
designed to provide support in a number of areas. For students following a formal
course of study or individuals embarked on a program of self study, the site contains
tutorials and reviews on background material, as well as projects and image databases,
including all images in the book. For instructors, the site contains classroom presenta-
tion materials that include PowerPoint slides of all the images and graphics used in the
book. Individuals already familiar with image processing and IPT fundamentals will
find the site a useful place for up-to-date references, new implementation techniques,
and a host of other support material not easily found elsewhere. All purchasers of the
book are eligible to download executable files of all the new functions developed in
the text.

As is true of most writing efforts of this nature, progress continues after work on the
manuscript stops. For this reason, we devoted significant effort to the selection of ma-
terial that we believe is fundamental, and whose value is likely to remain applicable in
a rapidly evolving body of knowledge. We trust that readers of the book will benefit
from this effort and thus find the material timely and useful in their work.

Acknowledgments

We are indebted to a number of individuals in academic circles as well as in industry
and government who have contributed to the preparation of the book. Their contribu-
tions have been important in so many different ways that we find it difficult to ac-
knowledge them in any other way but alphabetically. We wish to extend our
appreciation to Mongi A. Abidi, Peter J. Acklam, Serge Beucher, Ernesto Bribiesca,
Michael W. Davidson, Courtney Esposito, Naomi Fernandes, Thomas R. Gest, Roger
Heady, Brian Johnson, Lisa Kempler, Roy Lurie, Ashley Mohamed, Joseph E.
Pascente, David. R. Pickens, Edgardo Felipe Riveron, Michael Robinson, Loren Shure,
Jack Sklanski, Sally Stowe, Craig Watson, and Greg Wolodkin. We also wish to ac-
knowledge the organizations cited in the captions of many of the figures in the book
for their permission to use that material.

Special thanks go to Tom Robbins, Rose Kernan, Alice Dworkin, Xiaohong
Zhu, Bruce Kenselaar, and Jayne Conte at Prentice Hall for their commitment to
excellence in all aspects of the production of the book. Their creativity, assistance,
and patience are truly appreciated.

RAFAEL C. GONZALEZ
RicHARD E. WooDS
STEVEN L. EDDINS

Introduction

Preview

Digital image processing is an area characterized by the need for extensive ex-
perimental work to establish the viability of proposed solutions to a given
problem. In this chapter we outline how a theoretical base and state-of-the-art
software can be integrated into a prototyping environment whose objective is
to provide a set of well-supported tools for the solution of a broad class of
problems in digital image processing.

Background

An important characteristic underlying the design of image processing sys-
tems is the significant level of testing and experimentation that normally is re-
quired before arriving at an acceptable solution. This characteristic implies
that the ability to formulate approaches and quickly prototype candidate solu-
tions generally plays a major role in reducing the cost and time required to
arrive at a viable system implementation.

Little has been written in the way of instructional material to bridge the gap
between theory and application in a well-supported software environment. The
main objective of this book is to integrate under one cover a broad base of the-
oretical concepts with the knowledge required to implement those concepts
using state-of-the-art image processing software tools. The theoretical underpin-
nings of the material in the following chapters are mainly from the leading text-
book in the field: Digital Image Processing, by Gonzalez and Woods, published
by Prentice Hall. The software code and supporting tools are based on the lead-
ing software package in the field: The MATLAB Image Processing Toolbox,

“In the following discussion and in subsequent chapters we sometimes refer to Digital Image Processing
by Gonzalez and Woods as “the Gonzalez-Woods book,” and to the Image Processing Toolbox as “IPT”
or simply as the “toolbox.”

2

Chapter 1

Introduction

from The MathWorks, Inc. (see Section 1.3). The material in the present book
shares the same design, notation, and style of presentation as the Gonzalez-
Woods book, thus simplifying cross-referencing between the two.

The book is self-contained. To master its contents, the reader should have
introductory preparation in digital image processing, either by having taken a
formal course of study on the subject at the senior or first-year graduate level,
or by acquiring the necessary background in a program of self-study. It is as-
sumed also that the reader has some familiarity with MATLAB, as well as
rudimentary knowledge of the basics of computer programming, such as that
acquired in a sophomore- or junior-level course on programming in a techni-
cally oriented language. Because MATLAB is an array-oriented language,
basic knowledge of matrix analysis also is helpful.

The book is based on principles. It is organized and presented in a textbook
format, not as a manual. Thus, basic ideas of both theory and software are ex-
plained prior to the development of any new programming concepts. The ma-
terial is illustrated and clarified further by numerous examples ranging from
medicine and industrial inspection to remote sensing and astronomy. This ap-
proach allows orderly progression from simple concepts to sophisticated im-
plementation of image processing algorithms. However, readers already
familiar with MATLAB, IPT, and image processing fundamentals can proceed
directly to specific applications of interest, in which case the functions in the
book can be used as an extension of the family of IPT functions. All new func-
tions developed in the book are fully documented, and the code for each is
included either in a chapter or in Appendix C.

Over 60 new functions are developed in the chapters that follow. These
functions complement and extend by 35% the set of about 175 functions in
IPT. In addition to addressing specific applications, the new functions are clear
examples of how to combine existing MATLAB and IPT functions with new
code to develop prototypic solutions to a broad spectrum of problems in digi-
tal image processing. The toolbox functions, as well as the functions developed
in the book, run under most operating systems. Consult the book Web site (see
Section 1.5) for a complete list.

What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f(x, y), where x and
y are spatial coordinates, and the amplitude of f at any pair of coordinates
(x, y) is called the intensity or gray level of the image at that point. When x, y,
and the amplitude values of f are all finite, discrete quantities, we call the
image a digital image. The field of digital image processing refers to processing
digital images by means of a digital computer. Note that a digital image is com-
posed of a finite number of elements, each of which has a particular location
and value. These elements are referred to as picture elements, image elements,
pels, and pixels. Pixel is the term most widely used to denote the elements of a
digital image. We consider these definitions formally in Chapter 2.

1.2 m What Is Digital Image Processing?

Vision is the most advanced of our senses, so it is not surprising that images
play the single most important role in human perception. However, unlike hu-
mans, who are limited to the visual band of the electromagnetic (EM) spec-
trum, imaging machines cover almost the entire EM spectrum, ranging from
gamma to radio waves. They can operate also on images generated by sources
that humans are not accustomed to associating with images. These include ul-
trasound, electron microscopy, and computer-generated images. Thus, digital
image processing encompasses a wide and varied field of applications.

There is no general agreement among authors regarding where image pro-
cessing stops and other related areas, such as image analysis and computer vi-
sion, start. Sometimes a distinction is made by defining image processing as a
discipline in which both the input and output of a process are images. We be-
lieve this to be a limiting and somewhat artificial boundary. For example,
under this definition, even the trivial task of computing the average intensity
of an image would not be considered an image processing operation. On the
other hand, there are fields such as computer vision whose ultimate goal is to
use computers to emulate human vision, including learning and being able to
make inferences and take actions based on visual inputs. This area itself is a
branch of artificial intelligence (AI), whose objective is to emulate human in-
telligence. The field of Al is in its earliest stages of infancy in terms of devel-
opment, with progress having been much slower than originally anticipated.
The area of image analysis (also called image understanding) is in between
image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing
at one end to computer vision at the other. However, one useful paradigm is to
consider three types of computerized processes in this continuum: low-, mid-,
and high-level processes. Low-level processes involve primitive operations
such as image preprocessing to reduce noise, contrast enhancement, and image
sharpening. A low-level process is characterized by the fact that both its inputs
and outputs are images. Mid-level processes on images involve tasks such as
segmentation (partitioning an image into regions or objects), description of
those objects to reduce them to a form suitable for computer processing, and
classification (recognition) of individual objects. A mid-level process is charac-
terized by the fact that its inputs generally are images, but its outputs are at-
tributes extracted from those images (e.g., edges, contours, and the identity of
individual objects). Finally, higher-level processing involves “making sense” of
an ensemble of recognized objects, as in image analysis, and, at the far end
of the continuum, performing the cognitive functions normally associated with
human vision.

Based on the preceding comments, we see that a logical place of overlap be-
tween image processing and image analysis is the area of recognition of
individual regions or objects in an image. Thus, what we call in this book digital
image processing encompasses processes whose inputs and outputs are images
and, in addition, encompasses processes that extract attributes from images, up
to and including the recognition of individual objects. As a simple illustration

3

4

Chapter 1

Introduction

to clarify these concepts, consider the area of automated analysis of text. The
processes of acquiring an image of the area containing the text, preprocessing
that image, extracting (segmenting) the individual characters, describing the
characters in a form suitable for computer processing, and recognizing those
individual characters, are in the scope of what we call digital image processing
in this book. Making sense of the content of the page may be viewed as
being in the domain of image analysis and even computer vision, depending on
the level of complexity implied by the statement “making sense.” Digital
image processing, as we have defined it, is used successfully in a broad range of
areas of exceptional social and economic value.

Background on MATLAB and the Image
Processing Toolbox

MATLAB is a high-performance language for technical computing. It inte-
grates computation, visualization, and programming in an easy-to-use environ-
ment where problems and solutions are expressed in familiar mathematical
notation. Typical uses include the following:

e Math and computation

Algorithm development

Data acquisition

Modeling, simulation, and prototyping

Data analysis, exploration, and visualization

Scientific and engineering graphics

Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. This allows formulating solutions to many
technical computing problems, especially those involving matrix representa-
tions, in a fraction of the time it would take to write a program in a scalar non-
interactive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was written
originally to provide easy access to matrix software developed by the LIN-
PACK (Linear System Package) and EISPACK (Eigen System Package) pro-
jects. Today, MATLAB engines incorporate the LAPACK (Linear Algebra
Package) and BLAS (Basic Linear Algebra Subprograms) libraries, constitut-
ing the state of the art in software for matrix computation.

In university environments, MATLARB is the standard computational tool for
introductory and advanced courses in mathematics, engineering, and science. In
industry, MATLAB is the computational tool of choice for research, develop-
ment, and analysis. MATLAB is complemented by a family of application-
specific solutions called toolboxes. The Image Processing Toolbox is a collection
of MATLAB functions (called M-functions or M-files) that extend the capabili-
ty of the MATLAB environment for the solution of digital image processing
problems. Other toolboxes that sometimes are used to complement IPT are the
Signal Processing, Neural Network, Fuzzy Logic, and Wavelet Toolboxes.

1.4 m Areas of Image Processing Covered in the Book 5

The MATLAB Student Version includes a full-featured version of
MATLAB. The Student Version can be purchased at significant discounts at
university bookstores and at the MathWorks” Web site (www.mathworks.com).
Student versions of add-on products, including the Image Processing Toolbox,
also are available.

Areas of Image Processing Covered in the Book

Every chapter in this book contains the pertinent MATLAB and IPT material
needed to implement the image processing methods discussed. When a MAT-
LAB or IPT function does not exist to implement a specific method, a new
function is developed and documented. As noted earlier, a complete listing of
every new function is included in the book. The remaining eleven chapters
cover material in the following areas.

Chapter 2: Fundamentals. This chapter covers the fundamentals of MATLAB
notation, indexing, and programming concepts. This material serves as founda-
tion for the rest of the book.

Chapter 3: Intensity Transformations and Spatial Filtering. This chapter cov-
ers in detail how to use MATLAB and IPT to implement intensity transfor-
mation functions. Linear and nonlinear spatial filters are covered and
illustrated in detail.

Chapter 4: Processing in the Frequency Domain. The material in this chapter
shows how to use IPT functions for computing the forward and inverse fast
Fourier transforms (FFTs), how to visualize the Fourier spectrum, and how to
implement filtering in the frequency domain. Shown also is a method for gen-
erating frequency domain filters from specified spatial filters.

Chapter 5: Image Restoration. Traditional linear restoration methods, such as
the Wiener filter, are covered in this chapter. Iterative, nonlinear methods,
such as the Richardson-Lucy method and maximum-likelihood estimation for
blind deconvolution, are discussed and illustrated. Geometric corrections and
image registration also are covered.

Chapter 6: Color Image Processing. This chapter deals with pseudocolor and
full-color image processing. Color models applicable to digital image process-
ing are discussed, and IPT functionality in color processing is extended via im-
plementation of additional color models. The chapter also covers applications
of color to edge detection and region segmentation.

Chapter 7: Wavelets. In its current form, IPT does not have any wavelet trans-
forms. A set of wavelet-related functions compatible with the Wavelet Toolbox
is developed in this chapter that will allow the reader to implement all the
wavelet-transform concepts discussed in the Gonzalez-Woods book.

Chapter 8: Image Compression. The toolbox does not have any data compres-
sion functions. In this chapter, we develop a set of functions that can be used
for this purpose.

6

Chapter 1

Introduction

Chapter 9: Morphological Image Processing. The broad spectrum of func-
tions available in IPT for morphological image processing are explained and
illustrated in this chapter using both binary and gray-scale images.

Chapter 10: Image Segmentation. The set of IPT functions available for
image segmentation are explained and illustrated in this chapter. New func-
tions for Hough transform processing and region growing also are developed.

Chapter 11: Representation and Description. Several new functions for ob-
ject representation and description, including chain-code and polygonal repre-
sentations, are developed in this chapter. New functions are included also for
object description, including Fourier descriptors, texture, and moment invari-
ants. These functions complement an extensive set of region property func-
tions available in IPT.

Chapter 12: Object Recognition. One of the important features of this chap-
ter is the efficient implementation of functions for computing the Euclidean
and Mahalanobis distances. These functions play a central role in pattern
matching. The chapter also contains a comprehensive discussion on how to
manipulate strings of symbols in MATLAB. String manipulation and matching
are important in structural pattern recognition.

In addition to the preceding material, the book contains three appendices.

Appendix A: Contains a summary of all IPT and new image-processing func-
tions developed in the book. Relevant MATLAB function also are included.
This is a useful reference that provides a global overview of all functions in the
toolbox and the book.

Appendix B: Contains a discussion on how to implement graphical user inter-
faces (GUIs) in MATLAB. GUIs are a useful complement to the material in
the book because they simplify and make more intuitive the control of inter-
active functions.

Appendix C: New function listings are included in the body of a chapter when
a new concept is explained. Otherwise the listing is included in Appendix C.
This is true also for listings of functions that are lengthy. Deferring the listing
of some functions to this appendix was done primarily to avoid breaking the
flow of explanations in text material.

The Book Web Site

An important feature of this book is the support contained in the book Web
site. The site address is

www.prenhall.com/gonzalezwoodseddins
This site provides support to the book in the following areas:

¢ Downloadable M-files, including all M-files in the book
¢ Tutorials

1.7 m The MATLAB Working Environment

Projects

Teaching materials

Links to databases, including all images in the book
Book updates

Background publications

The site is integrated with the Web site of the Gonzalez-Woods book:
www.prenhall.com/gonzalezwoods

which offers additional support on instructional and research topics.

Notation

Equations in the book are typeset using familiar italic and Greek symbols,
as in f(x,y) = Asin(ux + vy) and ¢(u,v) = tan '[I(u, v)/R(u,v)]. All
MATLAB function names and symbols are typeset in monospace font, as in
fft2(f), logical(A),and roipoly(f, c, r).

The first occurrence of a MATLAB or IPT function is highlighted by use of
the following icon on the page margin:

function name

Similarly, the first occurrence of a new function developed in the book is high-
lighted by use of the following icon on the page margin:

function name

The symbol is used as a visual cue to denote the end of a function
listing.

When referring to keyboard keys, we use bold letters, such as Return and
Tab. We also use bold letters when referring to items on a computer screen or
menu, such as File and Edit.

The MATLAB Working Environment

In this section we give a brief overview of some important operational aspects
of using MATLAB.

The MATLAB Desktop

The MATLAB desktop is the main MATLAB application window. As Fig. 1.1
shows, the desktop contains five subwindows: the Command Window, the
Workspace Browser, the Current Directory Window, the Command History
Window, and one or more Figure Windows, which are shown only when the
user displays a graphic.

7

8 Chapter 1 m Introduction

Ve MaATLAB Desktop

File Edit View Web Window Help
D@ | #Ers o ‘ W | 2 | current Dirsctory: [cnmarL agspswork ﬂJ
SPace 2] x]

Command Window

>> £ = inread('rose_S512.tif');
>> inshow(f)

ﬁﬂlm‘ﬁjstm; Base ¥

Current Directory Window

Name |S1ze | Byr.esll:.lass | >>
22214 512)(512‘ 252144‘u:mcﬂ array ‘
Command Window
Figure Window T\
) Figure No. 1 [_[O] x]
Workspace Browser Eile Edit View Insert Tools Window Help

Dz@@ xAA/ 200

| workspace | CurrentDirectory
Command History x|

size (SI) A
figure, imshow(SI)

imwrite (51, 'Figl0XX(b) (seed_points).tif', 'compr
%-- 1/16/03 1:51 PM --%

£ = imread(rose.tif'):

£ = imread('rose.tif');

inshou(£) Command History

¢ = £(l:4zend,l:d:end);

inshow(g)

¢ = £(l:3zend,l:3:end);

inshow(g)

imwrite (g, 'rose.tif')

£ = inread('rose_S12.tif'):
inshow(£)

£ = inread('rose_S12.tif'):

iushow(£) = =
4 | > il 1o

FIGURE 1.1 The MATLAB desktop and its principal components.

The Command Window is where the user types MATLAB commands and
expressions at the prompt (>>) and where the outputs of those commands are
displayed. MATLAB defines the workspace as the set of variables that the
user creates in a work session. The Workspace Browser shows these variables
and some information about them. Double-clicking on a variable in the Work-
space Browser launches the Array Editor, which can be used to obtain infor-
mation and in some instances edit certain properties of the variable.

The Current Directory tab above the Workspace tab shows the contents of
the current directory, whose path is shown in the Current Directory Window.
For example, in the Windows operating system the path might be as follows:
C:\MATLAB\Work, indicating that directory “Work” is a subdirectory of
the main directory “MATLAB,” which is installed in drive C. Clicking on the
arrow in the Current Directory Window shows a list of recently used paths.

Clicking on the button to the right of the window allows the user to change the
current directory.

1.7 m The MATLAB Working Environment

MATLAB uses a search path to find M-files and other MATLAB-related
files, which are organized in directories in the computer file system. Any file
run in MATLAB must reside in the current directory or in a directory that
is on the search path. By default, the files supplied with MATLAB and
MathWorks toolboxes are included in the search path. The easiest way to
see which directories are on the search path, or to add or modify a search
path, is to select Set Path from the File menu on the desktop, and then use
the Set Path dialog box. It is good practice to add any commonly used di-
rectories to the search path to avoid repeatedly having the change the cur-
rent directory.

The Command History Window contains a record of the commands a user
has entered in the Command Window, including both current and previous
MATLAB sessions. Previously entered MATLAB commands can be selected
and re-executed from the Command History Window by right-clicking on a
command or sequence of commands. This action launches a menu from which
to select various options in addition to executing the commands. This is a use-
ful feature when experimenting with various commands in a work session.

Using the MATLAB Editor to Create M-files

The MATLAB editor is both a text editor specialized for creating M-files and
a graphical MATLAB debugger. The editor can appear in a window by itself,
or it can be a subwindow in the desktop. M-files are denoted by the extension
.m, as in pixeldup.m. The MATLAB editor window has numerous pull-down
menus for tasks such as saving, viewing, and debugging files. Because it per-
forms some simple checks and also uses color to differentiate between various
elements of code, this text editor is recommended as the tool of choice for
writing and editing M-functions. To open the editor, type edit at the prompt in
the Command Window. Similarly, typing edit filename at the prompt opens
the M-file filename.m in an editor window, ready for editing. As noted earli-
er, the file must be in the current directory, or in a directory in the search path.

Getting Help

The principal way to get help online' is to use the MATLAB Help Browser,
opened as a separate window either by clicking on the question mark symbol
(?) on the desktop toolbar, or by typing helpbrowser at the prompt in the
Command Window. The Help Browser is a Web browser integrated into the
MATLAB desktop that displays Hypertext Markup Language (HTML) docu-
ments. The Help Browser consists of two panes, the help navigator pane, used
to find information, and the display pane, used to view the information.
Self-explanatory tabs on the navigator pane are used to perform a search.
For example, help on a specific function is obtained by selecting the Search
tab, selecting Function Name as the Search Type, and then typing in the func-
tion name in the Search for field. It is good practice to open the Help Browser

TUse of the term online in this book refers to information, such as help files, available in a local computer
system, not on the Internet.

9

10

Chapter 1

Introduction

at the beginning of a MATLAB session to have help readily available during
code development or other MATLARB task.

Another way to obtain help for a specific function is by typing doc followed
by the function name at the command prompt. For example, typing doc format
displays documentation for the function called format in the display pane of
the Help Browser. This command opens the browser if it is not already open.

M-functions have two types of information that can be displayed by the
user. The first is called the HI line, which contains the function name and a
one-line description. The second is a block of explanation called the Help text
block (these are discussed in detail in Section 2.10.1). Typing help at the
prompt followed by a function name displays both the H1 line and the Help
text for that function in the Command Window. Occasionally, this information
can be more up to date than the information in the Help browser because it is
extracted directly from the documentation of the M-function in question. Typ-
ing lookfor followed by a keyword displays all the H1 lines that contain that
keyword. This function is useful when looking for a particular topic without
knowing the names of applicable functions. For example, typing lookfor edge
at the prompt displays all the H1 lines containing that keyword. Because the
H1 line contains the function name, it then becomes possible to look at specif-
ic functions using the other help methods. Typing lookfor edge —all at the
prompt displays the H1 line of all functions that contain the word edge in ei-
ther the H1 line or the Help text block. Words that contain the characters edge
also are detected. For example, the H1 line of a function containing the word
polyedge in the H1 line or Help text would also be displayed.

It is common MATLAB terminology to use the term help page when refer-
ring to the information about an M-function displayed by any of the preceding
approaches, excluding lookfor. It is highly recommended that the reader be-
come familiar with all these methods for obtaining information because in the
following chapters we often give only representative syntax forms for MAT-
LAB and IPT functions. This is necessary either because of space limitations
or to avoid deviating from a particular discussion more than is absolutely nec-
essary. In these cases we simply introduce the syntax required to execute the
function in the form required at that point. By being comfortable with online
search methods, the reader can then explore a function of interest in more de-
tail with little effort.

Finally, the MathWorks’ Web site mentioned in Section 1.3 contains a large
database of help material, contributed functions, and other resources that
should be utilized when the online documentation contains insufficient infor-
mation about a desired topic.

Saving and Retrieving a Work Session

There are several ways to save and load an entire work session (the contents
of the Workspace Browser) or selected workspace variables in MATLAB. The
simplest is as follows.

To save the entire workspace, simply right-click on any blank space in the
Workspace Browser window and select Save Workspace As from the menu

that appears. This opens a directory window that allows naming the file and se-
lecting any folder in the system in which to save it. Then simply click Save. To
save a selected variable from the Workspace, select the variable with a left
click and then right-click on the highlighted area. Then select Save Selection
As from the menu that appears. This again opens a window from which a fold-
er can be selected to save the variable. To select multiple variables, use shift-
click or control-click in the familiar manner, and then use the procedure just
described for a single variable. All files are saved in double-precision, binary
format with the extension .mat. These saved files commonly are referred to as
MAT-files. For example, a session named, say, mywork_2003_02_10, would ap-
pear as the MAT-file mywork_2003_02_10.mat when saved. Similarly, a saved
image called final_image (which is a single variable in the workspace) will
appear when saved as final_image.mat.

To load saved workspaces and/or variables, left-click on the folder icon on
the toolbar of the Workspace Browser window. This causes a window to open
from which a folder containing the MAT-files of interest can be selected.
Double-clicking on a selected MAT-file or selecting Open causes the contents
of the file to be restored in the Workspace Browser window.

It is possible to achieve the same results described in the preceding para-
graphs by typing save and load at the prompt, with the appropriate file names
and path information. This approach is not as convenient, but it is used when
formats other than those available in the menu method are required. As an
exercise, the reader is encouraged to use the Help Browser to learn more
about these two functions.

How References Are Organized in the Book

All references in the book are listed in the Bibliography by author and date, as
in Soille [2003]. Most of the background references for the theoretical content
of the book are from Gonzalez and Woods [2002]. In cases where this is not
true, the appropriate new references are identified at the point in the discus-
sion where they are needed. References that are applicable to all chapters,
such as MATLAB manuals and other general MATLAB references, are so
identified in the Bibliography.

Summary

In addition to a brief introduction to notation and basic MATLAB tools, the material
in this chapter emphasizes the importance of a comprehensive prototyping environ-
ment in the solution of digital image processing problems. In the following chapter we
begin to lay the foundation needed to understand IPT functions and introduce a set of
fundamental programming concepts that are used throughout the book. The material
in Chapters 3 through 12 spans a wide cross section of topics that are in the mainstream
of digital image processing applications. However, although the topics covered are var-
ied, the discussion in those chapters follows the same basic theme of demonstrating
how combining MATLAB and IPT functions with new code can be used to solve a
broad spectrum of image-processing problems.

Summary

11

Preview

As mentioned in the previous chapter, the power that MATLAB brings to dig-
ital image processing is an extensive set of functions for processing multidi-
mensional arrays of which images (two-dimensional numerical arrays) are a
special case. The Image Processing Toolbox (IPT) is a collection of functions
that extend the capability of the MATLAB numeric computing environment.
These functions, and the expressiveness of the MATLAB language, make
many image-processing operations easy to write in a compact, clear manner,
thus providing an ideal software prototyping environment for the solution of
image processing problems. In this chapter we introduce the basics of MAT-
L AB notation, discuss a number of fundamental IPT properties and functions,
and introduce programming concepts that further enhance the power of IPT.
Thus, the material in this chapter is the foundation for most of the material in
the remainder of the book.

Digital Image Representation

An image may be defined as a two-dimensional function, f(x, y), where x and
y are spatial (plane) coordinates, and the amplitude of f at any pair of coordi-
nates (x, y) is called the intensity of the image at that point. The term gray level
is used often to refer to the intensity of monochrome images. Color images are
formed by a combination of individual 2-D images. For example, in the RGB
color system, a color image consists of three (red, green, and blue) individual
component images. For this reason, many of the techniques developed for
monochrome images can be extended to color images by processing the three
component images individually. Color image processing is treated in detail in
Chapter 6,

2.1 @ Digital Image Representation 13

An image may be continuous with respect to the x- and y-coordinates, and
also in amplitude. Converting such an image to digital form requires that the
coordinates, as well as the amplitude, be digitized. Digitizing the coordinate
values is called sampling; digitizing the amplitude values is called quantization.
Thus, when x, y, and the amplitude values of f are all finite, discrete quantities,
we call the image a digital image.

2.1.1 Coordinate Conventions

The result of sampling and quantization is a matrix of real numbers. We use
two principal ways in this book to represent digital images. Assume that an
image f(x,y) is sampled so that the resulting image has M rows and N
columns. We say that the image is of size M X N. The values of the coordi-
nates (x, y) are discrete quantities. For notational clarity and convenience, we
use integer values for these discrete coordinates. In many image processing
books, the image origin is defined to be at (x, y) = (0, 0). The next coordinate
values along the first row of the image are (x, y) = (0, 1). It is important to
keep in mind that the notation (0, 1) is used to signify the second sample along
the first row. It does not mean that these are the actual values of physical co-
ordinates when the image was sampled. Figure 2.1(a) shows this coordinate
convention. Note that x ranges from0to M — 1,and yfromOto N — 1,inin-
teger increments.

The coordinate convention used in the toolbox to denote arrays is different
from the preceding paragraph in two minor ways. First, instead of using (x, y),
the toolbox uses the notation (r, ¢) to indicate rows and columns. Note, how-
ever, that the order of coordinates is the same as the order discussed in the
previous paragraph, in the sense that the first element of a coordinate tuple,
(a, b), refers to a row and the second to a column. The other difference is that
the origin of the coordinate system is at (r, ¢) = (1, 1); thus, r ranges from 1 to
M, and ¢ from 1 to N, in integer increments. This coordinate convention is
shown in Fig, 2.1(b).

01 2 N-1 123 N
0 y 1 ¢
24 . o s e . 34
M- e e e s s e s P M . e e e e . .
One pixel e One pixel -/

it
FIGURE 2.1
Coordinate
conventions used
(a) in many image
processing books,
and (b) in the
Image Processing
Toolbox.

{ Chopter 2 ® Fundamentals

"ATLAB and IPT
cumentation use
. th the terms matrix
and array, mostly in-
rchangeably. How-
er, keep in mind
it a matrix is two
nensional, whereas
un array can have
ty finite dimension.

IPT documentation refers to the coordinates in Fig. 2.1(b) as pixel coordi-
nates. Less frequently, the toolbox also employs another coordinate conven-
tion called spatial coordinates, which uses x to refer to columns and y to refers
to rows. This is the opposite of our use of variables x and y. With very few ex-
ceptions, we do not use IPT’s spatial coordinate convention in this book, but
the reader will definitely encounter the terminology in IPT documentation.

2.1.2 Images as Matrices

The coordinate system in Fig. 2.1(a) and the preceding discussion lead to the
following representation for a digitized image function:

£(0,0) f(0,1) f(OON -1)
flxy) = f(15,0) f(ls,l) f(l,AE/ - 1)
FM-1,00 f(M-1,1) f(M =1,N - 1)

The right side of this equation is a digital image by definition. Each element of
this array is called an image element, picture element, pixel, or pel. The terms
image and pixel are used throughout the rest of our discussions to denote a
digital image and its elements.

A digital image can be represented naturally as a MATLAB matrix:

f(1,1) f(1,2) f(1,N)
fo(f21) f(2,2) - £(2,N)
f(M', 1) f(M., 2) - f(M‘, N)

where f{1, 1) = f(0,0) (note the use of a monospace font to denote MAT-
LAB quantities). Clearly the two representations are identical, except for the
shift in origin. The notation f (p, q) denotes the element located in row p and
column q. For example, f (6, 2) is the element in the sixth row and second col-
umn of the matrix f. Typically we use the letters M and N, respectively, to de-
note the number of rows and columns in a matrix. A 1 x N matrix is called a
row vector, whereas an M x 1 matrix is called a column vector. A 1 x 1 matrix is
a scalar.

Matrices in MATLAB are stored in variables with names such as A, a, RGB,
real_array, and so on. Variables must begin with a letter and contain only
letters, numerals, and underscores. As noted in the previous paragraph, all
MATLAB quantities in this book are written using monospace characters. We
use conventional Roman, italic notation, such as f(x, y), for mathematical
expressions.

| Reading Images

Images are read into the MATLAB environment using function imread,
whose syntax is

imread(‘'filename')

2.2 ® Reading Images 15

r}ormat Recognized
Name Description Extensions
TIFF Tagged Image File Format Ltif, Ltiff
JPEG Joint Photographic Experts Group .ipg, . ipeg
GIF Graphics Interchange Format® .gif
BMP Windows Bitmap .bmp
PNG Portable Network Graphics .png
XWD X Window Dump . xwd

GIF is supported by imread, but not by imwrite.

Here, filename is a string containing the complete name of the image file (in-
cluding any applicable extension). For example, the command line

>> f = imread('chestxray.jpg');

reads the JPEG (Table 2.1) image chestxray into image array . Note the use
of single quotes (') to delimit the string filename. The semicolon at the end
of a command line is used by MATLAB for suppressing output. If a semicolon
is not included, MATLAB displays the results of the operation(s) specified in
that line. The prompt symbol (>>) designates the beginning of a command line,
as it appears in the MATLAB Command Window (see Fig, 1.1).

When, as in the preceding command line, no path information is included in
filename, imread reads the file from the current directory (see Section 1.7.1)
and, if that fails, it tries to find the file in the MATLAB search path (see
Section 1.7.1). The simplest way to read an image from a specified directory is
to include a full or relative path to that directory in filename. For example,

>> f = imread('D:\myimages\chestxray.jpg');
reads the image from a folder called myimages on the D: drive, whereas
>> f = imread('.\myimages\chestxray.jpg');

reads the image from the myimages subdirectory of the current working di-
fectory. The Current Directory Window on the MATLAB desktop toolbar
displays MATLAB’s current working directory and provides a simple, man-
ual way to change it. Table 2.1 lists some of the most popular image/graphics
formats supported by imread and imwrite (imwrite is discussed in
Section 2.4).

Function size gives the row and column dimensions of an image:
>> size(f)
ans =
1024 1024

TABLE 2.1

Some of the
image/graphics
formats supported
by imread and
imwrite, starting
with MATLAB 6.5.
Earlier versions
support a subset of
these formats. See
online help for a
complete list of
supported formats.

In Windows, directo-
ries also are called
folders.

{6 Chapter 2 % Fundamentals

is in size, many
UATLAB and IPT
unctions can return
nore than one out-
wit argument. Multi-
Wle output

rguments must be
‘nclosed within
quare brackets, [1.

This function is particularly useful in programming when used in the following
form to determine automatically the size of an image:

>> [M, N] = size(f);

This syntax returns the number of rows (M) and columns (N) in the image.
The whos function displays additional information about an array. For in-
stance, the statement

>> whos f
gives
Name Size Bytes Class
f 1024x1024 1048576 uint8 array

Grand total is 1048576 elements using 1048576 bytes

The uint8 entry shown refers to one of several MATLAB data classes dis-
cussed in Section 2.5. A semicolon at the end of a whos line has no effect, so
normally one is not used.

%3 Displaying Images
Images are displayed on the MATLAB desktop using function imshow, which
has the basic syntax:

imshow(f, G)

where f is an image array, and G is the number of intensity levels used to dis-
play it. If G is omitted, it defaults to 256 levels. Using the syntax
imshow(f, [low highl])
displays as black all values less than or equal to low, and as white all values
greater than or equal to high. The values in between are displayed as interme-
diate intensity values using the default number of levels. Finally, the syntax
imshow(f, [1)

sets variable low to the minimum value of array f and high to its maximum
value. This form of imshow is useful for displaying images that have a low dy-
namic range or that have positive and negative values.

Function pixval is used frequently to display the intensity values of indi-
vidual pixels interactively. This function displays a cursor overlaid on an

image. As the cursor is moved over the image with the mouse, the coordi-
nates of the cursor position and the corresponding intensity values are

2.3 @ Displaying Images 17

shown on a display that appears below the figure window. When working
with color images, the coordinates as well as the red, green, and blue compo-
nents are displayed. If the left button on the mouse is clicked and then held
pressed, pixval displays the Euclidean distance between the initial and cur-
rent cursor locations.

The syntax form of interest here is

pixval

which shows the cursor on the last image displayed. Clicking the X button on
the cursor window turns it off.

& (a) The following statements read from disk an image called rose_512.tif,
extract basic information about the image, and display it using imshow:

>> f = imread('rose_512.tif');

>> whos T
Name Size Bytes Class
f 512x512 262144 uint8 array

Grand total is 262144 elements using 262144 bytes
>> imshow(f)

A semicolon at the end of an imshow line has no effect, so normally one is
not used. Figure 2.2 shows what the output looks like on the screen. The figure
number appears on the top, left of the window. Note the various pull-down
menus and utility buttons. They are used for processes such as scaling, saving,
and exporting the contents of the display window. In particular, the Edit menu
has functions for editing and formatting results before they are printed or
saved to disk.

EXAMPLE 2.1:
Image reading
and displaying.

FIGURE 2.2
Screen capture
showing how an
image appears on
the MATLAB
desktop.
However, in most
of the examples
throughout this
book, only the
images
themselves are
shown. Note the
figure number on
the top, left part
of the window.

3 Chapter 2 # Fundamentals

inction figure

wreates a figure win-
Yow. When used

ithout an argu-

2nt, as shown here,

simply creates a
new figure window.
“yping figure(n),

wrees figire number

0 become visible.

. b

GURE 2.3 (a) An
age, h, with low
dynamic range.
») Result of scaling
" using imshow
1,11). (Original
...lage courtesy of
. David R.
ickens, Dept.
‘Radiology &
adiological
Sciences, Vanderbilt
Iniversity Medical
:nter.)

If another image. g, is displayed using imshow, MATLAB replaces the
image in the screen with the new image. To keep the first image and output a
second image, we use function figure as follows:

>> figure, imshow(g)
Using the statement
>> imshow(f), figure, imshow(g)

displays both images. Note that more than one command can be written on a
line, as long as different commands are properly delimited by commas or semi-
colons. As mentioned earlier, a semicolon is used whenever it is desired to sup-
press screen outputs from a command line.

(b) Suppose that we have just read an image h and find that using imshow(h)
produces the image in Fig. 2.3(a). It is clear that this image has a low dynamic
range, which can be remedied for display purposes by using the statement

>> imshow(h, [1)

Figure 2.3(b) shows the result. The improvement is apparent. |

Writing Images
Images are written to disk using function imwrite, which has the following
basic syntax:

imwrite(f, 'filename')

With this syntax, the string contained in filename must include a recognized
file format extension (see Table 2.1). Alternatively, the desired format can be
specified explicitly with a third input argument. For example, the following
command writes f to a TIFF file named patient10_runt:

>> imwrite(f, ‘'patient10_runt’', 'tif')
or, alternatively,

>> imwrite(f, 'patient10_runti.tif')

2.4 & Writing lmages 19

If filename contains no path information, then imwrite saves the file in the
current working directory.

The imwrite function can have other parameters, depending on the file for-
mat selected. Most of the work in the following chapters deals either with
JPEG or TIFF images, so we focus attention here on these two formats.

A more general imwrite syntax applicable only to JPEG images is

imwrite(f, 'filename.jpg', 'quality', q)

where q is an integer between 0 and 100 (the lower the number the higher the
degradation due to JPEG compression).

¥ Figure 2.4(a) shows an image, T, typical of sequences of images resulting
from a given chemical process. It is desired to transmit these images on a rou-
tine basis to a central site for visual and/or automated inspection. In order to
reduce storage and transmission time, it is important that the images be com-
pressed as much as possible while not degrading their visual appearance
beyond a reasonable level. In this case “reasonable” means no perceptible
false contouring. Figures 2.4(b) through (f) show the results obtained by writ-
ing image f to disk (in JPEG format), with g = 50, 25, 15, 5, and 0, respective-
ly. For example, for q = 25 the applicable syntax is

>> imwrite(f, 'bubbles25.jpg', 'quality', 25)

The image for q = 15 [Fig. 2.4(d)] has false contouring that is barely visible,
but this effect becomes quite pronounced for g = 5 and q = 0. Thus, an
acceptable solution with some margin for error is to compress the images with
q=25.In order to get an idea of the compression achieved and to obtain other
image file details, we can use function imfinfo, which has the syntax

imfinfo filename

where filename is the complete file name of the image stored in disk. For
example,

>> imfinfo bubbles25.jpg

outputs the following information (note that some fields contain no informa-
tion in this case):

Filename: "bubbles25.jpg"’
FileModDate: '04-Jan-2003 12:31:26'
FileSize: 13849
Format: "jpg’
FormatVersion: "
Width: 714

Height: 682
BitDepth: 8
ColorType: 'grayscale’
FormatSignature: v
Comment: {}

EXAMPLE 2.2
Writing an image
and using
function imfinfo.

20 Chopter 2 @ Fundamentals

ab
cd
e f

FIGURE 2.4

(a) Original image.
(b) through

(f) Results of using
jpg quality values
q=50,25 15,5,
and 0, respectively.
False contouring
begins to be barely
noticeable for

g =15 [image (d)]
but is quite visible
forg=5and

q=0.

See Example 2.11
for a function that
creates all the images
in Fig. 2.4 using a
simple for loop.

where FileSize is in bytes. The number of bytes in the original image is com-
puted simply by multiplying Width by Height by BitDepth and dividing the
result by 8. The result is 486948, Dividing this by FileSize gives the compres-
sion ratio: (486948/13849) = 35.16. This compression ratio was achieved
while maintaining image quality consistent with the requirements of the appli-

2.4 @ Writing Images 21

cation. In addition to the obvious advantages in storage space, this reduction
allows the transmission of approximately 35 times the amount of uncom-
pressed data per unit time.

The information fields displayed by imfinfo can be captured into a so-
called structure variable that can be used for subsequent computations. Using
the preceding image as an example, and assigning the name K to the structure
variable, we use the syntax

>> K = imfinfo('bubbles25.jpg');

to store into variable K all the information generated by command imfinfo.
The information generated by imfinfo is appended to the structure variable

by means of fields, separated from K by a dot. For example, the image height

and width are now stored in structure fields K.Height and K. Width.
As an illustration, consider the following use of structure variable K to com-
pute the compression ratio for bubbles25. jpg:

>> K = imfinfo('bubbles25.jpg’);

>> image_bytes = K.Width*K.Height*K.BitDepth/8;

>> compressed_bytes = K.FileSize;

>> compression_ratio = image_bytes/compressed_bytes

compression_ratio =
35.1612

Note that imfinfo was used in two different ways. The first was to type
imfinfo bubbles25.jpg at the prompt, which resulted in the information
being displayed on the screen. The second was to type K = imfinfo('bub-
bles25.jpg'), which resulted in the information generated by imfinfo
being stored in K. These two different ways of calling imfinfo are an example
of command-function duality, an important concept that is explained in more
detail in the MATLAB online documentation.]

A more general imwrite syntax applicable only to tif images has the form

imwrite(g, 'filename.tif', 'compression', 'parameter’,
'resolution', [colres rowres])

where 'parameter’' can have one of the following principal values: 'none'
indicates no compression; 'packbits' indicates packbits compression (the
default for nonbinary images); and 'ccitt' indicates ccitt compression (the
default for binary images). The 1 X 2 array [colres rowres] contains two in-
tegers that give the column resolution and row resolution in dots-per-unit (the
default values are [72 72]). For example, if the image dimensions are in inches,
colres is the number of dots (pixels) per inch (dpi) in the vertical direction,
and similarly for rowres in the horizontal direction. Specifying the resolution
by a single scalar, res, is equivalent to writing [res res].

Structures are dis-
cussed in Sections
2.106and 11.1.1.

To learn more about
command function
duality, consult the
help page on this
topic. See Section
1.7.3 regarding help
pages.

If a statement does
not fit on one line,
use an ellipsis (three
periods), followed by
Return or Enter, ro
indicate that the
statement continues
on the next line.
There are no spuces
between the periods.

2 Chapter 2 # Fundamentals

"XAMPLE 2.3:
‘sing imwrite
rameters.

5URE 2.5
Effects of

ianging the dpi

solution while

eping the
.«mber of pixels
~~nstant.

) A 450 X 450

age at 200 dpi

ze = 225 X
2.25 inches).

)} The same

J X 450 image,

t at 300 dpi
wze = 1.5 X
' Sinches).

riginal image

urtesy of Lixi,

)

Figure 2.5(a) is an 8-bit X-ray image of a circuit board generated during
quality inspection. It is in jpg format, at 200 dpi. The image is of size
450 X 450 pixels, so its dimensions are 2.25 X 2.25 inches. We want to store
this image in tif format, with no compression, under the name sf. In addition,
we want to reduce the size of the image to 1.5 X 1.5 inches while keeping the
pixel count at 450 X 450. The following statement yields the desired resuit:

>> imwrite(f,'sf.tif', 'compression','none','resolution', ...
[300 300]

The values of the vector [colres rowres] were determined by multiplying
200 dpi by the ratio 2.25/1.5, which gives 300 dpi. Rather than do the compu-
tation manually, we could write

>> res = round{200%2.25/1.5);
>> imwrite(f, 'sf.tif', 'compression', 'none' ,'resolution', res)

where function round rounds its argument to the nearest integer. It is impor-
tant to note that the number of pixels was not changed by these commands.
Only the scale of the image changed. The original 450 X 450 image at 200 dpi
is of size 2.25 X 2.25 inches. The new 300-dpi image is identical, except that its

2.5 @ Data Classes

450 x 450 pixels are distributed over a 1.5 X 1.5-inch area. Processes such as
this are useful for controlling the size of an image in a printed document with-
out sacrificing resolution. -

Often, it is necessary to export images to disk the way they appear on the
MATLAB desktop. This is especially true with plots, as shown in the next
chapter. The contents of a figure window can be exported to disk in two ways.
The first is to use the File pull-down menu in the figure window (see Fig. 2.2)
and then choose Expeort. With this option, the user can select a location, file
name, and format. More control over export parameters is obtained by using
the print command:

print —fno —dfileformat —rresno filename

where no refers to the figure number in the figure window of interest,
fileformat refers to one of the file formats in Table 2.1, resno is the resolu-
tion in dpi, and filename is the name we wish to assign the file. For example,
to export the contents of the figure window in Fig. 2.2 as a tif file at 300 dpi,
and under the name hi_res_rose, we would type

>> print —f1 —dtiff -r300 hi_res_rose
This command sends the file hi_res_rose.tif to the current directory.
If we simply type print at the prompt, MATLAB prints (to the default

printer) the contents of the last figure window displayed. It is possible also to
specify other options with print, such as a specific printing device.

Data Classes

Although we work with integer coordinates, the values of pixels themselves are
not restricted to be integers in MATLAB. Table 2.2 lists the various data classes’
supported by MATLAB and IPT for representing pixel values. The first eight
entries in the table are referred to as numeric data classes. The ninth entry is the
char class and, as shown, the last entry is referred to as the logical data class.

All numeric computations in MATLAB are done using double quantities,
so this is also a frequent data class encountered in image processing applica-
tions. Class uint8 also is encountered frequently, especially when reading
data from storage devices, as 8-bit images are the most common representa-
tions found in practice. These two data classes, class logical, and, to a lesser
degree, class uint16, constitute the primary data classes on which we focus in
this book. Many IPT functions, however, support all the data classes listed in
Table 2.2. Data class double requires 8 bytes to represent a number, uint8
and int8 require 1 byte each, uint16 and int16 require 2 bytes, and uint32,

+ . . ,
MATLAB documentation often uses the terms data class and data rvpe interchangeably. In this book,
We reserve use of the term type for images. as discussed in Section 2.6,

23

24 Chopter 2 @ Fundamentals

TABLE 2.2

Data classes. The
first eight entries
are referred to as
numeric classes;
the ninth entry is
the character
class, and the last
entry is of class
logical.

Name Description

double Double-precision, floating-point numbers in the approximate
range —10° to 10°% (8 bytes per element).

uint8 Unsigned 8-bit integers in the range [0, 255] (1 byte per element).

uint16 Unsigned 16-bit integers in the range [0, 65535] (2 bytes per
element).

uint32 Unsigned 32-bit integers in the range [0, 4294967295] (4 bytes
per element).

int8 Signed 8-bit integers in the range [—128, 127] (1 byte per element).

int16 Signed 16-bit integers in the range [—32768, 32767] (2 bytes per
element).

int32 Signed 32-bit integers in the range [—2147483648, 2147483647]

(4 bytes per element).

Single-precision floating-point numbers with values in the
approximate range —10° to 10® (4 bytes per element).
char Characters (2 bytes per element).

Values are O or 1 (1 byte per element).

single

logical

int32,and single, require 4 bytes each. The char data class holds characters
in Unicode representation. A character string is merely a 1 x n array of char-
acters. A logical array contains only the values 0 and 1, with each element
being stored in memory using one byte per element. Logical arrays are creat-
ed by using function logical (see Section 2.6.2) or by using relational opera-
tors (Section 2.10.2).

Image Types
The toolbox supports four types of images:

¢ Intensity images
* Binary images
* Indexed images
* RGB images

Most monochrome image processing operations are carried out using binary
or intensity images, so our initial focus is on these two image types. Indexed
and RGB color images are discussed in Chapter 6.

2.6.1 Intensity Images

An intensity image is a data matrix whose values have been scaled to represent
intensities. When the elements of an intensity image are of class uint8, or
class uint16, they have integer values in the range [0, 255] and [0, 65535}, re-
spectively. If the image is of class double, the values are floating-point num-
bers. Values of scaled, class double intensity images are in the range [0, 1] by
convention.

2.7 @ Converting between Data Classes and Image Types 25

2.6.2 Binary Images

Binary images have a very specific meaning in MATLAB. A binary image is
a logical array of Os and 1s. Thus, an array of Os and 1s whose values are of
data class, say, uint8, is not considered a binary image in MATLAB. A
numeric array is converted to binary using function logical. Thus,if Ais a
numeric array consisting of Os and 1s, we create a logical array B using the
statement

B = logical(A)

If A contains elements other than Os and 1s, use of the logical function con-
verts all nonzero quantities to logical 1s and all entries with value 0 to logical
0s. Using relational and logical operators (see Section 2.10.2) also creates logi-

cal arrays.
To test if an array is logical we use the islogical function:

islogical(C)

If C is a logical array, this function returns a 1. Otherwise it returns a 0. Logical
arrays can be converted to numeric arrays using the data class conversion
functions discussed in Section 2.7.1.

2.6.3 A Note on Terminology

Considerable care was taken in the previous two sections to clarify the use of
the terms data class and image type. In general, we refer to an image as being a
“data_class image_type image,” where data_class is one of the entries
from Table 2.2, and image_type is one of the image types defined at the begin-
ning of this section. Thus, an image is characterized by both a class and a type.
For instance, a statement discussing an “unit8 intensity image” is simply re-
ferring to an intensity image whose pixels are of data class unit8. Some func-
tions in the toolbox support all data classes, while others are very specific as to
what constitutes a valid class. For example, the pixels in a binary image can
only be of data class Logical, as mentioned earlier.

®%4 Converting between Data Classes and Image Types

Converting between data classes and image types is a frequent operation in
IPT applications. When converting between data classes, it is important to
keep in mind the value ranges for each data class detailed in Table 2.2.

271.1 Converting between Data Classes

Converting between data classes is straightforward. The general syntax is
B = data_class_name(A)

where data_class_name is one of the names in the first column of Table 2.2.
For example, suppose that A is an array of class uint8. A double-precision

See Table 2.9 for a
list of other func-
tions based on the
1s* syntax.

26 Chapter 2 2 Fundamentals

1-function change-
-+ lass, discussed in
Section 3.2.3, can be
sed for changing an

iput image to a spec-

ied class.

ABLE 2.3
unctions in IPT

10T converting
etween image
‘asses and types.
2e Table 6.3 for

wonversions that
pply specifically
» color images.

array, B, is generated by the command B = double (A). This conversion is used
routinely throughout the book because MATLAB expects operands in nu-
merical computations to be double-precision, floating-point numbers. If C is an
array of class double in which all values are in the range [0, 255] (but possibly
containing fractional values), it can be converted to an uint8 array with the
command D=uint8(C).

If an array of class double has any values outside the range [0,255] and it is
converted to class uint8 in the manner just described, MATLAB converts to
0 all values that are less than 0, and converts to 255 all values that are greater
than 255. Numbers in between are converted to integers by discarding their
fractional parts. Thus, proper scaling of a double array so that its elements are
in the range [0,255] is necessary before converting it to uint8. As indicated in
Section 2.6.2, converting any of the numeric data classes to logical results in
an array with logical 1s in locations where the input array had nonzero values,
and logical Os in places where the input array contained Os.

1.7.2 Converting between Image Classes and Types

The toolbox provides specific functions (Table 2.3) that perform the scaling
necessary to convert between image classes and types. Function im2uint8 de-
tects the data class of the input and performs all the necessary scaling for the
toolbox to recognize the data as valid image data. For example, consider the
following 2 X 2 image f of class double, which could be the result of an inter-
mediate computation:

-0.5 0.5
0.75 1.5
Performing the conversion
>> g = im2uint8(f)

yields the result

g =
0 128
191 255
Name Converts Input to: Valid Input Image Data Classes

im2uints uint8 logical,uint8,uint16, and double
im2uintie uint16 logical,uint8,uint16, and double
mat2gray double (in range [0,1]) double
im2double double logical,uint8,uint16, and double
im2bw logical uint8,uint16, and double

2.7 ® Converting between Data Classes and Image Types

from which we see that function im2uint8 sets to 0 all values in the input that
are less than 0, sets to 255 all values in the input that are greater than 1, and
multiplies all other values by 255. Rounding the results of the multiplication to
the nearest integer completes the conversion. Note that the rounding behavior
of im2uint8 is different from the data-class conversion function uint8 dis-
cussed in the previous section, which simply discards fractional parts.

Converting an arbitrary array of class double to an array of class double
scaled to the range [0, 1] can be accomplished by using function mat2gray
whose basic syntax is

g = mat2gray(A, [Amin, Amax])

where image g has values in the range 0 (black) to 1 (white). The specified pa-
rameters Amin and Amax are such that values less than Amin in A become Oin g,
and values greater than Amax in A correspond to 1 in g. Writing

>> g = mat2gray(A);

sets the values of Amin and Amax to the actual minimum and maximum values in
A.The input is assumed to be of class double. The output also is of class double.

Function im2double converts an input to class double. If the input is of
class uint8, uint16, or logical, function im2double converts it to class
double with values in the range [0, 1]. If the input is already of class double,
im2double returns an array that is equal to the input. For example, if an array
of class double resuits from computations that yield values outside the range
[0, 1], inputting this array into im2double will have no effect. As mentioned in
the preceding paragraph, a double array having arbitrary values can be con-
verted to a double array with values in the range [0, 1] by using function
mat2gray.

As an illustration, consider the class uint8 image®

>> h = uint8([25 50; 128 200]);
Performing the conversion
>> g = im2double(h);
yields the result
g =
0.0980 0.1961
0.4706 0.7843

from which we infer that the conversion when the input is of class uint8 is
done simply by dividing each value of the input array by 255. If the input is of
class uint16 the division is by 65535.

Section 2.8.2 explains the use of square brackets and semicolons to specify a matrix.

28 Chopter 2 @ Fundamentals

EXAMPLE 2.4
Converting
between image
classes and types.

Finally, we consider conversion between binary and intensity image types.
Function im2bw, which has the syntax

g = im2bw(f, T)

produces a binary image, g, from an intensity image, f, by thresholding. The
output binary image g has values of 0 for all pixels in the input image with
intensity values less than threshold T, and 1 for all other pixels. The value
specified for T has to be in the range [0, 1], regardless of the class of the
input. The output binary image is automatically declared as a 1ogical array
by im2bw. If we write g = im2bw (), IPT uses a default value of 0.5 for T.If
the input is an uint8 image, im2bw divides all its pixels by 255 and then ap-
plies either the default or a specified threshold. If the input is of class
uint16, the division is by 65535. If the input is a double image, im2bw ap-
plies either the default or a specified threshold directly. If the input is a
logical array, the output is identical to the input. A logical (binary) array
can be converted to a numerical array by using any of the four functions in
the first column of Table 2.3.

8 (a) We wish to convert the following double image

>> f = [1 2; 3 4]
f =

1 2
3 4

to binary such that values 1 and 2 become 0 and the other two values become
1. First we convert it to the range [0, 1]:

>> g = mat2gray(f)
g =

0 0.3333
0.6667 1.0000

Then we convert it to binary using a threshold, say, of value 0.6:

>> gb = im2bw(g, 0.6)
gb =

0 0
1 1

2.7 ® Converting between Data Classes and Image Types

As mentioned in Section 2.5, we can generate a binary array directly using re-
lational operators (Section 2.10.2). Thus we get the same result by writing

> gh=°f>2
gb =

We could store in a variable (say, gbv) the fact that gb is a logical array by
using the islogical function, as follows:

>> gbv = islogical(gb)
gbv =
1

(b) Suppose now that we want to convert gb to a numerical array of 0s and
1s of class double. This is done directly:

>> gbd = im2double(gb)
ghd =

If gb had been a numeric array of class uint8, applying im2double to it
would have resulted in an array with values

0 0
0.0039 0.0039

because im2double would have divided all the elements by 255. This did not
happen in the preceding conversion because im2double detected that the
input was a Logical array, whose only possible values are 0 and 1. If the input
in fact had been an uint8 numeric array and we wanted to convert it to class
double while keeping the 0 and 1 values, we would have converted the array
by writing

>> gbd = double(gb)
gbd =

29

0 Chapter 2 ® Fundamentals

sing a single quote

ithout the period
cumputes the conju-

e transpose. When

e data are real, both

insposes can be

ed interchangeably.
oee Table 2.4,

Finally, we point out that MATLAB supports nested statements, so we could have
started with image f and arrived at the same result by using the one-line statement

>> gbd = im2double(im2bw(mat2gray(f), 0.6));

or by using partial groupings of these functions. Of course, the entire process
could have been done in this case with a simpler command:

>> ghd = double(f > 2);

again demonstrating the compactness of the MATLAB language. B

&3 Array Indexing

MATLAB supports a number of powerful indexing schemes that simplify
array manipulation and improve the efficiency of programs. In this section we
discuss and illustrate basic indexing in one and two dimensions (i.e., vectors
and matrices). More sophisticated techniques are introduced as needed in sub-
sequent discussions.

2.8.1 Vector Indexing

As discussed in Section 2.1.2, an array of dimension 1 X N is called a row vec-
tor. The elements of such a vector are accessed using one-dimensional index-
ing. Thus, v (1) is the first element of vector v, v(2) its second element, and so
forth. The elements of vectors in MATLAB are enclosed by square brackets
and are separated by spaces or by commas. For example,

>>v=1[183579]

v =
1 3 5 7 9

>> v(2)

ans =

3

A row vector is converted to a column vector using the transpose operator (. '):

>> W =V,
w =

© N o w -

2.8 @ Array Indexing 31

To access blocks of elements, we use MATLAB’s colon notation. For exam-
ple, to access the first three elements of v we write

>> v(1:3)
ans =
1 3 5

Similarly, we can access the second through the fourth elements

>> v(2:4)

ans =

or all the elements from, say, the third through the last element:

>> v(3:end)
ans =
5 7 9

where end signifies the last element in the vector. If v is a vector, writing
>> v(:)

produces a column vector, whereas writing

>> v(1:end)

produces a row vector.
Indexing is not restricted to contiguous elements. For example,

>> v(1:2:end)
ans =

1 5 9

The notation 1:2:end says to start at 1, count up by 2 and stop when the count
reaches the last element. The steps can be negative:

>> v(end:-2:1)
ans =

32

Chapter 2 ® Fundamentals

Here, the index count started at the last element, decreased by 2, and stopped
when it reached the first element.
Function linspace, with syntax

x = linspace(a, b, n)

generates a row vector x of n elements linearly spaced between and including
a and b. We use this function in several places in later chapters.

A vector can even be used as an index into another vector. For example, we
can pick the first, fourth, and fifth elements of v using the command

>> v([1 4 5])
ans =
1 7 9

As shown in the following section, the ability to use a vector as an index into
another vector also plays a key role in matrix indexing.

2.8.2 Matrix Indexing

Matrices can be represented conveniently in MATLAB as a sequence of row
vectors enclosed by square brackets and separated by semicolons. For exam-

ple, typing
>>A=1[123; 456; 7 8 9]

displays the 3 X 3 matrix

A =
1 2 3
4 5 6
7 8 9

Note that the use of semicolons here is different from their use mentioned ear-
lier to suppress output or to write muitiple commands in a single line.

We select elements in a matrix just as we did for vectors, but now we need
two indices: one to establish a row location and the other for the correspond-
ing column. For example, to extract the element in the second row, third col-
umn, we write

>> A(2, 3)
ans =
6

2.3 W Array Indexing 33

The colon operator is used in matrix indexing to select a two-dimensional
block of elements out of a matrix. For example,

>> €3 = A(:, 3)
Cc3 =

3
6
9

Here, use of the colon by itself is analogous to writing A(1:3,3), which simply
picks the third column of the matrix. Similarly, we extract the second row as
follows:

>> R2 = A(2, 1)
R2 =
4 5 6

The following statement extracts the top two rows:

>> T2 = A(1:2, 1:3)
T2 =

To create a matrix B equal to A but with its last column set to Os, we write

>>B=A;

>> B(:, 3) =0

B =
1 2 0
4 5 0
7 8 0

' Operations using end are carried out in a manner similar to the examples
given in the previous section for vector indexing. The following examples illus-
trate this.

>> A(end, end)
ans =
9

2.8 ® Array Indexing 35

4 Chopter 2 ® Fundamentals
>> A(end, end ~ 2) s> v = T2(:)
ans = v =
7 1
>> A(2:end, end:-2:1) g
ans = 5
6 4 3
9 7 6

Using vectors to index into a matrix provides a powerful approach for ele-
ment selection. For example,

>> E = A([1 3], [2 3])

2 3
8 9

The notation A([a b],[c d]) picks out the elements in A with coordinates
(row a, column c), (row a, column d), (row b, column c), and (row b, column
d). Thus,when we let E= A([1 3], [2 3]) we are selecting the following ele-
ments in A: the element in row 1 column 2, the element in row 1 column 3, the
element in row 3 column 2, and the element in row 3 column 3.

More complex schemes can be implemented using matrix addressing. A
particularly useful addressing approach using matrices for indexing is of the
form A(D), where D is a logical array. For example, if

>> D = logical([1 0 0; 0 0 1; 0 0 0])

This use of the colon is helpful when, for example, we want to find the sum of
all the elements of a matrix:

>> s = sum(A(:))

45

In general, sum(v) adds the values of all the elements of input vector v. If
amatrix is input into sum [as in sum(A)], the output is a row vector containing
the sums of each individual column of the input array (this behavior is typical
of many MATLAB functions encountered in later chapters). By using a sin-
gle colon in the manner just illustrated, we are in reality implementing the
command

>> sum(sum(A));
because use of a single colon converts the matrix into a vector.

Using the colon notation is actually a form of linear indexing into a matrix
or higher-dimensional array. In fact, MATLAB stores each array as a column

D = . . .
of values regardless of the actual dimensions. This column consists of the array
(1) g (1) columns, appended end to end. For example, matrix A is stored in MATLAB as
0 0 0 1
4
then 7
2
>> A(D) 5
8
ans = 3
1 6
9

Accessing A with a single subscript indexes directly into this column. For exam-
ple, 5(3) accesses the third value in the column, the number 7; A(8) accesses
the eighth value, 6, and so on. When we use the column notation, we are simply

Finally, we point out that use of a single colon as an index into a matrix se-
lects all the elements of the array (on a column-by-column basis) and arranges
them in the form of a column vector. For example, with reference to matrix T2,

36 Chapter 2 @ Fundamentals

EXAMPLE 2.5:
Some simple
image operations
using array
indexing.

2 b

o

d el

FIGURE 2.6
Results obtained
using array
indexing.

(a) Original
image. (b) Image
flipped vertically.
(c) Cropped
image.

(d) Subsampled
image. (e) A
horizontal scan
line through the
middle of the
image in (a).

addressing all the elements, A(1:end). This type of indexing is a basic staple in
vectorizing loops for program optimization, as discussed in Section 2.10.4.

® The image in Fig. 2.6(a) is a 1024 X 1024 intensity image, f, of class uint8.
The image in Fig. 2.6(b) was flipped vertically using the statement

>> fp = f(end:i-1:1, :);

The image shown in Fig. 2.6(c) is a section out of image (a), obtained using
the command

>> fc = f(257:768, 257:768);

Similarly, Fig. 2.6(d) shows a subsampled image obtained using the
statement

>> fs = f(1:2:end, 1:2:end);

300 T T T T T

250

200

150

100

50

2.9 ® Some Important Standard Arrays

Finally, Fig. 2.6(¢) shows a horizontal scan line through the middle of
Fig. 2.6(a), obtained using the command

>> plot(f(512, :))
The plot function is discussed in detail in Section 3.3.1.]

2.8.3 Selecting Array Dimensions

Operations of the form
operation(A, dim)

where operation denotes an applicable MATLAB operation, A is an array,
and dimis a scalar, are used frequently in this book. For example, suppose that
Ais an array of size M X N.The command

>> k = size(A, 1);

gives the size of A along its first dimension, which is defined by MATLAB as
the vertical dimension. That is, this command gives the number of rows in A.
Similarly, the second dimension of an array is in the horizontal direction, so
the statement size(A,2) gives the number of columns in A. A singleton di-
mension is any dimension, dim, for which size(A, dim) = 1. Using these con-
cepts, we could have written the last command in Example 2.5 as

>> plot(f(size(f, 1)/2, :))

MATLAB does not restrict the number of dimensions of an array, so being
able to extract the components of an array in any dimension is an important
feature. For the most part, we deal with 2-D arrays, but there are several in-
stances (as when working with color or multispectral images) when it is neces-
sary to be able to “stack” images along a third or higher dimension. We deal
with this in Chapters 6, 11, and 12. Function ndims, with syntax

d = ndims(A)

gives the number of dimensions of array A. Function ndims never returns a
value less than 2 because even scalars are considered two dimensional, in the
sense that they are arrays of size 1 X 1.

¥%l Some Important Standard Arrays

Often, it is useful to be able to generate simple image arrays to try out ideas
and to test the syntax of functions during development. In this section we in-
troduce seven array-generating functions that are used in later chapters. If
only one argument is included in any of the following functions, the result is a
Square array.

38

Chapter 2 # Fundamentals

e zeros(M, N) generates an Mx N matrix of Os of class double.

* ones(M, N) generates an M x N matrix of 1s of class double.

* true(M, N) generates an Mx N logical matrix of 1s.

* false(M, N) generates an Mx N logical matrix of Os.

* magic(M) generates an M x M “magic square.” This is a square array in
which the sum along any row, column, or main diagonal, is the same. Magic
squares are useful arrays for testing purposes because they are easy to
generate and their numbers are integers.

¢ rand(M, N) generates an M x N matrix whose entries are uniformly distrib-
uted random numbers in the interval [0, 1].

e randn(M, N) generates an M x N matrix whose numbers are normally dis-
tributed (i.e., Gaussian) random numbers with mean 0 and variance 1.

For example,

>> A = 5*ones (3, 3)

A=
5 5 5
5 5 5
5 5 5
>> magic(3)
ans =
8 1 6
3 5 7
4 9 2
>> B = rand(2, 4)
B =

0.2311 0.4860 0.7621 0.0185
0.6068 0.8913 0.4565 0.8214

Introduction to M-Function Programming

One of the most powerful features of the Image Processing Toolbox is its
transparent access to the MATLAB programming environment. As will be-
come evident shortly, MATLAB function programming is flexible and partic-
ularly easy to learn.

2.10.1 M-Files

So-called M-files in MATLAB can be scripts that simply execute a series of
MATLARB statements, or they can be functions that can accept arguments and
can produce one or more outputs. The focus of this section in on M-file func-
tions. These functions extend the capabilities of both MATLAB and IPT to ad-
dress specific, user-defined applications.

2.10 & Introduction to M-Function Programming 39

M-files are created using a text editor and are stored with a name of the
form filename.m, such as average.m and filter.m. The components of a
function M-file are

o The function definition line
¢ The H1 line

» Help text

¢ The function body

e Comments

The function definition line has the form
function [outputs] = name(inputs)

For example, a function to compute the sum and product (two different out-
puts) of two images would have the form

function [s, p] = sumprod(f, g)

where f, and g are the input images, s js the sum image, and p is the product
image. The name sumprod is arbitrarily defined, but the word function always
appears on the left, in the form shown. Note that the output arguments are en-
closed by square brackets and the inputs are enclosed by parentheses. If the
function has a single output argument, it is acceptable to list the argument with-
out brackets. If the function has no output, only the word function is used,
without brackets or equal sign. Function names must begin with a letter, and
the remaining characters can be any combination of letters, numbers, and un-
derscores. No spaces are allowed. MATLAB distinguishes function names up
to 63 characters long. Additional characters are ignored.
Functions can be called at the command prompt; for example,

>> [s, p] = sumprod(f, g);
or they can be used as elements of other functions, in which case they become
subfunctions. As noted in the previous paragraph, if the output has a single ar-
gument, it is acceptable to write it without the brackets, as in
>>y = sum(x);

The H1 line is the first text line. It is a single comment line that follows the
function definition line. There can be no blank lines or leading spaces between
the H1 line and the function definition line. An example of an H1 line is

% SUMPROD Computes the sum and product of two images.

As indicated in Section 1.7.3, the H1 line is the first text that appears when a
user types

>> help function_name

40 Chopter 2 # Fundamentals

ldbkfor

at the MATLAB prompt. Also, as mentioned in that section, typing lookfor
keyword displays all the H1 lines containing the string keyword. This line pro-
vides important summary information about the M-file, so it should be as de-
scriptive as possible.

Help text is a text block that follows the H1 line, without any blank lines in
between the two. Help text is used to provide comments and online help for
the function. When a user types help function_name at the prompt, MAT-
LAB displays all comment lines that appear between the function definition
line and the first noncomment (executable or blank) line. The help system ig-
nores any comment lines that appear after the Help text block.

The function body contains all the MATLAB code that performs computa-
tions and assigns values to output arguments. Several examples of MATLAB
code are given later in this chapter.

All lines preceded by the symbol “%” that are not the H1 line or Help text are
considered function comment lines and are not considered part of the Help text
block. It is permissible to append comments to the end of a line of code.

M-files can be created and edited using any text editor and saved with the
extension .m in a specified directory, typically in the MATLAB search path.
Another way to create or edit an M-file is to use the edit function at the
prompt. For example,

>> edit sumprod

opens for editing the file sumprod.mif the file exists in a directory that is in the
MATLARB path or in the current directory. If the file cannot be found, MAT-
LAB gives the user the option to create it. As noted in Section 1.7.2, the
MATLAB editor window has numerous pull-down menus for tasks such as
saving, viewing, and debugging files. Because it performs some simple checks
and uses color to differentiate between various elements of code, this text edi-
tor is recommended as the tool of choice for writing and editing M-functions.

2.10.2 Operators
MATLAB operators are grouped into three main categories:

e Arithmetic operators that perform numeric computations
 Relational operators that compare operands quantitatively
e Logical operators that perform the functions AND, OR, and NOT

These are discussed in the remainder of this section.

Arithmetic Operators

MATLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra. Array arithmetic opera-
tions are carried out element by element and can be used with multidimen-
sional arrays. The period (dot) character (.) distinguishes array operations
from matrix operations. For example, A*B indicates matrix multiplication in the
traditional sense, whereas A. *B indicates array multiplication, in the sense that
the result is an array, the same size as A and B, in which each element is the

2.10 % Introduction to M-Function Programming 41

roduct of corresponding elements of A and B. In other words, if C = A.*B,
then C(I, J) =A(I, J)*B(I, J).Because matrix and array operations are the
same for addition and subtraction, the character pairs .+ and .- are not used.

When writing an expression such as B = A, MATLAB makes a “note” that B
is equal to A, but does not actually copy the data into B unless the contents of
A change later in the program. This is an important point because using dif-
ferent variables to “store” the same information sometimes can enhance code
clarity and readability. Thus, the fact that MATLAB does not duplicate infor-
mation unless it is absolutely necessary is worth remembering when writing
MATLAB code. Table 2.4 lists the MATLAB arithmetic operators, where A

- MATLAB Comments
' Operator Name Function and Examples
+ Array and matrix plus(A, B) a+b,A+B,oratA,
addition
- Array and matrix minus(A, B) a—Db,A-B,A—a,
subtraction ora—A.
* Array multiplication times(A, B) C=A.*B,C(I, J)
=A(I,J)*B(I, J).
* Matrix multiplication mtimes (A, B) A*B, standard matrix

multiplication, or a*A,
multiplication of a scalar
times all elements of A.
C=A./B,C(I,J)
=A(I,J)/B(I,J).
C=A.\B, C(I,J)
=B(I,J)/A(I,J).

./ Array right division ~ rdivide(A, B)

A Array left division ldivide(A, B)

/ Matrix right division mrdivide(A, B) A/B is roughly the same as
A*inv(B), depending
on computational accuracy.
\ Matrix left division mldivide (A, B) A\B is roughly the same as

inv(A)*B, depending

on computational accuracy.
IfC=A."B,then

C(1,d) =
A(I,J)"B(I,d).

See online help for a
discussion of this operator.

Array power power (A, B)

Matrix power mpower (A, B)

! Vector and matrix transpose(A) A.'.Standard vector and
transpose matrix transpose.

' Vector and matrix ctranspose(A) A'.Standard vector and
complex conjugate matrix conjugate transpose.
transpose When Aisreal A.' =A".

+ Unary plus uplus (A) +A is the same as 0 + A.

- Unary minus uminus (A) —A is the same as 0 — A

or —1*A.
Colon Discussed in Section 2.8.

TABLE 2.4

Array and matrix
arithmetic
operators.
Computations
involving these
operators can be
implemented using
the operators
themselves, as in

A + B, or using the
MATLAB
functions shown, as
in plus (A, B).The
examples shown
for arrays use
matrices to
simplify the
notation, but they
are easily
extendable to
higher dimensions.

{2 Chopter 2 ® Fundamentals

[ABLE 2.5

The image
withmetic
‘unctions
supported by IPT.

Function Description

imadd Adds two images; or adds a constant to an image.

imsubtract Subtracts two images; or subtracts a constant from an image.

immultiply Muttiplies two images, where the multiplication is
carried out between pairs of corresponding image elements;
or multiplies a constant times an image.

imdivide Divides two images, where the division is carried out
between pairs of corresponding image elements; or divides
an image by a constant.

imabsdiff Computes the absolute difference between two images.

imcomplement Complements an image. See Section 3.2.1.

imlincomb Computes a linear combination of two or more images. See
Section 5.3.1 for an example.

and B are matrices or arrays and a and b are scalars. All operands can be real
or complex. The dot shown in the array operators is not necessary if the
operands are scalars. Keep in mind that images are 2-D arrays, which are
equivalent to matrices, so all the operators in the table are applicable to
images.

The toolbox supports the image arithmetic functions listed in Table 2.5. Al-
though these functions could be implemented using MATLAB arithmetic op-
erators directly, the advantage of using the IPT functions is that they support
the integer data classes whereas the equivalent MATLAB math operators re-
quire inputs of class double.

Example 2.6, to follow, uses functions max and min. The former function has
the syntax forms

C = max(A)

C = max(A, B)

C = max(A, [], dim)
[C, I] = max(...)

In the first form, if A is a vector, max (A) returns its largest element; if A is a ma-
trix, then max (A) treats the columns of A as vectors and returns a row vector
containing the maximum element from each column. In the second form,
max (A, B) returns an array the same size as A and B with the largest elements
taken from A or B. In the third form, max (A, [], dim) returns the largest ele-
ments along the dimension of A specified by scalar dim. For example, max (A,
[1, 1) produces the maximum values along the first dimension (the rows) of
A.Finally, [C, I] = max(...) also finds the indices of the maximum values of
A, and returns them in output vector I, If there are several identical maximum
values, the index of the first one found is returned. The dots indicate the syntax

2.10 & Introduction to M-Function Programming 43

used on the right of any of the previous three forms. Function min has the
same syntax forms just described.

@ Suppose that we want to write an M-function, call it fgprod, that multiplies
two input images and outputs the product of the images, the maximum and min-
imum values of the product, and a normalized product image whose values are
in the range [0, 1]. Using the text editor we write the desired function as follows:

function [p, pmax, pmin, pn] = improd(f, g)
%IMPROD Computes the product of two images.

% [P, PMAX, PMIN, PN] = IMPROD(F, G)' outputs the element-by-

% element product of two input images, F and G, the product

% maximum and minimum values, and a normalized product array with

% values in the range [0, 1]. The input images must be of the same
% size. They can be of class uint8, unit16, or double. The outputs
% are of class double.

fd = double(f);

gd = double(g);

p = fd.*gd;

pmax = max(p(:));
pnin = min{p(:));
pn = mat2gray(p);

Note that the input images were converted to double using the function
double instead of im2double because, if the inputs were of type uints,
im2double would convert them to the range [0, 1]. Presumably, we want p to
contain the product of the original values. To obtain a normalized array, pn, in
the range [0, 1] we used function mat2gray. Note also the use of single-colon
indexing, as discussed in Section 2.8.

Suppose that f = [1 2;3 4] andg=([1 2; 2 1]. Typing the preceding
function at the prompt results in the following output:

>> [p, pmax, pmin, pn] = improd(f, g)

"In MATLAB documentation, it is customary to use uppercase characters in the H1 line and in Help text
when referring to function names and arguments. This is done to avoid confusion between program
names/variables and normal explanatory text.

EXAMPLE 2.6:
Ilustration of
arithmetic
operators and
functions max and
min.

46 Chopter 2 # Fundamentals

EXAMPLE 2.8:
Logical operators.

EXAMPLE 2.9:
Logical functions.

TABLE 2.8
Logical functions.

¥ Consider the AND operation on the following numeric arrays:

> A =1[120; 0457,
> B =[1-23; 01 1];
>> A & B
ans =

1 1 0

1 1

We see that the AND operator produces a logical array that is of the same size
as the input arrays and has a 1 at locations where both operands are nonzero
and Os elsewhere. Note that all operations are done on pairs of corresponding
elements of the arrays, as before.

The OR operator works in a similar manner. An OR expression is true if ei-
ther operand is a logical 1 or nonzero numerical quantity, or if they both are
logical 1s or nonzero numbers; otherwise it is false. The NOT operator works
with a single input. Logically, if the operand is true, the NOT operator converts
it to false. When using NOT with numeric data, any nonzero operand becomes
0, and any zero operand becomes 1. |

MATLAB also supports the logical functions summarized in Table 2.8. The
all and any functions are particularly useful in programming.

Consider the simple arrays A = [1 2 3;4 5 6]andB = [0 -1 1; 0 0 2].
Substituting these arrays into the functions in Table 2.8 yield the following results:

>> xor(A, B)

ans =
1 0 0
1 1 0
Function Comments

The xor function returns a 1 only if both operands are

logically different; otherwise xor returns a 0.

all The all function returns a 1 if all the elementsin a
vector are nonzero; otherwise all returns a 0. This
function operates columnwise on matrices.

any The any function returns a 1 if any of the elementsin a

vector is nonzero; otherwise any returns a 0. This

xor (exclusive OR)

function operates columnwise on matrices.

2.10 # Introduction to M-Function Programming 47

Note how functions all and any operate on columns of A and B. For instance,
the first two elements of the vector produced by all(B) are O because each
of the first two columns of B contains at least one 0; the last-element is 1 be-
cause all elements in the last column of B are nonzero. B

In addition to the functions listed in Table 2.8, MATLAB provides a
number of other functions that test for the existence of specific conditions
or values and return logical results. Some of these functions are listed in
Table 2.9. A few of them deal with terms and concepts discussed earlier in
this chapter (for example, see function islogical in Section 2.6.2); others
are used in subsequent discussions. Keep in mind that the functions listed in
Table 2.9 return a logical 1 when the condition being tested is true; other-
wise they return a logical 0. When the argument is an array, some of the
functions in Table 2.9 yield an array the same size as the argument contain-
ing logical 1s in the locations that satisfy the test performed by the function,
and logical Os elsewhere. For example, if A= {1 2; 3 1/0], the function
isfinite(A) returns the matrix [1 1; 1 0], where the 0 (false) entry indi-
cates that the last element of A is not finite.

Some Important Variables and Constants

The entries in Table 2.10 are used extensively in MATLAB programming. For
example, eps typically is added to denominators in expressions to prevent
overflow in the event that a denominator becomes zero.

.8 Chapter 2 ® Fundamentals

~ABLE 2.9
jome functions
hat return a
.ogical lora
*ogical 0
lepending on
/hether the value
or condition in
“heir arguments
re true or
alse. See online
.elpfora
~omplete list.

ABLE 2.10
Some important
-ariables and
onstants.

Function Description
iscell(C) True if C is a cell array.
iscellstr(s) True if s is a cell array of strings.
ischar(s) True if s is a character string.
isempty(A) True if Ais the empty array, [].

isequal (A, B)

isfield (S, 'name')

isfinite(A)
isinf(A)
isletter(A)
islogical(A)
ismember (A, B)
ispan(A)

isnumeric(A)
isprime(A)

True if A and B have identical elements and dimensions.
True if 'name' is a field of structure S.

True in the locations of array A that are finite.

True in the locations of array A that are infinite.

True in the locations of A that are letters of the alphabet.
True if A is a logical array.

True in locations where elements of A are also in B.

True in the locations of A that are NaNs (see Table 2.10 for
a definition of NaN).

True if A is a numeric array.
True in locations of A that are prime numbers.

2.10 & Introduction to M-Function Programming

Number Representation

MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers. Scientific notation uses the letter
e to specify a power-of-ten scale factor. Imaginary numbers use either i or j as
a suffix. Some examples of valid number representations are

3 -99 0.0001
9.6397238 1.60210e—20 6.02252e23
11 -3.14159j 3e51

All numbers are stored internally using the Jong format specified by the Insti-
tute of Electrical and Electronics Engineers (IEEE) floating-point standard.
Floating-point numbers have a finite precision of roughly 16 significant deci-
mal digits and a finite range of approximately 1073% to 103,

2.10.3 Flow Control

The ability to control the flow of operations based on a set of predefined con-
ditions is at the heart of all programming languages. In fact, conditional
branching was one of two key developments that led to the formulation of
general-purpose computers in the 1940s (the other development was the use
of memory to hold stored programs and data). MATLAB provides the eight
flow control statements summarized in Table 2.11. Keep in mind the observa-
tion made in the previous section that MATLARB treats a logical 1 or nonzero
number as true, and a logical or numeric O as false.

isreal(A) True if the elements of A have no imaginary parts.
isspace(A) True at locations where the elements of A are whitespace
characters.

issparse(A) True if A is a sparse matrix.

isstruct(S) True if S is a structure.

Function Value Returned

ans Most recent answer (variable). If no output variable is assigned to
an expression, MATLAB automatically stores the result in ans.

eps Floating-point relative accuracy. This is the distance between 1.0 and
the next largest number representable using double-precision
floating point.

i(orj) Imaginary unit, as in 1 + 2i.

NaNor nan Stands for Not-a-Number (e.g., 0/0).

pi 3.14159265358979

realmax The largest floating-point number that your computer can represent.

realmin The smallest floating-point number that your computer can
represent.

computer Your computer type.

version MATLAB version string.

‘Statement Description

if if, together with else and elseif, executes a group of
statements based on a specified logical condition.

for Executes a group of statements a fixed (specified) number of
times.

while Executes a group of statements an indefinite number of times,
based on a specified logical condition.

break ‘Terminates execution of a for or while loop.

continue Passes control to the next iteration of a for or while loop,
skipping any remaining statements in the body of the loop.

switch switch, together with case and otherwise, executes different
groups of statements, depending on a specified value or
string,

return Causes execution to return to the invoking function.

try...catch Changes flow control if an error is detected during execution.

TABLE 2.11
Flow control
statements.

50 Chapter 2 # Fundamentals

EXAMPLE 2.10:

Conditional
branching and
introduction of
functions error,
length,and
numel.

if, else, and elseif

Conditional statement if has the syntax

if expression
statements
end

The expression is evaluated and, if the evaluation yields true, MATLAB ex-
ecutes one or more commands, denoted here as statements, between the if
and end lines. If expression is false, MATLAB skips all the statements be-
tween the if and end lines and resumes execution at the line following the end
line. When nesting ifs, each if must be paired with a matching end.

The else and elseif statements further conditionalize the if statement.
The general syntax is

if expressiont
statements?
elseif expression2
statements2
else
statements3
end :

If expressiont is true, statements? are executed and control is transferred
to the end statement. If expressiont evaluates to false, then expression2
is evaluated. If this expression evaluates to true, then statements2 are exe-
cuted and control is transferred to the end statement. Otherwise (else)
statements3 are executed. Note that the else statement has no condition.

The else and elseif statements can appear by themselves after an if state-

ment; they do not need to appear in pairs, as shown in the preceding general
syntax. It is acceptable to have multiple elseif statements.

8 Suppose that we want to write a function that computes the average inten-
sity of an image. As discussed earlier, a two-dimensional array f can be con-

verted to a column vector, v, by letting v = f(:). Therefore, we want our

function to be able to work with both vector and image inputs. The program
should produce an error if the input is not a one- or two-dimensional array.

function av = average(A)

%AVERAGE Computes the average value of an array.

% AV = AVERAGE(A) computes the average value of input
% array, A, which must be a 1-D or 2-D array.

% Check the validity of the input. (Keep in mind that
% a 1-D array is a special case of a 2-D array.)
if ndims(A) > 2
error('The dimensions of the input cannot exceed 2.')
end

2.10 & Introduction to M-Function Programming

% compute the average
av = sum(A(:))/length(A(:));

Note that the input is converted to a 1-D array by using A(:). In general,
1ength(A) returns the size of the longest dimension of an array, A. In this ex-
ample, because A(1) is a vector, length(A) gives the number of elements of A.
This eliminates the need to test whether the input is a vector or a 2-D array.
Another way to obtain the number of elements in an array directly is to use
function numel, whose syntax is

n = numel(A)

Thus, if A is an image, numel (A) gives its number of pixels. Using this function,
the last executable line of the previous program becomes

av = sum(A(:))/numel(A);

Finally, note that the error function terminates execution of the program and
outputs the message contained within the parentheses (the quotes shown are
required).]

for

As indicated in Table 2.11, a for loop executes a group of statements a speci-
fied number of times. The syntax is

for index = start:increment:end
statements
end

It is possible to nest two or more for loops, as follows:

for index? = starti:incrementi:end

Statements1

for index2 = start2:increment2:end
Statementsz2

end

additional loop1 statements
end

For example, the following loop executes 11 times:

count = Q;
for k = 0:0.1:1

count = count + 1;
end

51

52 Chapter 2 ® Fundamentals

EXAMPLE 2.11:
Using a for loop
to write multiple
images to file.

See the help page for
sprintf for other

syntax forms applic-
able to this function.

If the loop increment is omitted, it is taken to be 1. Loop increments also can
be negative, as in k = 0:~1:-10. Note that no semicolon is necessary at the end
of a for line. MATLAB automatically suppresses printing the values of a loop
index. As discussed in detail in Section 2.10.4, considerable gains in program
execution speed can be achieved by replacing for loops with so-called
vectorized code whenever possible.

8 Example 2.2 compared several images using different JPEG quality val-
ues. Here, we show how to write those files to disk using a for loop. Suppose
that we have an image, ¥, and we want to write it to a series of JPEG files with
quality factors ranging from 0 to 100 in increments of 5. Further, suppose that
we want to write the JPEG files with filenames of the form series_xxx. jpg,
where xxx is the quality factor. We can accomplish this using the following
for loop:

for g = 0:5:100
filename = sprintf('series_%3d.jpg', q);
imwrite(f, filename, 'quality', q);

end

Function sprintf, whose syntax in this case is
s = sprintf(’'charactersi%ndcharacters2', q)

writes formatted data as a string, s. In this syntax form, characters! and
characters2 are character strings, and %nd denotes a decimal number (speci-
fied by q) with n digits. In this example, characters? is series_, the value of
nis 3,characters2is . jpg, and q has the values specified in the loop. o

while

A while loop executes a group of statements for as long as the expression
controlling the loop is true. The syntax is

while expression
statements
end

As in the case of for,while loops can be nested:

while expressioni
statementst
while expression2
statements2
end
additional loop1 statements
end

2.10 @ Introduction to M-Function Programming 53

For example, the following nested while loops terminate when both a and
b have been reduced to 0:

a = 10;

b = 5;

while a
a=a-1;
while b

b =Db—-1;

end

end

Note that to control the loops we used MATLAB’s convention of treating a
numerical value in a logical context as true when it is nonzero and as false
when it is 0. In other words, while a and while b evaluate to true as long as a
and b are nonzero.

As in the case of for loops, considerable gains in program execution speed
can be achieved by replacing while loops with vectorized code (Section
2.10.4) whenever possible.

hreak

As its name implies, break terminates the execution of a for or while loop.
When a break statement is encountered, execution continues with the next

- statement outside the loop. In nested loops, break exits only from the inner-

most loop that contains it.

continue

The continue statement passes control to the next iteration of the for or
while loop in which it appears, skipping any remaining statements in the body
of the loop. In nested loops, continue passes control to the next iteration of
the loop enclosing it.

switch

This is the statement of choice for controlling the flow of an M-function based
on different types of inputs. The syntax is

Switch switch _expression
case case_expression
statement(s)
case {case_expression?, case_expression2,...}
Statement(s)
otherwise

Statement(s)
end

54 Chapter 2 @ Fundamentals

EXAMPLE 2.12:
Extracting a
subimage from a
given image.

The switch construct executes groups of statements based on the value of a
variable or expression. The keywords case and otherwise delineate the
groups. Only the first matching case is executed.! There must always be an
end to match the switch statement. The curly braces are used when multiple
expressions are included in the same case statement. As a simple example,
suppose that we have an M-function that accepts an image f and convertsit to
a specified class, call it newclass. Only three image classes are acceptable for
the conversion: uint8,uint16, and double. The following code fragment per-
forms the desired conversion and outputs an error if the class of the input
image is not one of the acceptable classes:

switch newclass
case 'uint8'’
g = im2uint8(f);
case 'uintié’
g = im2uinti6(f);
case 'double’
g = im2double(f);
otherwise
error('Unknown or improper image class.')
end

The switch construct is used extensively throughout the book.

In this example we write an M-function (based on for loops) to extract a
rectangular subimage from an image. Although, as shown in the next section,
we could do the extraction using a single MATLAB statement, we use the pre-
sent example later to compare the speed between loops and vectorized code.
The inputs to the function are an image, the size (number of rows and
columns) of the subimage we want to extract, and the coordinates of the top,
left corner of the subimage. Keep in mind that the image origin in MATLAB
1s at (1, 1), as discussed in Section 2.1.1.

function s = subim(f, m, n, rx, cy)

%SUBIM Extracts a subimage, s, from a given image, f.
% The subimage is of size m-by-n, and the coordinates
% of its top, left corner are (rx, cy).

s = zeros(m, n);

rowhigh = rx + m — 1;

colhigh = cy + n - 1;

xcount = 0;

for r = rx:rowhigh
xcount = xcount + 1;
ycount = 0;

*Unlike the C language switch construct, MATLAB’s switch does not “fall through.” That is, switch
executes only the first matching case: subsequent matching cases do not execute. Therefore, break state-
ments are not used.

2.10 # Introduction to M-Function Programming 55

for ¢ = cy:colhigh
ycount = ycount + 1;
s(xcount, ycount) = f(r, c);
end
end

In the following section we give a significantly more efficient implementation
of this code. As an exercise, the reader should implement the preceding pro-
gram using while instead of for loops. 2

2.10.4 Code Optimization

As discussed in some detail in Section 1.3, MATLAB is a programming lan-
guage specifically designed for array operations. Taking advantage of this fact
whenever possible can result in significant increases in computational speed.
In this section we discuss two important approaches for MATLAB code opti-
mization: vectorizing loops and preallocating arrays.

Vectorizing Loops

Vectorizing simply means converting for and while loops to equivalent vec-
tor or matrix operations. As will become evident shortly, vectorization can re-
sult not only in significant gains in computational speed, but it also helps
improve code readability. Although multidimensional vectorization can be dif-
ficult to formulate at times, the forms of vectorization used in image process-
ing generally are straightforward.

We begin with a simple example. Suppose that we want to generate a 1-D
function of the form

f(x) = Asin(x/27)

forx =0,1,2,...,M — 1. A for loop to implement this computation is
for x = 1:M % Array indices in MATLAB cannot be 0.

f{x) = A*sin({x — 1)/(2*pi));
end

However, this code can be made considerably more efficient by vectorizing it;
that is, by taking advantage of MATLAB indexing, as follows:

X=0:M - 1;
f = A*sin(x/(2*pi));

As this simple example illustrates, 1-D indexing generally is a simple
process. When the functions to be evaluated have two variables, optimized
indexing is slightly more subtle. MATLAB provides a direct way to implement
2-D function evaluations via function meshgrid, which has the syntax

[C, R] = meshgrid(c, r)

Chopter 2 & Fundamentals

This function transforms the domain specified by row vectors ¢ and r into ar-
rays C and R that can be used for the evaluation of functions of two variables
and 3-D surface plots (note that columns are listed first in both the input and
output of meshgrid).

The rows of output array C are copies of the vector ¢, and the columns of
the output array R are copies of the vector r. For example, suppose that we
want to form a 2-D function whose elements are the sum of the squares of the
values of coordinate variables x and y forx=0, 1, 2andy=0, 1.The vec-
tor r is formed from the row components of the coordinates: r={0 1 2].Sim-
ilarly, ¢ is formed from the column component of the coordinates: ¢ = [0 1]
(keep in mind that both r and ¢ are row vectors here). Substituting these two
vectors into meshgrid results in the following arrays:

>> [C, R]= meshgrid(c, r)

C =
0 1
0 1
0 1
R =
0 0
1 1
2 2

The function in which we are interested is implemented as
>> h =R."2 + C."2
which gives the following result:

h =

0 1

1 2

4 5
Note that the dimensions of h are length(r) x length(c). Also note, for ex-
ample, that h(1,1) =R(1,1)"2 + C(1,1)~2. Thus, MATLAB automatically
took care of indexing h. This is a potential source for confusion when 0s are in-
volved in the coordinates because of the repeated warnings in this book and in
manuals that MATLAB arrays cannot have 0 indices. As this simple illustra-
tion shows, when forming h, MATLAB used the contents of R and ¢ for com-
putations. The indices of h, R, and C, started at 1. The power of this indexing
scheme is demonstrated in the following example.

2.10 ® Introduction to M-Function Programming 57

@ In this example we write an M-function to compare the implementation of
the following two-dimensional image function using for loops and vectorization:

flx,y) = Asin(ugx + vy)

forx=012,...,M —-1landy =0,1,2,..., N — 1. We also introduce the
timing functions tic and toc.

The function inputs are A, ug, v, M and N. The desired outputs are the im-
ages generated by both methods (they should be identical), and the ratio of
the time it takes to implement the function with for loops to the time it takes
to implement it using vectorization. The solution is as follows:

function [rt, f, g] = twodsin(A, u0, v0, M, N)

%TWODSIN Compares for loops vs. vectorization.

% The comparison is based on implementing the function

% T(x, y) = Asin(uOx + vOy) for x = 0, 1, 2,..., M — 1 and
$ y=0,1, 2,..., N-1. The inputs to the function are

% M and N and the constants in the function.

% First implement using for loops.

tic % Start timing.

for r = 1:M
uox = u0*(r — 1);
for ¢ = 1:N

vOy = vO*(c — 1);
f(r, ¢) = A*sin(u0x + vOy);
end

end
t1 = toc; % End timing.
% Now implement using vectorization. Call the image g.

tic % Start timing.

0:N — 13
(C, R] = meshgrid(c, r);
g = A*sin(uO0*R + v0*C);
12 = toc; % End timing.

% Compute the ratio of the two times.

M = t1/(t2 + eps); % Use eps in case t2 is close to O.

Running this function at the MATLAB prompt,

>> [rt, f, g] = twodsin(1, 1/(4*pi), 1/(4*pi), 512, 512);

EXAMPLE 2.13:
An illustration of
the computational
advantages of
vectorization, and
intruduction of
the timing
functions tic and
toc.

58 Chapter 2 # Fundamentals

FIGURE 2.7
Sinusoidal image
generated in
Example 2.13.

yielded the following value of rt:

>> rt
rt =
34.2520

We convert the image generated (f and g are identical) to viewable form using
function mat2gray:

>> g = mat2gray(g);

and display it using imshow,

>> imshow(g)

Figure 2.7 shows the result. 5

The vectorized code in Example 2.13 runs on the order of 30 times faster
than the implementation based on for loops. This is a significant computation-
al advantage that becomes increasingly meaningful as relative execution times
become longer. For example, if M and N are large and the vectorized program
takes 2 minutes to run, it would take over 1 hour to accomplish the same task
using for loops. Numbers like these make it worthwhile to vectorize as much of
a program as possible, especially if routine use of the program in envisioned.

The preceding discussion on vectorization is focused on computations in-
volving the coordinates of an image. Often, we are interested in extracting and
processing regions of an image. Vectorization of programs for extracting such
regions is particularly simple if the region to be extracted is rectangular and
encompasses all pixels within the rectangle, which generally is the case in this
type of operation. The basic vectorized code to extract a region, s, of size mx n
and with its top left corner at coordinates (rx, cy) is as follows:

rowhigh rx +m — 1;
colhigh = cy + n -~ 1;

2.10 ® Introduction to M-Function Programming 59

f(rx:rowhigh, cy:colhigh};

1

S

where T is the image from which the region is to be extracted. The for loops to
accomplish the same thing were already worked out in Example 2.12. Imple-
menting both methods and timing them as in Example 2.13 would show that
the vectorized code runs on the order of 1000 times faster in this case than the
code based on for loops.

Preallocating Arrays

Another simple way to improve code execution time is to preallocate the size
of the arrays used in a program. When working with numeric or logical arrays,
preallocation simply consists of creating arrays of 0s with the proper dimen-
sion. For example, if we are working with two images, f and g, of size
1024 % 1024 pixels, preallocation consists of the statements

>> f = zeros(1024); g = zeros(1024);

Preallocation also helps reduce memory fragmentation when working with
large arrays. Memory can become fragmented due to dynamic memory alloca-
tion and deallocation. The net result is that there may be sufficient physical mem-
ory available during computation, but not enough contiguous memory to hold a
large variable. Preallocation helps prevent this by allowing MATLAB to reserve
sufficient memory for large data constructs at the beginning of a computation.

1.10.5 Interactive I/O

Often, it is desired to write interactive M-functions that display information
and instructions to users and accept inputs from the keyboard. In this section
we establish a foundation for writing such functions.

Function disp is used to display information on the screen. Its syntax is

disp(argument)

If argument is an array, disp displays its contents. If argument is a text string,
then disp displays the characters in the string. For example,

>> A = [12; 3 4],

>> disp(A)
1 2
3 4
>> s¢ = 'Digital Image Processing.';

>> disp(sc)

Digital Image Processing.

>> disp('This is another way to display text.')
This is another way to display text.

See Appendix B for
details on construct-
ing graphical user
interfaces (GUlIs).

60 Chapter 2 # Fundamentals

See Section 12.4 for
a detailed discussion
of string operations,

Note that only the contents of argument are displayed, without words like
ans =, which we are accustomed to seeing on the screen when the value of a
variable is displayed by omitting a semicolon at the end of a command line.

. Function input is used for inputting data into an M-function. The basic
syntax is

t = input('message')

This function outputs the words contained in message and waits for an input -

from the user, followed by a return, and stores the input in t. The input can be
a single number, a character string (enclosed by single quotes), a vector (en-
closed by square brackets and elements separated by spaces or commas), a

matrix (enclosed by square brackets and rows separated by semicolons), or '

any other valid MATLAB data structure. The syntax
t = input('message’', 's')

outputs the contents of message and accepts a character string whose ele-
ments can be separated by commas or spaces. This syntax is flexible because it
allows multiple individual inputs. If the entries are intended to be numbers, the
elements of the string (which are treated as characters) can be converted to
numbers of class double by using the function str2num, which has the syntax

n = str2num(t)
For example,

>> t = input('Enter your data: ', 's')
Enter your data: 1, 2, 4

t =

124
>> class(t)
ans =

char
>> size(t)

ans =
1 5

>> n = str2num(t)
n =

2.10 m Introduction to M-Function Programming 61

>> size(n)
ans =

1 3
>> class(n)

ans =
double

Thus, we see that tisa 1 X 5 character array (the three numbers and the two
spaces) and nisa 1 X 3 vector of numbers of class double.

If the entries are a mixture of characters and numbers, then we use one of
MATLAB?s string processing functions. Of particular interest in the present
discussion is function strread, which has the syntax

[a, b, c, .] = strread(cstr, 'format', 'param', 'value’)
This function reads data from the character string cstr, using a specified
format and param/value combinations. In this chapter the formats of interest
are %f and %q, to denote floating-point numbers and character strings, respec-
tively. For param we use delimiter to denote that the entities identified in
format will be delimited by a character specified in value (typically a comma

“or space). For example, suppose that we have the string

>t = '12.6, x2y, z';

To read the elements of this input into three variables a, b, and c, we write

‘a =

>> [a, b, ¢] = strread(t, '$f%q%q', 'delimiter', o)
12.6000

b =
lX2y|

c =
IZI

Output a is of class double; the quotes around outputs x2y and z indicate that
band ¢ are cell arrays, which are discussed in the next section. We convert
them to character arrays simply by letting

>> d = char(b)

X2y

See the help page for
strread for a list of
the numerous syntax
forms applicable to
this function.

62 Chopter 2 # Fundamentals

Function strcmp
(st, s2) compares
two strings, s1 and
s2, and returns a
logical true (1) if
the strings are equal;
otherwise it returns a
logical false (0).

Cell arrays and
structures are dis-
cussed in detail in
Section 11.1.1.

and similarly for ¢. The number (and order) of elements in the format string
must match the number and type of expected output variables on the left. In
this case we expect three inputs: one floating-point number followed by two
character strings.

Function strcmp is used to compare strings. For example, suppose that we
have an M-function g = imnorm(f, param) that accepts an image, f,and a pa-
rameter param than can have one of two forms: 'normi', and 'norm255'. In
the first instance, f is to be scaled to the range [0, 1];in the second, it is to be
scaled to the range [0, 255]. The output should be of class double in both cases.
The following code fragment accomplishes the required normalization:

f = double(f);

f=Ff ~min(f(:));

f = f./max(f(:));

if strcmp(param, 'normi')
g =T

elseif strcmp(param, 'norm255')
g = 255*f;

else

error('Unknown value of param.')
end

An error would occur if the value specified in param is not 'normi' or
'norm255°. Also, an error would be issued if other than all lowercase charac-
ters are used for either normalization factor. We can modify the function to ac-
cept either lower or uppercase characters by converting any input to
lowercase using function lower, as follows:

param = lower(param)

Similarly, if the code uses uppercase letters, we can convert any input character
string to uppercase using function upper:

param = upper{param)

2.10.6 A Brief Introduction to Cell Arrays and Structures

When dealing with mixed variables (e.g., characters and numbers), we can
make use of cell arrays. A cell array in MATILLAB is a multidimensional array
whose elements are copies of other arrays. For example, the cell array

¢ = {'gauss', [1 0; O 1], 3}

2.10 & Introduction to M-Function Programming 63

contains three elements: a character string, a 2 X 2 matrix, and a scalar (note
the use of curly braces to enclose the arrays). To select the contents of a cell
array we enclose an integer address in curly braces. In this case, we obtain the
following results:

>> c{1}
ans =

gauss
>> c{2}
ans =

1 0

0 1
>> ¢{3}
ans =

3

An important property of cell arrays is that they contain copies of the argu-
ments, not pointers to the arguments. For example, if we were working with
cell array

¢ = {A, B}

in which A and B are matrices, and these matrices changed sometime later in a
program, the contents of ¢ would not change.

Structures are similar to cell arrays, in the sense that they allow grouping of a
collection of dissimilar data into a single variable. However, unlike cell arrays
where cells are addressed by numbers, the elements of structures are addressed
by names called fields. Depending on the application, using fields adds clarity and
readability to an M-function. For instance, letting S denote the structure variable
and using the (arbitrary) field names char_string, matrix, and scalar, the
data in the preceding example could be organized as a structure by letting

8.char_string = 'gauss’;
S.matrix = [1 0; 0 1];
S.scalar = 3;

Note the use of a dot to append the various fields to the structure variable.
Then, for example, typing S.matrix at the prompt, would produce

>> S.matrix
ans =

4

Chapter 2 # Fundamentals

which agrees with the corresponding output for cell arrays. The clarity of using
S.matrix as opposed to ¢{2} is evident in this case. This type of readability
can be important if a function has numerous outputs that must be interpreted
by a user.

Summary

The material in this chapter is the foundation for the discussions that follow. At this
point, the reader should be able to retrieve an image from disk, process it via simple
manipulations, display the result, and save it to disk. It is important to note that the key
lesson from this chapter is how to combine MATLAB and IPT functions with pro-
gramming constructs to generate solutions that expand the capabilities of those func-
tions. In fact, this is the model of how material is presented in the following chapters. By
combining standard functions with new code, we show prototypic solutions to a broad
spectrum of problems of interest in digital image processing,

Preview

The term spatial domain refers to the image plane itself, and methods in this cat-
egory are based on direct manipulation of pixels in an image. In this chapter we
focus attention on two important categories of spatial domain processing:
intensity (or gray-level) transformations and spatial filtering. The latter approach
sometimes is referred to as neighborhood processing, or spatial convolution. In
the following sections we develop and illustrate MATLAB formulations repre-
sentative of processing techniques in these two categories. In order to carry a
consistent theme, most of the examples in this chapter are related to image en-
hancement. This is a good way to introduce spatial processing because enhance-
ment is highly intuitive and appealing, especially to beginners in the field. As will
be seen throughout the book, however, these techniques are general in scope and
have uses in numerous other branches of digital image processing.

48 Background

As noted in the preceding paragraph, spatial domain techniques operate di-
rectly on the pixels of an image. The spatial domain processes discussed in this
chapter are denoted by the expression

8(x, y) = T[f(x,)]

Where f(x, y) is the input image, g(x, y) is the output (processed) image, and
T'is an operator on f, defined over a specified neighborhood about point
(¥, ¥). In addition, T can operate on a set of images, such as performing the ad-
dition of K images for noise reduction.

The principal approach for defining spatial neighborhoods about a point
(x,y)istouse a square or rectangular region centered at (x, y), as Fig. 3.1 shows.
The center of the region is moved from pixel to pixel starting, say, at the top, left

65

Intensity Transformations

and Spatial Filtering

Preview

The term spatial domain refers to the image plane itself, and methods in this cat-
egory are based on direct manipulation of pixels in an image. In this chapter we
focus attention on two important categories of spatial domain processing:
intensity (or gray-level) transformations and spatial filtering. The latter approach
sometimes is referred to as neighborhood processing, or spatial convolution. In
the following sections we develop and illustrate MATLAB formulations repre-
sentative of processing techniques in these two categories. In order to carry a
consistent theme, most of the examples in this chapter are related to image en-
hancement. This is a good way to introduce spatial processing because enhance-
ment is highly intuitive and appealing, especially to beginners in the field. As will
be seen throughout the book, however, these techniques are general in scope and
have uses in numerous other branches of digital image processing.

Background

As noted in the preceding paragraph, spatial domain techniques operate di-
rectly on the pixels of an image. The spatial domain processes discussed in this
chapter are denoted by the expression

glx,y) =T[f(x,y)]

where f(x, y) is the input image, g(x, y) is the output (processed) image, and
T is an operator on f, defined over a specified neighborhood about point
(x, y). In addition, T can operate on a set of images, such as performing the ad-
dition of K images for noise reduction.

The principal approach for defining spatial neighborhoods about a point
(x, y) is to use a square or rectangular region centered at (x, y), as Fig. 3.1 shows.
The center of the region is moved from pixel to pixel starting, say, at the top, left

65

66 Chapter 3

FIGURE 3.1 A
neighborhood of
size 3 X 3 about a
point (x, y) in an
image.

imadjust

Intensity Transformations and Spatial Filtering

Origin —~

(x,y)

Image f(x,y)

X

corner, and, as it moves, it encompasses different neighborhoods. Operator T is
applied at each location (x, y) to yield the output, g, at that location. Only the
pixels in the neighborhood are used in computing the value of g at (x, y).

The remainder of this chapter deals with various implementations of the
preceding equation. Although this equation is simple conceptually, its compu-
tational implementation in MATLAB requires that careful attention be paid
to data classes and value ranges.

Intensity Transformation Functions

The simplest form of the transformation 7 is when the neighborhood in
Fig.3.1is of size 1 X 1 (a single pixel). In this case, the value of g at (x, y) de-
pends only on the intensity of f at that point, and 7 becomes an intensity or
gray-level transformation function. These two terms are used interchangeably,
when dealing with monochrome (i.e., gray-scale) images. When dealing with
color images, the term intensity is used to denote a color image component in
certain color spaces, as described in Chapter 6.

Because they depend only on intensity values, and not explicitly on (x, y),
intensity transformation functions frequently are written in simplified form as

s =T(r)

where r denotes the intensity of f and s the intensity of g, both at any corre-
sponding point (x, y) in the images.

Function imadjust

Function imadjust is the basic IPT tool for intensity transformations of gray-
scale images. It has the syntax

g = imadjust(f, [low_in high_in], [low_out high_out], gamma)

As illustrated in Fig. 3.2, this function maps the intensity values in image f
to new values in g, such that values between low_in and high_in map to

3.2 m Intensity Transformation Functions 67

high_out T

gamma < 1 gamma > 1

low_out A

low_in high_in low_in high_in low_in high_in

values between low_out and high_out. Values below low_in and above
high_in are clipped; that is, values below low_in map to low_out, and those
above high_in map to high_out. The input image can be of class uints8,
uint16, or double, and the output image has the same class as the input. All
inputs to function imadjust, other than f, are specified as values between 0
and 1, regardless of the class of f.If f is of class uint8, imadjust multiplies
the values supplied by 255 to determine the actual values to use; if f is of class
uint16, the values are multiplied by 65535. Using the empty matrix ([]) for
[low_in high_in] or for [low_out high_out] results in the default values
[0 1].If high_out is less than low_out, the output intensity is reversed.

Parameter gamma specifies the shape of the curve that maps the intensity
values in f to create g. If gamma is less than 1, the mapping is weighted toward
higher (brighter) output values, as Fig. 3.2(a) shows. If gamma is greater than 1,
the mapping is weighted toward lower (darker) output values. If it is omitted
from the function argument, gamma defaults to 1 (linear mapping).

Figure 3.3(a) is a digital mammogram image, f, showing a small lesion, and
Fig. 3.3(b) is the negative image, obtained using the command

>> g1 = imadjust(f, [0 1], [1 O]);

This process, which is the digital equivalent of obtaining a photographic nega-
tive, is particularly useful for enhancing white or gray detail embedded in a
large, predominantly dark region. Note, for example, how much easier it is to
analyze the breast tissue in Fig. 3.3(b). The negative of an image can be ob-
tained also with IPT function imcomplement:

g = imcomplement (f)
Figure 3.3(c) is the result of using the command
>> g2 = imadjust(f, [0.5 0.75], [0 1]);

which expands the gray scale region between 0.5 and 0.75 to the full [0, 1]
range. This type of processing is useful for highlighting an intensity band of
interest. Finally, using the command

>> g3 = imadjust(f, [1, [1, 2);

abc

FIGURE 3.2 The
various mappings
available in
function
imadjust.

EXAMPLE 3.1:
Using function
imadjust.

imcomplement

68 Chapter 3 m Intensity Transformations and Spatial Filtering

ab
cd

FIGURE 3.3 (a)
Original digital
mammogram.
(b) Negative
image. (c) Result
of expanding the
intensity range
[0.5,0.75].

(d) Result of
enhancing the
image with
gamma = 2.
(Original image
courtesy of G. E.
Medical Systems.)

log
log2
log10

log is the natural
logarithm. 1092 and
1log10 are the base 2
and base 10 loga-
rithms, respectively.

produces a result similar to (but with more gray tones than) Fig. 3.3(c) by compress-
ing the low end and expanding the high end of the gray scale [see Fig. 3.3(d)].

Logarithmic and Contrast-Stretching Transformations

Logarithmic and contrast-stretching transformations are basic tools for dy-
namic range manipulation. Logarithm transformations are implemented using
the expression

g = c*log(1 + double(f))

where c is a constant. The shape of this transformation is similar to the gamma
curve shown in Fig. 3.2(a) with the low values set at 0 and the high values set to
1 on both scales. Note, however, that the shape of the gamma curve is variable,
whereas the shape of the log function is fixed.

3.2 m Intensity Transformation Functions 69

One of the principal uses of the log transformation is to compress dynamic
range. For example, it is not unusual to have a Fourier spectrum (Chapter 4)
with values in the range [0, 10°] or higher. When displayed on a monitor that is
scaled linearly to 8 bits, the high values dominate the display, resulting in lost
visual detail for the lower intensity values in the spectrum. By computing the
1og, a dynamic range on the order of, for example, 10°, is reduced to approxi-
mately 14, which is much more manageable.

When performing a logarithmic transformation, it is often desirable to
bring the resulting compressed values back to the full range of the display. For
8 bits, the easiest way to do this in MATLAB is with the statement

>> gs = im2uint8(mat2gray(g));

Use of mat2gray brings the values to the range [0, 1] and im2uint8 brings
them to the range [0, 255]. Later, in Section 3.2.3, we discuss a scaling function
that automatically detects the class of the input and applies the appropriate
conversion.

The function shown in Fig. 3.4(a) is called a contrast-stretching transforma-
tion function because it compresses the input levels lower than m into a nar-
row range of dark levels in the output image; similarly, it compresses the
values above m into a narrow band of light levels in the output. The result is an
image of higher contrast. In fact, in the limiting case shown in Fig. 3.4(b), the
output is a binary image. This limiting function is called a thresholding func-
tion, which, as we discuss in Chapter 10, is a simple tool used for image seg-
mentation. Using the notation introduced at the beginning of this section, the
function in Fig. 3.4(a) has the form

_ 1
1+ (m/r)E
where r represents the intensities of the input image, s the corresponding in-

tensity values in the output image, and E controls the slope of the function.
This equation is implemented in MATLAB for an entire image as

s=T(r)

g=1./(1 + (m./(double(f) + eps))."E)

s=T(r) s=T(r)

_______ i
= = !
.en .80 !
— — :
i i T

|
A i :
3 s I
[a] A :
|
r ! r
m

Dark <—~ Light Dark <—- Light

eps

ab

FIGURE 3.4

(a) Contrast-
stretching
transformation.
(b) Thresholding
transformation.

70 Chapter 3

EXAMPLE 3.2
Using a log
transformation to
reduce dynamic
range.

ab
FIGURE 3.5 (a) A

Fourier spectrum.

(b) Result
obtained by
performing a log
transformation.

Intensity Transformations and Spatial Filtering

Note the use of eps (see Table 2.10) to prevent overflow if f has any 0 values.
Since the limiting value of 7'(r) is 1, output values are scaled to the range [0, 1]
when working with this type of transformation. The shape in Fig. 3.4(a) was
obtained with E = 20.

Figure 3.5(a) is a Fourier spectrum with values in the range 0 to 1.5 X 10°,
displayed on a linearly scaled, 8-bit system. Figure 3.5(b) shows the result ob-
tained using the commands

>> g = im2uint8(mat2gray(log(1 + double(f))));
>> imshow(g)

The visual improvement of g over the original image is quite evident.

Some Utility M-Functions for Intensity Transformations

In this section we develop two M-functions that incorporate various aspects
of the intensity transformations introduced in the previous two sections. We
show the details of the code for one of them to illustrate error checking, to
introduce ways in which MATLAB functions can be formulated so that
they can handle a variable number of inputs and/or outputs, and to show
typical code formats used throughout the book. From this point on, detailed
code of new M-functions is included in our discussions only when the pur-
pose is to explain specific programming constructs, to illustrate the use of a
new MATLAB or IPT function, or to review concepts introduced earlier.
Otherwise, only the syntax of the function is explained, and its code is in-
cluded in Appendix C. Also, in order to focus on the basic structure of the
functions developed in the remainder of the book, this is the last section in
which we show extensive use of error checking. The procedures that follow
are typical of how error handling is programmed in MATLAB.

3.2 m Intensity Transformation Functions

Handling a Variable Number of Inputs and/or Outputs

To check the number of arguments input into an M-function we use function
nargin,

n = nargin

which returns the actual number of arguments input into the M-function. Sim-
ilarly, function nargout is used in connection with the outputs of an M-
function. The syntax is

n = nargout
For example, suppose that we execute the following M-function at the prompt:
>> T = testhv(4, 5);

Use of nargin within the body of this function would return a 2, while use of
nargout would return a 1.

Function nargchk can be used in the body of an M-function to check if the
correct number of arguments were passed. The syntax is

msg = nargchk(low, high, number)
This function returns the message Not enough input parameters if number is less
than low or Too many input parameters if number is greater than high. If
number is between low and high (inclusive), nargchk returns an empty matrix. A
frequent use of function nargchk is to stop execution via the error function if the
incorrect number of arguments is input. The number of actual input arguments is
determined by the nargin function. For example, consider the following code

fragment:

function G = testhv2(x, y, z)

error(nargchk(2, 3, nargin));

Typing

>> testhv2(6);

which only has one input argument would produce the error
Not enough input arguments.

and execution would terminate.

nargin

nargout

nargchk

71

72 Chapter 3 m Intensity Transformations and Spatial Filtering

varargin
varargout

changeclass is an
undocumented IPT
utility function. Its
code is included in
Appendix C.

changeclass

Often, it is useful to be able to write functions in which the number of input
and/or output arguments is variable. For this, we use the variables varargin
and varargout. In the declaration, varargin and varargout must be lower-
case. For example,

function [m, n] = testhv3(varargin)
accepts a variable number of inputs into function testhv3, and
function [varargout] = testhv4(m, n, p)

returns a variable number of outputs from function testhv4. If function
testhv3 had, say, one fixed input argument, x, followed by a variable number
of input arguments, then

function [m, n] = testhv3(x, varargin)

would cause varargin to start with the second input argument supplied by
the user when the function is called. Similar comments apply to varargout. It
is acceptable to have a function in which both the number of input and output
arguments is variable.

When varargin is used as the input argument of a function, MATLAB sets it
to a cell array (see Section 2.10.5) that accepts a variable number of inputs by the
user. Because varargin is a cell array, an important aspect of this arrangement is
that the call to the function can contain a mixed set of inputs. For example, as-
suming that the code of our hypothetical function testhv3 is equipped to handle
it, it would be perfectly acceptable to have a mixed set of inputs, such as

>> [m, n] = testhv3(f, [0 0.5 1.5], A, 'label');

where f is an image, the next argument is a row vector of length 3, A is a ma-
trix, and 'label' is a character string. This is indeed a powerful feature that
can be used to simplify the structure of functions requiring a variety of differ-
ent inputs. Similar comments apply to varargout.

Another M-Function for Intensity Transformations

In this section we develop a function that computes the following transforma-
tion functions: negative, log, gamma and contrast stretching. These transforma-
tions were selected because we will need them later, and also to illustrate the
mechanics involved in writing an M-function for intensity transformations. In
writing this function we use function changeclass, which has the syntax

g = changeclass(newclass, f)

3.2 m Intensity Transformation Functions

This function converts image f to the class specified in parameter newclass
and outputs it as g. Valid values for newclass are 'uint8', 'uint16',
and'double’.

Note in the following M-function, which we call intrans, how function op-

tions are formatted in the Help section of the code, how a variable number of
inputs is handled, how error checking is interleaved in the code, and how the
class of the output image is matched to the class of the input. Keep in mind
when studying the following code that varargin is a cell array, so its elements
are selected by using curly braces.

function g = intrans(f, varargin) intrans
%INTRANS Performs intensity (gray-level) transformations.

S° o° o° o° O° O° O° O° O° O° O O I I I I I I I I I I ° ° ° ° o°

o°

G = INTRANS(F, 'neg') computes the negative of input image F.

G = INTRANS(F, 'log', C, CLASS) computes C*log(1 + F) and

multiplies the result by (positive) constant C. If the last two
parameters are omitted, C defaults to 1. Because the log is used
frequently to display Fourier spectra, parameter CLASS offers the
option to specify the class of the output as 'uint8' or

'uint16'. If parameter CLASS is omitted, the output is of the

same class as the input.

G = INTRANS(F, 'gamma', GAM) performs a gamma transformation on
the input image using parameter GAM (a required input).

G = INTRANS(F, 'stretch', M, E) computes a contrast-stretching
transformation using the expression 1./(1 + (M./(F +

eps)).”E). Parameter M must be in the range [0, 1]. The default
value for M is mean2(im2double(F)), and the default value for E
is 4.

For the 'neg', 'gamma', and 'stretch' transformations, double
input images whose maximum value is greater than 1 are scaled
first using MAT2GRAY. Other images are converted to double first
using IM2DOUBLE. For the 'log' transformation, double images are
transformed without being scaled; other images are converted to
double first using IM2DOUBLE.

The output is of the same class as the input, except if a
different class is specified for the 'log' option.

% Verify the correct number of inputs.
error(nargchk(2, 4, nargin))

% Store the class of the input for use later.
classin = class(f);

73

74 Chapter 3 m Intensity Transformations and Spatial Filtering

% If the input is of class double, and it is outside the range

% [0, 1], and the specified transformation is not 'log', convert the

% input to the range [0, 1].

if strcmp(class(f), 'double') & max(f(:)) > 1 & . . .
~strcmp(varargin{1}, 'log')

f = mat2gray(f);

else % Convert to double, regardless of class(f).
f = im2double(f);

end

% Determine the type of transformation specified.
method = varargin{1};

% Perform the intensity transformation specified.
switch method
case 'neg'

g = imcomplement(f);

case 'log’

if length(varargin) ==
c=1;

elseif length(varargin) ==
¢ = varargin{2};

elseif length(varargin) ==
c = varargin{2};
classin = varargin{3};

else
error('Incorrect number of inputs for the log option."')

end

g = c¢*(log(1 + double(f)));

case 'gamma’
if length(varargin) < 2
error('Not enough inputs for the gamma option.')
end
gam = varargin{2};
g = imadjust(f, [1, [I, gam);

case 'stretch’
if length(varargin) == 1
% Use defaults.
m = mean2(f);
E =4.0;
elseif length(varargin) == 3
m = varargin{2};
E = varargin{3};
else error('Incorrect number of inputs for the stretch option.')
end
g=1./(1+ (m./(f + eps))."E);

otherwise
error('Unknown enhancement method.")
end

% Convert to the class of the input image.
g = changeclass(classin, g);

3.2 m Intensity Transformation Functions 75

As anillustration of function intrans, consider the image in Fig. 3.6(a), which
is an ideal candidate for contrast stretching to enhance the skeletal structure. The
result in Fig. 3.6(b) was obtained with the following call to intrans:

>> g = intrans(f, 'stretch', mean2(im2double(f
>> figure, imshow(g)

)), 0.9);

Note how function mean2 was used to compute the mean value of f directly
inside the function call. The resulting value was used for m. Image f was con-
verted to double using im2double in order to scale its values to the range
[0, 1] so that the mean would also be in this range, as required for input m. The
value of E was determined interactively.

An M-Function for Intensity Scaling

When working with images, results whose pixels span a wide negative to posi-
tive range of values are common. While this presents no problems during in-
termediate computations, it does become an issue when we want to use an
8-bit or 16-bit format for saving or viewing an image, in which case it often is
desirable to scale the image to the full, maximum range, [0, 255] or [0, 65535].
The following M-function, which we call gscale, accomplishes this. In addi-
tion, the function can map the output levels to a specified range. The code for
this function does not include any new concepts so we do not include it here.
See Appendix C for the listing.

EXAMPLE 3.3:
Illustration of
function intrans.

mean2

m = mean2 (A)
computes the mean
(average) value of
the elements of
matrix A.

ab

FIGURE 3.6 (a)
Bone scan image.
(b) Image
enhanced using a
contrast-stretching
transformation.
(Original image
courtesy of G. E.
Medical Systems.)

76 Chapter 3

gscale

See Section 4.5.3 for
a discussion of 2-D
plotting techniques.

Intensity Transformations and Spatial Filtering

The syntax of function gscale is
g = gscale(f, method, low, high)

where f is the image to be scaled. Valid values for method are 'full8' (the de-
fault), which scales the output to the full range [0, 255], and 'fulli16', which
scales the output to the full range [0, 65535]. If included, parameters low and
high are ignored in these two conversions. A third valid value of method is
'minmax',in which case parameters low and high, both in the range [0, 1], must
be provided. If 'minmax' is selected, the levels are mapped to the range [low,
high]. Although these values are specified in the range [0, 1], the program per-
forms the proper scaling, depending on the class of the input, and then converts
the output to the same class as the input. For example, if f is of class uint8 and
we specify 'minmax' with the range [0, 0.5], the output also will be of class
uint8, with values in the range [0, 128]. If f is of class double and its range of
values is outside the range [0, 1], the program converts it to this range before
proceeding. Function gscale is used in numerous places throughout the book.

Histogram Processing and Function Plotting

Intensity transformation functions based on information extracted from image
intensity histograms play a basic role in image processing, in areas such as en-
hancement, compression, segmentation, and description. The focus of this sec-
tion is on obtaining, plotting, and using histograms for image enhancement.
Other applications of histograms are discussed in later chapters.

Generating and Plotting Image Histograms

The histogram of a digital image with L total possible intensity levels in the
range [0, G] is defined as the discrete function

h(r) = ny

where r is the kth intensity level in the interval [0, G] and ny, is the number of
pixels in the image whose intensity level is r, . The value of G is 255 for images of
class uint8, 65535 for images of class uint16, and 1.0 for images of class double.
Keep in mind that indices in MATLAB cannot be 0, so r; corresponds to intensi-
ty level 0, r, corresponds to intensity level 1, and so on, with r; corresponding to
level G. Note also that G = L — 1 for images of class uint8 and uint16.

Often, it is useful to work with normalized histograms, obtained simply by
dividing all elements of 4(r;) by the total number of pixels in the image, which
we denote by n:

h(r)
n
Nk

p(re) =

3.3 m Histogram Processing and Function Plotting 77

for k = 1,2,..., L. From basic probability, we recognize p(r;) as an estimate
of the probability of occurrence of intensity level 7.

The core function in the toolbox for dealing with image histograms is
imhist, which has the following basic syntax:

h = imhist(f, b)

where f is the input image, h is its histogram, /(r;), and b is the number of bins
used in forming the histogram (if b is not included in the argument, b = 256 is
used by default). A bin is simply a subdivision of the intensity scale. For exam-
ple, if we are working with uint8 images and we let b = 2, then the intensity
scale is subdivided into two ranges: 0 to 127 and 128 to 255. The resulting his-
togram will have two values: A(1) equal to the number of pixels in the image
with values in the interval [0, 127], and A(2) equal to the number of pixels with
values in the interval [128, 255]. We obtain the normalized histogram simply by
using the expression

p = imhist(f, b)/numel(f)

Recall from Section 2.10.3 that function numel(f) gives the number of ele-
ments in array f (i.e., the number of pixels in the image).

Consider the image, f, from Fig. 3.3(a). The simplest way to plot its his-
togram is to use imhist with no output specified:

>> imhist(f);

Figure 3.7(a) shows the result. This is the histogram display default in the tool-
box. However, there are many other ways to plot a histogram, and we take this
opportunity to explain some of the plotting options in MATLAB that are rep-
resentative of those used in image processing applications.

Histograms often are plotted using bar graphs. For this purpose we can use
the function

bar(horz, v, width)

where v is a row vector containing the points to be plotted, horz is a vector
of the same dimension as v that contains the increments of the horizontal
scale, and width is a number between 0 and 1. If horz is omitted, the hori-
zontal axis is divided in units from 0 to length(v). When width is 1, the
bars touch; when it is 0, the bars are simply vertical lines, as in Fig. 3.7(a).
The default value is 0.8. When plotting a bar graph, it is customary to reduce
the resolution of the horizontal axis by dividing it into bands. The following
statements produce a bar graph, with the horizontal axis divided into
groups of 10 levels:

imhist

EXAMPLE 3.4:
Computing and
plotting image
histograms.

bar

78 Chapter 3

ab
cd

FIGURE 3.7
Various ways to
plot an image
histogram.

(a) imhist,

(b) bar,

(c) stem,

(d) plot.

set
gca
xtick
ytick

axis

Intensity Transformations and Spatial Filtering

x 10*
6F T T T T
sk i
4+ |
3L i
sL i
1k i
0 1
0 50 100 150 200 250 0 50 100 150 200 250
wooot | 4 weof |5 T T[S
12000 4 12000} -
10000 - 10000} -
8000 4 8000 -
6000 4 6000} -
4000 - 4 4000} i
2000 - ‘] 4 2000+ -
0 ITT!?T????T??L 0 I I L
0 50 100 150 200 250 0 5 100 150 200 250

>> h = imhist(f);

>> h1 = h(1:10:256);

>> horz = 1:10:256;

>> bar(horz, ht)

>> axis([0 255 0 15000])

>> set(gca, 'xtick', 0:50:255)

>> set(gca, 'ytick', 0:2000:15000)

Figure 3.7(b) shows the result. The peak located at the high end of the intensi-
ty scale in Fig. 3.7(a) is missing in the bar graph as a result of the larger hori-
zontal increments used in the plot.

The fifth statement in the preceding code was used to expand the lower
range of the vertical axis for visual analysis, and to set the orizontal axis to the
same range as in Fig. 3.7(a). The axis function has the syntax

axis([horzmin horzmax vertmin vertmax])
which sets the minimum and maximum values in the horizontal and vertical
axes. In the last two statements, gca means “get current axis,” (i.e., the axes of
the figure last displayed) and xtick and ytick set the horizontal and vertical
axes ticks in the intervals shown.

Axis labels can be added to the horizontal and vertical axes of a graph using

the functions

3.3 m Histogram Processing and Function Plotting 79

xlabel('text string', 'fontsize', size)
ylabel('text string', 'fontsize', size)

where size is the font size in points. Text can be added to the body of the fig-
ure by using function text, as follows:

text(xloc, yloc, 'text string', 'fontsize', size)

where x1oc and yloc define the location where text starts. Use of these three
functions is illustrated in Example 3.5. It is important to note that functions
that set axis values and labels are used after the function has been plotted.

A title can be added to a plot using function title, whose basic syntax is

title('titlestring')

where titlestring is the string of characters that will appear on the title,
centered above the plot.
A stem graph is similar to a bar graph. The syntax is

stem(horz, v, 'color_linestyle marker',6 'fill')

where v is row vector containing the points to be plotted, and horz is as de-
scribed for bar. The argument,

color_linestyle_marker

is a triplet of values from Table 3.1. For example, stem(v, 'r——s') produces
a stem plot where the lines and markers are red, the lines are dashed, and the
markers are squares. If fil1 is used, and the marker is a circle, square, or dia-
mond, the marker is filled with the color specified in color. The default color
is black, the line default is solid, and the default marker is a circle. The
stem graph in Fig. 3.7(c) was obtained using the statements

>> h = imhist(f);
>> h1 = h(1:10:256);

Symbol Color Symbol Line Style Symbol Marker
k Black - Solid + Plus sign
w White - Dashed 0 Circle
r Red : Dotted * Asterisk
g Green -. Dash-dot . Point
b Blue none No line X Cross
c Cyan s Square
y Yellow d Diamond
m Magenta none No marker

xlabel
ylabel

text

title

stem

See the stem help
page for additional
options available for
this function.

TABLE 3.1
Attributes for
functions stem and
plot.The none
attribute is
applicable only to
function plot, and
must be specified
individually. See the
syntax for function
plot below.

80 Chapter 3

plot

See the plot help
page for additional
options available for
this function.

ylim
x1lim

Intensity Transformations and Spatial Filtering

>> horz = 1:10:256;

>> stem(horz, ht1, 'fill')

>> axis([0 255 0 15000])

>> set(gca, 'xtick', [0:50:255])

>> set(gca, 'ytick', [0:2000:15000])

Finally, we consider function plot, which plots a set of points by linking
them with straight lines. The syntax is

plot(horz, v, 'color_linestyle_marker')

where the arguments are as defined previously for stem plots. The values of
color,linestyle,and marker are given in Table 3.1. As in stem, the attributes
in plot can be specified as a triplet. When using none for linestyle or for
marker, the attributes must be specified individually. For example, the command

>> plot(horz, v, 'color', 'g', 'linestyle', 'none', 'marker', 's')

plots green squares without connecting lines between them. The defaults for
plot are solid black lines with no markers.
The plot in Fig. 3.7(d) was obtained using the following statements:

>> h = imhist(f);

>> plot(h) % Use the default values.
>> axis([0 255 0 15000])

>> set(gca, 'xtick', [0:50:255])

>> set(gca, 'ytick', [0:2000:15000])

Function plot is used frequently to display transformation functions (see
Example 3.5).

In the preceding discussion axis limits and tick marks were set manually. It
is possible to set the limits and ticks automatically by using functions ylim and
x1im, which, for our purposes here, have the syntax forms

ylim('auto')
xlim('auto')

Among other possible variations of the syntax for these two functions (see on-
line help for details), there is a manual option, given by

ylim([ymin ymax])
xlim([xmin xmax])

which allows manual specification of the limits. If the limits are specified for
only one axis, the limits on the other axis are set to 'auto' by default. We use
these functions in the following section.

3.3 m Histogram Processing and Function Plotting

Typing hold on at the prompt retains the current plot and certain axes
properties so that subsequent graphing commands add to the existing graph.
See Example 10.6 for an illustration.

Histogram Equalization

Assume for a moment that intensity levels are continuous quantities normal-
ized to the range [0, 1], and let p,(r) denote the probability density function
(PDF) of the intensity levels in a given image, where the subscript is used for
differentiating between the PDFs of the input and output images. Suppose
that we perform the following transformation on the input levels to obtain
output (processed) intensity levels, s,

5= 10) = [ptwyaw

where w is a dummy variable of integration. It can be shown (Gonzalez and
Woods [2002]) that the probability density function of the output levels is

uniform; that is,
(s) 1 for0=s=1
(s) =
Ps 0 otherwise

In other words, the preceding transformation generates an image whose in-
tensity levels are equally likely, and, in addition, cover the entire range [0, 1].
The net result of this intensity-level equalization process is an image with in-
creased dynamic range, which will tend to have higher contrast. Note that
the transformation function is really nothing more than the cumulative dis-
tribution function (CDF).

When dealing with discrete quantities we work with histograms and call
the preceding technique histogram equalization, although, in general, the
histogram of the processed image will not be uniform, due to the discrete na-
ture of the variables. With reference to the discussion in Section 3.3.1, let
pi(r;),j = 1,2,..., L, denote the histogram associated with the intensity lev-
els of a given image, and recall that the values in a normalized histogram are
approximations to the probability of occurrence of each intensity level in the
image. For discrete quantities we work with summations, and the equaliza-
tion transformation becomes

se = T(ry)

for k = 1,2,..., L, where s; is the intensity value in the output (processed)
image corresponding to value 7 in the input image.

hold on

81

82 Chapter 3

histeq

EXAMPLE 3.5
Histogram
equalization.

If Ais a vector,

B = cumsum(A)
gives the sum of its
elements. If Ais a
higher-dimensional
array,

B =cumsum(A, dim)
given the sum along
the dimension speci-
fied by dim.

cumsum

Intensity Transformations and Spatial Filtering

Histogram equalization is implemented in the toolbox by function histeq,
which has the syntax

g = histeq(f, nlev)

where f is the input image and nlev is the number of intensity levels specified
for the output image. If nlev is equal to L (the total number of possible levels
in the input image), then histeq implements the transformation function,
T (ry), directly. If nlev is less than L, then histeq attempts to distribute the
levels so that they will approximate a flat histogram. Unlike imhist, the de-
fault value in histeq is nlev = 64. For the most part, we use the maximum
possible number of levels (generally 256) for nlev because this produces a
true implementation of the histogram-equalization method just described.

Figure 3.8(a) is an electron microscope image of pollen, magnified approx-
imately 700 times. In terms of needed enhancement, the most important fea-
tures of this image are that it is dark and has a low dynamic range. This can be
seen in the histogram in Fig. 3.8(b), in which the dark nature of the image is ex-
pected because the histogram is biased toward the dark end of the gray scale.
The low dynamic range is evident from the fact that the “width” of the his-
togram is narrow with respect to the entire gray scale. Letting f denote the
input image, the following sequence of steps produced Figs. 3.8(a) through (d):

>> imshow(f)

>> figure, imhist(f)
>> ylim('auto')

>> g = histeq(f, 256);
>> figure, imshow(g)
>> figure, imhist(g)
>> ylim('auto')

The images were saved to disk in tiff format at 300 dpi using imwrite, and the
plots were similarly exported to disk using the print function discussed in
Section 2.4.

The image in Fig. 3.8(c) is the histogram-equalized result. The improve-
ments in average intensity and contrast are quite evident. These features also
are evident in the histogram of this image, shown in Fig. 3.8(d). The increase in
contrast is due to the considerable spread of the histogram over the entire in-
tensity scale. The increase in overall intensity is due to the fact that the average
intensity level in the histogram of the equalized image is higher (lighter) than
the original. Although the histogram-equalization method just discussed does
not produce a flat histogram, it has the desired characteristic of being able to
increase the dynamic range of the intensity levels in an image.

As noted earlier, the transformation function 7'(r;) is simply the cumulative
sum of normalized histogram values. We can use function cumsum to obtain the
transformation function, as follows:

>> hnorm = imhist(f)./numel(f);
>> cdf = cumsum(hnorm);

3.3 m Histogram Processing and Function Plotting 83

ab
cd

T T T T T FIGURE 3.8
Illustration of
histogram
equalization.

(a) Input image,
and (b) its
histogram.

(c) Histogram-
equalized image,
and (d) its
histogram. The
improvement
between (a) and
(c) is quite visible.
(Original image
courtesy of Dr.
% 10* Roger Heady,

S = N W kA N 9

0 50 100 150 200 250

8 T T T T T Research School

7H - of Biological

6| i Sciences,
Australian

51 N National

4 University,

3 Canberra.)

2

1

0

0 50 100 150 200 250

A plot of cdf, shown in Fig. 3.9, was obtained using the following commands:

o°

>> x = linspace(0, 1, 256); Intervals for [0, 1] horiz scale. Note
the use of linspace from Sec. 2.8.1.
Plot cdf vs. x.

Scale, settings, and labels:

>> plot(x, cdf)

>> axis([0 1 0 1])

>> set(gca, 'xtick', 0:.2:1)
>> set(gca, 'ytick', 0:.2:1)
>> xlabel('Input intensity values', 'fontsize', 9)

>> ylabel('Output intensity values', 'fontsize', 9)

>> % Specify text in the body of the graph:

>> text(0.18, 0.5, 'Transformation function', 'fontsize', 9)

o® o° o°

We can tell visually from this transformation function that a narrow range of
input intensity levels is transformed into the full intensity scale in the output
image.

84 Chapter 3 m Intensity Transformations and Spatial Filtering

FIGURE 3.9 1 T T T T
Transformation
function used to
map the intensity
values from the 08 - 7]
input image in .
Fig. 3.8(a) to the 3
values of the S o6l -
output image in £
Fig. 3.8(¢). g Transformation function
=]
5 04 i
&
=
)
02 =
0 | | | |
0 0.2 0.4 0.6 0.8 1

Input intensity values

Histogram Matching (Specification)

Histogram equalization produces a transformation function that is adaptive, in
the sense that it is based on the histogram of a given image. However, once the
transformation function for an image has been computed, it does not change un-
less the histogram of the image changes. As noted in the previous section, his-
togram equalization achieves enhancement by spreading the levels of the input
image over a wider range of the intensity scale. We show in this section that this
does not always lead to a successful result. In particular, it is useful in some appli-
cations to be able to specify the shape of the histogram that we wish the
processed image to have. The method used to generate a processed image that
has a specified histogram is called histogram matching or histogram specification.

The method is simple in principle. Consider for a moment continuous levels
that are normalized to the interval [0, 1], and let r and z denote the intensity
levels of the input and output images. The input levels have probability densi-
ty function p,(r) and the output levels have the specified probability density
function p,(z). We know from the discussion in the previous section that he
transformation

s=nn=[mmww

results in intensity levels, s, that have a uniform probability density function,
ps(s). Suppose now that we define a variable z with the property

H@=[MMM=s

3.3 m Histogram Processing and Function Plotting 85

Keep in mind that we are after an image with intensity levels z, which have the
specified density p,(z). From the preceding two equations, it follows that

2= H\(s) = H'[T(r)]

We can find T'(r) from the input image (this is the histogram-equalization
transformation discussed in the previous section), so it follows that we can use
the preceding equation to find the transformed levels z whose PDF is the spec-
ified p.(z), as long as we can find H~'. When working with discrete variables,
we can guarantee that the inverse of H exists if p,(z) is a valid histogram (i.e.,
it has unit area and all its values are nonnegative), and none of its components
is zero [i.e.,no bin of p (z) is empty]. As in histogram equalization, the discrete
implementation of the preceding method only yields an approximation to the
specified histogram.

The toolbox implements histogram matching using the following syntax in
histeq:

g = histeq(f, hspec)

where f is the input image, hspec is the specified histogram (a row vector of
specified values), and g is the output image, whose histogram approximates
the specified histogram, hspec. This vector should contain integer counts cor-
responding to equally spaced bins. A property of histeq is that the histogram
of g generally better matches hspec when length(hspec) is much smaller
than the number of intensity levels in f.

Figure 3.10(a) shows an image, f, of the Mars moon, Phobos, and
Fig.3.10(b) shows its histogram, obtained using imhist (). The image is dom-
inated by large, dark areas, resulting in a histogram characterized by a large
concentration of pixels in the dark end of the gray scale. At first glance, one
might conclude that histogram equalization would be a good approach to en-
hance this image, so that details in the dark areas become more visible. How-
ever, the result in Fig. 3.10(c), obtained using the command

>> f1 = histeq(f, 256);

shows that histogram equalization in fact did not produce a particularly good
result in this case. The reason for this can be seen by studying the histogram of
the equalized image, shown in Fig. 3.10(d). Here, we see that that the intensity
levels have been shifted to the upper one-half of the gray scale, thus giving the
image a washed-out appearance. The cause of the shift is the large concentra-
tion of dark components at or near 0 in the original histogram. In turn, the cu-
mulative transformation function obtained from this histogram is steep, thus
mapping the large concentration of pixels in the low end of the gray scale to
the high end of the scale.

EXAMPLE 3.6
Histogram
matching.

86 Chapter 3

ab
cd

FIGURE 3.10

(a) Image of the
Mars moon
Phobos.

(b) Histogram.
(c) Histogram-

equalized image.

(d) Histogram
of (¢).

(Original image
courtesy of
NASA).

twomodegauss

Intensity Transformations and Spatial Filtering

100 150 200 250

0 50 100 150 200 250

One possibility for remedying this situation is to use histogram matching,
with the desired histogram having a lesser concentration of components in the
low end of the gray scale, and maintaining the general shape of the histogram
of the original image. We note from Fig. 3.10(b) that the histogram is basically
bimodal, with one large mode at the origin, and another, smaller, mode at the
high end of the gray scale. These types of histograms can be modeled, for ex-
ample, by using multimodal Gaussian functions. The following M-function
computes a bimodal Gaussian function normalized to unit area, so it can be
used as a specified histogram.

function p = twomodegauss(mi, sigl, m2, sig2, A1, A2, k)

%TWOMODEGAUSS Generates a bimodal Gaussian function.

P = TWOMODEGAUSS (M1, SIG1, M2, SIG2, A1, A2, K) generates a bimodal,
Gaussian-like function in the interval [0, 1]. P is a 256-element
vector normalized so that SUM(P) equals 1. The mean and standard
deviation of the modes are (M1, SIG1) and (M2, SIG2), respectively.
A1 and A2 are the amplitude values of the two modes. Since the

o o o° o°

o°

3.3 m Histogram Processing and Function Plotting

o°

output is normalized, only the relative values of Al and A2 are
important. K is an offset value that raises the "floor" of the
function. A good set of values to try is M1 = 0.15, SIG1 = 0.05,
M2 = 0.75, SIG2 = 0.05, Al = 1, A2 = 0.07, and K = 0.002.

o° of

o°

¢l =A1 * (1 / ((2*pi) ~ 0.5 * sigl);
k1 =2 * (sigl * 2);

c2 =A2* (1 / ((2 * pi) ~ 0.5) * sig2);
k2 = 2 * (sig2 ~ 2);

z = linspace(0, 1, 256);

p=k+ct*exp(-((z-ml) .~2) ./ k1) + ...
c2 * exp(—((z —m2) .~ 2) ./ k2);
p ./ sum(p(:));

i=}
n

The following interactive function accepts inputs from a keyboard and plots
the resulting Gaussian function. Refer to Section 2.10.5 for an explanation of

the functions input and str2num. Note how the limits of the plots are set.

function p = manualhist
S%MANUALHIST Generates a bimodal histogram interactively.
P = MANUALHIST generates a bimodal histogram using

o o of

of the two modes and must be in the range [0, 1]. sigl and sig2 are
the standard deviations of the two modes. A1 and A2 are

amplitude values, and k is an offset value that raises the

"floor" of histogram. The number of elements in the histogram
vector P is 256 and sum(P) is normalized to 1. MANUALHIST
repeatedly prompts for the parameters and plots the resulting

o® o o°

o o of

o°

last histogram computed.

o°

o°

A good set of starting values is: (0.15, 0.05, 0.75, 0.05, 1,
0.07, 0.002).

s Initialize.
repeats = true;
quitnow = 'x';

o°

°

% Compute a default histogram in case the user quits before
% estimating at least one histogram.
p = twomodegauss(0.15, 0.05, 0.75, 0.05, 1, 0.07, 0.002);

% Cycle until an x is input.
while repeats
s = input('Enter mi1, sigl, m2, sig2, A1, A2, k OR x to quit:', 's');
if s == quitnow
break
end

% Convert the input string to a vector of numerical values and
% verify the number of inputs.

v = str2num(s);

if numel(v) ~=7

TWOMODEGAUSS (m1, sigl, m2, sig2, A1, A2, k). m1 and m2 are the means

histogram until the user types an 'x' to quit, and then it returns the

manualhist

87

88 Chapter 3 m Intensity Transformations and Spatial Filtering

disp('Incorrect number of inputs.')
continue
end
p = twomodegauss(v(1), v(2), v(3), v(4), v(5), v(6), V(7));
% Start a new figure and scale the axes. Specifying only xlim
% leaves ylim on auto.
figure, plot(p)
x1lim([0 255])
end

Since the problem with histogram equalization in this example is due pri-
marily to a large concentration of pixels in the original image with levels near 0,
a reasonable approach is to modify the histogram of that image so that it does
not have this property. Figure 3.11(a) shows a plot of a function (obtained with
program manualhist) that preserves the general shape of the original his-
togram, but has a smoother transition of levels in the dark region of the
intensity scale. The output of the program, p, consists of 256 equally spaced
points from this function and is the desired specified histogram. An image with
the specified histogram was generated using the command

>> g = histeq(f, p);

ab 0.02 T T T T T
c
FIGURE 3.11 0.015
(a) Specified
histogram.
(b) Result of 0.01
enhancement by
histogram 0.005
matching.
(c) Histogram
of (b) 0]]]]]
0 50 100 150 200 250
x 10*
T T T T T
6 - —
5F 4
4 - —
3 — -

0 50 100 150 200 250

3.4 m Spatial Filtering

Figure 3.11(b) shows the result. The improvement over the histogram-
equalized result in Fig. 3.10(c) is evident by comparing the two images. It is of
interest to note that the specified histogram represents a rather modest
change from the original histogram. This is all that was required to obtain a
significant improvement in enhancement. The histogram of Fig. 3.11(b) is
shown in Fig. 3.11(c). The most distinguishing feature of this histogram is how
its low end has been moved closer to the lighter region of the gray scale, and
thus closer to the specified shape. Note, however, that the shift to the right was
not as extreme as the shift in the histogram shown in Fig. 3.10(d), which corre-
sponds to the poorly enhanced image of Fig. 3.10(c).

Spatial Filtering

As mentioned in Section 3.1 and illustrated in Fig. 3.1, neighborhood process-
ing consists of (1) defining a center point, (x, y); (2) performing an operation
that involves only the pixels in a predefined neighborhood about that center
point; (3) letting the result of that operation be the “response” of the process
at that point; and (4) repeating the process for every point in the image. The
process of moving the center point creates new neighborhoods, one for each
pixel in the input image. The two principal terms used to identify this opera-
tion are neighborhood processing and spatial filtering, with the second term
being more prevalent. As explained in the following section, if the computa-
tions performed on the pixels of the neighborhoods are linear, the operation is
called linear spatial filtering (the term spatial convolution also used); otherwise
it is called nonlinear spatial filtering.

Linear Spatial Filtering

The concept of linear filtering has its roots in the use of the Fourier transform
for signal processing in the frequency domain, a topic discussed in detail in
Chapter 4. In the present chapter, we are interested in filtering operations that
are performed directly on the pixels of an image. Use of the term linear spatial
filtering differentiates this type of process from frequency domain filtering.

The linear operations of interest in this chapter consist of multiplying each
pixel in the neighborhood by a corresponding coefficient and summing the re-
sults to obtain the response at each point (x, y). If the neighborhood is of size
m X n, mn coefficients are required. The coefficients are arranged as a matrix,
called a filter, mask, filter mask, kernel, template, or window, with the first three
terms being the most prevalent. For reasons that will become obvious shortly,
the terms convolution filter, mask, or kernel, also are used.

The mechanics of linear spatial filtering are illustrated in Fig. 3.12. The
process consists simply of moving the center of the filter mask w from point to
point in an image, f. At each point (x, y), the response of the filter at that
point is the sum of products of the filter coefficients and the corresponding
neighborhood pixels in the area spanned by the filter mask. For a mask of size
m X n, we assume typically that m = 2a + 1 and n = 2b + 1, where a and b

89

90 Chapter 3 m Intensity Transformations and Spatial Filtering

FIGURE 3.12 The Image origin
mechanics of linear
spatial filtering.
The magnified
drawing shows a

3 X 3 mask and
the corresponding
image
neighborhood
directly under it.
The neighborhood
is shown displaced
out from under the
mask for ease of
readability.

Image f(x, y)

w(l,-1) w(1,0) w(1,1)

flx=1.y=1)

Fa=Ly) [fG=Ly+D) | sk coefficients, showing

coordinate arrangement

fey+1)

FetLy=1)| fltly) |fG+Ly+)

Pixels of image
section under mask

are nonnegative integers. All this says is that our principal focus is on masks of
odd sizes, with the smallest meaningful size being 3 X 3 (we exclude from our
discussion the trivial case of a 1 X 1 mask). Although it certainly is not a re-
quirement, working with odd-size masks is more intuitive because they have a
unique center point.

There are two closely related concepts that must be understood clearly
when performing linear spatial filtering. One is correlation; the other is
convolution. Correlation is the process of passing the mask w by the image
array f in the manner described in Fig. 3.12. Mechanically, convolution is the
same process, except that w is rotated by 180° prior to passing it by f. These
two concepts are best explained by some simple examples.

3.4 m Spatial Filtering 91

Figure 3.13(a) shows a one-dimensional function, f, and a mask, w. The ori-
gin of f is assumed to be its leftmost point. To perform the correlation of the
two functions, we move w so that its rightmost point coincides with the origin
of f, as shown in Fig. 3.13(b). Note that there are points between the two func-
tions that do not overlap. The most common way to handle this problem is to
pad f with as many Os as are necessary to guarantee that there will always be
corresponding points for the full excursion of w past f. This situation is shown
in Fig. 3.13(c).

We are now ready to perform the correlation. The first value of correlation
is the sum of products of the two functions in the position shown in
Fig.3.13(c). The sum of products is 0 in this case. Next, we move w one location
to the right and repeat the process [Fig. 3.13(d)]. The sum of products again is
0. After four shifts [Fig. 3.13(e)], we encounter the first nonzero value of the
correlation, which is (2)(1) = 2. If we proceed in this manner until w moves
completely past f [the ending geometry is shown in Fig. 3.13(f)] we would get
the result in Fig. 3.13(g). This set of values is the correlation of w and f. Note
that, had we left w stationary and had moved f past w instead, the result
would have been different, so the order matters.

Correlation Convolution
/—Origin f w /—Origin f w rotated 180°
(@0 0010000 12320 00010000 02321 (1)
(b) 00010000 00010000 W)
12320 02321

Starting position alignment

,_: Zero padding j_l

(c)0000000100000000O0
12320

(=)
[«
(=)
[«
(=)
[«
(=)
_
(=)

0000000 (k)

02321
dooo000O0O100O00O00O0O 0000000100000000 ()
12320 02321
L Position after one shift
e)0000000100000000O0 0000000100000O0O0O0 (m)
12320 02321

L Position after four shifts

#0000000100000000 0000000100000000O0 (n)
12320 02321
Final position 4
"full' correlation result 'full' convolution result
(g2) 000023210000 000123200000 (o)
"same' correlation result 'same ' convolution result

(h) 00232100 01232000 ()

FIGURE 3.13
Illustration of
one-dimensional
correlation and
convolution.

92

Chapter 3

imfilter

Intensity Transformations and Spatial Filtering

The label ' full' in the correlation shown in Fig. 3.13(g) is a flag (to be dis-
cussed later) used by the toolbox to indicate correlation using a padded image
and computed in the manner just described. The toolbox provides another op-
tion, denoted by 'same' [Fig. 3.13(h)] that produces a correlation that is the
same size as f. This computation also uses zero padding, but the starting posi-
tion is with the center point of the mask (the point labeled 3 in w) aligned with
the origin of f. The last computation is with the center point of the mask
aligned with the last point in f.

To perform convolution we rotate w by 180° and place its rightmost point at
the origin of f, as shown in Fig. 3.13(j). We then repeat the sliding/computing
process employed in correlation, as illustrated in Figs. 3.13(k) through (n). The
'full' and 'same' convolution results are shown in Figs. 3.13(0) and (p), re-
spectively.

Function f in Fig. 3.13 is a discrete unit impulse function that is 1 at one
location and 0 everywhere else. It is evident from the result in Figs. 3.13(o) or
(p) that convolution basically just “copied” w at the location of the impulse.
This simple copying property (called sifting) is a fundamental concept in lin-
ear system theory, and it is the reason why one of the functions is always ro-
tated by 180° in convolution. Note that, unlike correlation, reversing the
order of the functions yields the same convolution result. If the function
being shifted is symmetric, it is evident that convolution and correlation
yield the same result.

The preceding concepts extend easily to images, as illustrated in Fig. 3.14.
The origin is at the top, left corner of image f(x, y) (see Fig. 2.1). To perform
correlation, we place the bottom, rightmost point of w(x, y) so that it coin-
cides with the origin of f(x, y), as illustrated in Fig. 3.14(c). Note the use of 0
padding for the reasons mentioned in the discussion of Fig. 3.13. To perform
correlation, we move w(x, y) in all possible locations so that at least one of its
pixels overlaps a pixel in the original image f(x, y). This 'full' correlation is
shown in Fig. 3.14(d). To obtain the 'same' correlation shown in Fig. 3.14(e),
we require that all excursions of w(x, y) be such that its center pixel overlaps
the original f(x, y).

For convolution, we simply rotate w(x, y) by 180° and proceed in the same
manner as in correlation [Figs. 3.14(f) through (h)]. As in the one-dimensional
example discussed earlier, convolution yields the same result regardless of
which of the two functions undergoes translation. In correlation the order
does matter, a fact that is made clear in the toolbox by assuming that the filter
mask is always the function that undergoes translation. Note also the impor-
tant fact in Figs. 3.14(e) and (h) that the results of spatial correlation and con-
volution are rotated by 180° with respect to each other. This, of course, is
expected because convolution is nothing more than correlation with a rotated
filter mask.

The toolbox implements linear spatial filtering using function imfilter,
which has the following syntax:

g = imfilter(f, w, filtering_mode, boundary_options, size_options)

3.4 m Spatial Filtering 93

Padded f FIGURE 3.14
000000000O Tllustration of
000000000O0 two-dimensional
o 000000000O correlation and
o~ Origin of f(x, y) 000000000 convolution. The
00000 wwy») 000000000 0 are shown in
00100 123 000000000 gray to simplify
00000 456 000000000 viewing.
00000 789 000000000O
(a) (b)
< Initial position forw ' full' correlation result "same ' correlation result
:123:000000 000000000O 00000
4560000000 000000000 09870
1789000000 000000000O 06540
000000000 000987000 03210
000010000 000654000 00000
000000000 000321000
000000000O 000000000O
000000000 000000000
000000000O 000000000O
(©) (d) (e)
Rotated w '"full' convolution result 'same ' convolution result
:_9_8__7: 000000 000000000 00000
654000000 000000000 01230
321000000 000000000O 04560
000000000 000123000 07890
000010000 000456000 00000
000000000 000789000
000000000O 000000000O
000000000 000000000
000000000O 000000000O
(®) (2) (h)

where f is the input image, w is the filter mask, g is the filtered result, and the
other parameters are summarized in Table 3.2. The filtering_mode specifies
whether to filter using correlation ('corr') or convolution ('conv'). The
boundary_options deal with the border-padding issue, with the size of the
border being determined by the size of the filter. These options are explained
further in Example 3.7. The size_options are either 'same' or 'full', as
explained in Figs. 3.13 and 3.14.
The most common syntax for imfilter is

g = imfilter(f, w, 'replicate')

This syntax is used when implementing IPT standard linear spatial filters.
These filters, which are discussed in Section 3.5.1, are prerotated by 180°,so we
can use the correlation default in imfilter. From the discussion of Fig. 3.14,
we know that performing correlation with a rotated filter is the same as per-
forming convolution with the original filter. If the filter is symmetric about its
center, then both options produce the same result.

94 Chapter 3

TABLE 3.2
Options for
function
imfilter.

rot90

rot90(w, k) ro-
tates w by k*90 de-
grees, where K is an
integer.

EXAMPLE 3.7:
Using function
imfilter.

Intensity Transformations and Spatial Filtering

Options Description
Filtering Mode
‘corr' Filtering is done using correlation (see Figs. 3.13 and 3.14). This is
the default.
‘conv' Filtering is done using convolution (see Figs. 3.13 and 3.14).
Boundary Options
P The boundaries of the input image are extended by padding with a

value, P (written without quotes). This is the default, with value 0.

‘replicate' The size of the image is extended by replicating the values in its
outer border.

‘symmetric' The size of the image is extended by mirror-reflecting it across its
border.

‘circular'’ The size of the image is extended by treating the image as one
period a 2-D periodic function.

Size Options

‘full' The output is of the same size as the extended (padded) image
(see Figs. 3.13 and 3.14).
‘same’ The output is of the same size as the input. This is achieved by

limiting the excursions of the center of the filter mask to points
contained in the original image (see Figs. 3.13 and 3.14). This is
the default.

When working with filters that are neither pre-rotated nor symmetric, and
we wish to perform convolution, we have two options. One is to use the syntax

g = imfilter(f, w, ‘conv', 'replicate')

The other approach is to preprocess w by using the function rot90(w, 2) to
rotate it 180°, and then use imfilter(f, w, 'replicate'). Of course these
two steps can be combined into one statement. The preceding syntax produces
an image g that is of the same size as the input (i.e., the default in computation
is the 'same' mode discussed earlier).

Each element of the filtered image is computed using double-precision,
floating-point arithmetic. However, imfilter converts the output image to
the same class of the input. Therefore, if f is an integer array, then output ele-
ments that exceed the range of the integer type are truncated, and fractional
values are rounded. If more precision is desired in the result, then f should be
converted to class double by using im2double or double before using
imfilter.

Figure 3.15(a) is a class double image, f, of size 512 X 512 pixels. Consider
the simple 31 X 31 filter

>> w = ones(31);

3.4 m Spatial Filtering 95

which is proportional to an averaging filter. We did not divide the coefficients
by (31)? to illustrate at the end of this example the scaling effects of using
imfilter with an image of class uint8.

Convolving filter w with an image produces a blurred result. Because the fil-
ter is symmetric, we can use the correlation default in imfilter. Figure 3.15(b)
shows the result of performing the following filtering operation:

>> gd =
>> imshow(gd,

imfilter(f, w);
[1)

where we used the default boundary option, which pads the border of the image
with 0’s (black). As expected the edges between black and white in the filtered
image are blurred, but so are the edges between the light parts of the image and
the boundary. The reason, of course, is that the padded border is black. We can
deal with this difficulty by using the 'replicate' option

>> gr = imfilter(f, w,
>> figure, imshow(gr,

‘replicate’');
[1)

As Fig. 3.15(c) shows, the borders of the filtered image now appear as ex-
pected. In this case, equivalent results are obtained with the 'symmetric'
option

>> gs = imfilter(f, w,
>> figure, imshow(gs,

'symmetric');

[1)

abc
de f

FIGURE 3.15

(a) Original image.
(b) Result of using
imfilter with
default zero padding.
(c) Result with the
'replicate’
option. (d) Result
with the
'symmetric'
option. (¢) Result
with the 'circular'
option. (f) Result of
converting the
original image to
class uint8 and then
filtering with the
'replicate’
option. A filter of
size 31 X 31 with
all 1s was used
throughout.

96

Chapter 3

Intensity Transformations and Spatial Filtering

Figure 3.15(d) shows the result. However, using the 'circular' option

>> gc = imfilter(f, w, 'circular');
>> figure, imshow(gc, [1)

produced the result in Fig. 3.15(e), which shows the same problem as with zero
padding. This is as expected because use of periodicity makes the black parts
of the image adjacent to the light areas.

Finally, we illustrate how the fact that imfilter produces a result that is of
the same class as the input can lead to difficulties if not handled properly:

>> f8 = im2uint8(f);
>> g8r = imfilter(f8, w, 'replicate');
>> figure, imshow(g8r, [1)

Figure 3.15(f) shows the result of these operations. Here, when the output was
converted to the class of the input (uint8) by imfilter, clipping caused
some data loss. The reason is that the coefficients of the mask did not sum to
the range [0, 1], resulting in filtered values outside the [0, 255] range. Thus, to
avoid this difficulty, we have the option of normalizing the coefficients so that
their sum is in the range [0, 1] (in the present case we would divide the coeffi-
cients by (31)2 so the sum would be 1), or inputting the data in double for-
mat. Note, however, that even if the second option were used, the data usually
would have to be normalized to a valid image format at some point (e.g., for
storage) anyway. Either approach is valid; the key point is that data ranges
have to be kept in mind to avoid unexpected results.

Nonlinear Spatial Filtering

Nonlinear spatial filtering is based on neighborhood operations also, and the
mechanics of defining m X n neighborhoods by sliding the center point
through an image are the same as discussed in the previous section. However,
whereas linear spatial filtering is based on computing the sum of products
(which is a linear operation), nonlinear spatial filtering is based, as the name
implies, on nonlinear operations involving the pixels of a neighborhood. For
example, letting the response at each center point be equal to the maximum
pixel value in its neighborhood is a nonlinear filtering operation. Another
basic difference is that the concept of a mask is not as prevalent in nonlinear
processing. The idea of filtering carries over, but the “filter” should be visual-
ized as a nonlinear function that operates on the pixels of a neighborhood, and
whose response constitutes the response of the operation at the center pixel of
the neighborhood.

The toolbox provides two functions for performing general nonlinear filter-
ing: n1filter and colfilt. The former performs operations directly in 2-D,
while colfilt organizes the data in the form of columns. Although colfilt
requires more memory, it generally executes significantly faster than n1filter.

3.4 m Spatial Filtering 97

In most image processing applications speed is an overriding factor, so
colfilt is preferred over nlfilt for implementing generalized nonlinear
spatial filtering.

Given an input image, f, of size M X N, and a neighborhood of size m X n,
function colfilt generates a matrix, call it A, of maximum size mn X MN Jin
which each column corresponds to the pixels encompassed by the neighbor-
hood centered at a location in the image. For example, the first column corre-
sponds to the pixels encompassed by the neighborhood when its center is
located at the top, leftmost point in f. All required padding is handled trans-
parently by colfilt (using zero padding).

The syntax of function colfilt is

g = colfilt(f, [m n], 'sliding', @fun, parameters)

where, as before, m and n are the dimensions of the filter region, 'sliding' in-
dicates that the process is one of sliding the m X n region from pixel to pixel
in the input image f, @fun references a function, which we denote arbitrarily
as fun, and parameters indicates parameters (separated by commas) that
may be required by function fun. The symbol @ is called a function handle, a
MATLAB data type that contains information used in referencing a function.
As will be demonstrated shortly, this is a particularly powerful concept.

Because of the way in which matrix A is organized, function fun must oper-
ate on each of the columns of A individually and return a row vector, v, con-
taining the results for all the columns. The kth element of v is the result of the
operation performed by fun on the kth column of A. Since there can be up to
MN columns in A, the maximum dimension of vis 1 X MN.

The linear filtering discussed in the previous section has provisions for
padding to handle the border problems inherent in spatial filtering. When
using colfilt, however, the input image must be padded explicitly before fil-
tering. For this we use function padarray, which, for 2-D functions, has the
syntax

fp = padarray(f, [r c], method, direction)
where f is the input image, fp is the padded image, [r c] gives the number of
rows and columns by which to pad f, and method and direction are as ex-

plained in Table 3.3. For example,if f = [1 2; 3 4], the command

>> fp = padarray(f, [3 2], 'replicate', 'post')

A always has mn rows, but the number of columns can vary, depending on the size of the input. Size se-
lection is managed automatically by colfilt.

colfilt

@ (function handle)

padarray

98 Chapter 3

TABLE 3.3
Options for
function
padarray.

EXAMPLE 3.8
Using function
colfiltto
implement a
nonlinear spatial
filter.

prod

prod(A) returns the
product of the ele-
ments of A. prod

(A, dim) returns the
product of the
elements of A along
dimension dim.

Intensity Transformations and Spatial Filtering

Options Description

Method

‘symmetric' The size of the image is extended by mirror-reflecting it across its
border.

‘replicate' The size of the image is extended by replicating the values in its
outer border.

‘circular'’ The size of the image is extended by treating the image as one
period of a 2-D periodic function.

Direction

‘pre’ Pad before the first element of each dimension.

'post’ Pad after the last element of each dimension.

"both' Pad before the first element and after the last element of each

dimension. This is the default.

produces the result

fp =

WWwww-=
A BABDBADND
A A DPADN
L R L\

If direction is not included in the argument, the defaultis 'both'.If method
is not included, the default padding is with 0’s. If neither parameter is included
in the argument, the default padding is O and the default direction is 'both'.
At the end of computation, the image is cropped back to its original size.

As an illustration of function colfilt, we implement a nonlinear filter
whose response at any point is the geometric mean of the intensity values of
the pixels in the neighborhood centered at that point. The geometric mean in a
neighborhood of size m X n is the product of the intensity values in the neigh-
borhood raised to the power 1/mn. First we implement the nonlinear filter
function, call it gmean:

function v = gmean(A)
mn = size(A, 1); % The length of the columns of A is always mn.
= prod(A, 1).”(1/mn);

To reduce border effects, we pad the input image using, say, the 'replicate’
option in function padarray:

>> f = padarray(f, [m n], 'replicate');

3.5 W Image Processing Toolbox Standard Spatial Filters

Finally, we call colfilt:
>> g = colfilt(f, [m n], 'sliding', @gmean);

There are several important points at play here. First, note that, although
matrix A is part of the argument in function gmean, it is not included in the
parameters in colfilt. This matrix is passed automatically to gmean by
colfilt using the function handle. Also, because matrix A is managed auto-
matically by colfilt,the number of columns in A is variable (but, as noted ear-
lier, the number of rows, that is, the column length, is always mn). Therefore, the
size of A must be computed each time the function in the argument is called by
colfilt.The filtering process in this case consists of computing the product of
all pixels in the neighborhood and then raising the result to the power 1/mn.
For any value of (x, y), the filtered result at that point is contained in the ap-
propriate column in v. The function identified by the handle, @, can be any func-
tion callable from where the function handle was created. The key requirement
is that the function operate on the columns of A and return a row vector con-
taining the result for all individual columns. Function colfilt then takes those
results and rearranges them to produce the output image, g.

Some commonly used nonlinear filters can be implemented in terms of
other MATLAB and IPT functions such as imfilter and ordfilt2 (see
Section 3.5.2). Function spfilt in Section 5.3, for example, implements the
geometric mean filter in Example 3.8 in terms of imfilter and the MATLAB
log and exp functions. When this is possible, performance usually is much
faster, and memory usage is a fraction of the memory required by colfilt.
Function colfilt, however, remains the best choice for nonlinear filtering
operations that do not have such alternate implementations.

Image Processing Toolbox Standard Spatial Filters

In this section we discuss linear and nonlinear spatial filters supported by IPT.
Additional nonlinear filters are implemented in Section 5.3.

Linear Spatial Filters

The toolbox supports a number of predefined 2-D linear spatial filters, ob-
tained by using function fspecial, which generates a filter mask, w, using the
syntax

w = fspecial('type', parameters)
where 'type' specifies the filter type, and parameters further define the

specified filter. The spatial filters supported by fspecial are summarized in
Table 3.4, including applicable parameters for each filter.

fspecial

99

100 Chapter 3

TABLE 3.4
Spatial filters
supported by
function
fspecial.

EXAMPLE 3.9:
Using function
imfilter.

Intensity Transformations and Spatial Filtering

Type

Syntax and Parameters

'average'

'disk’

'gaussian'

'laplacian’

Ilogl

'motion'

"prewitt’

'sobel’

‘unsharp'

fspecial('average', [r c]).A rectangular averaging filter of
size r x c.The defaultis 3 X 3. A single number instead of

[r c] specifies a square filter.

fspecial('disk', r).A circular averaging filter (within a
square of size 2r + 1) with radius r.The default radius is 5.
fspecial('gaussian', [r c], sig).A Gaussian lowpass filter
of size r x ¢ and standard deviation sig (positive). The defaults
are 3 X 3 and 0.5. A single number instead of [r c] specifies a
square filter.

fspecial('laplacian', alpha).A 3 X 3 Laplacian filter whose
shape is specified by alpha, a number in the range [0, 1]. The
default value for alphais 0.5.

fspecial('log', [r c], sig).Laplacian of a Gaussian (LoG)
filter of size r x c and standard deviation sig (positive). The
defaults are 5 X 5 and 0.5. A single number instead of [r c]
specifies a square filter.

fspecial('motion', len, theta).Outputs a filter that, when
convolved with an image, approximates linear motion (of a
camera with respect to the image) of 1len pixels. The direction of
motion is theta, measured in degrees, counterclockwise from the
horizontal. The defaults are 9 and 0, which represents a motion of
9 pixels in the horizontal direction.
fspecial('prewitt').Outputs a3 X 3 Prewitt mask, wv, that
approximates a vertical gradient. A mask for the horizontal
gradient is obtained by transposing the result: wh = wv'.
fspecial('sobel').Outputs a3 X 3 Sobel mask, sv, that
approximates a vertical gradient. A mask for the horizontal
gradient is obtained by transposing the result: sh = sv'.
fspecial('unsharp', alpha).Outputsa3 X 3 unsharp filter.
Parameter alpha controls the shape; it must be greater than 0 and
less than or equal to 1.0; the default is 0.2.

We illustrate the use of fspecial and imfilter by enhancing an image
with a Laplacian filter. The Laplacian of an image f(x, y), denoted V*f(x, y),

is defined as

and

sz(x y) — azf(x’ y) azf(x’ y)
’ ax* ay?
Commonly used digital approximations of the second derivatives are
O>f
oz S Ly) + flx = Ly) = 2f(xy)
O>f

ayz :f(x’y+1) +f(x’y_ 1) —2f(x,y)

3.5 W Image Processing Toolbox Standard Spatial Filters

so that

sz: [f(X+17y) +f(X_ 1>y) +f(x7y+1) +f(x7y_ 1)] _4f(x7y)

This expression can be implemented at all points (x, y) in an image by con-
volving the image with the following spatial mask:

0O 1 O
1 -4 1
0 1 0

An alternate definition of the digital second derivatives takes into account di-
agonal elements, and can be implemented using the mask

1
-8 1
1 1

Both derivatives sometimes are defined with the signs opposite to those shown
here, resulting in masks that are the negatives of the preceding two masks.
Enhancement using the Laplacian is based on the equation

g(x,y) = f(x,y) + c[V*f(x,y)]

where f(x, y) is the input image, g(x, y) is the enhanced image, and c is 1 if the
center coefficient of the mask is positive, or —1 if it is negative (Gonzalez and
Woods [2002]). Because the Laplacian is a derivative operator, it sharpens the
image but drives constant areas to zero. Adding the original image back re-
stores the gray-level tonality.

Function fspecial('laplacian', alpha) implements a more general
Laplacian mask:

e 1 -« e
l+a 1+a 1+«
-« —4 1 -«
+a 1l+a 1+a
1o 1 -« 1o
l+a 1+a 1+«

which allows fine tuning of enhancement results. However, the predominant
use of the Laplacian is based on the two masks just discussed.

We now proceed to enhance the image in Fig. 3.16(a) using the Laplacian.
This image is a mildly blurred image of the North Pole of the moon. En-
hancement in this case consists of sharpening the image, while preserving as
much of its gray tonality as possible. First, we generate and display the
Laplacian filter:

101

102 Chapter 3
ab

cd

FIGURE 3.16

(a) Image of the
North Pole of the
moon.

(b) Laplacian
filtered image,
using uint8
formats.

(c) Laplacian
filtered image
obtained using
double formats.
(d) Enhanced
result, obtained
by subtracting (c)
from (a).
(Original image
courtesy of
NASA.)

Intensity Transformations and Spatial Filtering

>> w = fspecial('laplacian', 0)
W =
0.0000 1.0000 0.0000
1.0000 —4.0000 1.0000
0.0000 1.0000 0.0000

Note that the filter is of class double, and that its shape with alpha = 0is the
Laplacian filter discussed previously. We could just as easily have specified this
shape manually as

>> W =

[010; 1-41; 010];

3.5 m Image Processing Toolbox Standard Spatial Filters 103

Next we apply w to the input image, f, which is of class uinta8:

>> g1 = imfilter(f, w, 'replicate');
>> imshow(gi, [1)

Figure 3.16(b) shows the resulting image. This result looks reasonable, but has
a problem: all its pixels are positive. Because of the negative center filter coef-
ficient, we know that we can expect in general to have a Laplacian image with
negative values. However, f in this case is of class uint8 and, as discussed in
the previous section, filtering with imfilter gives an output that is of the
same class as the input image, so negative values are truncated. We get around
this difficulty by converting f to class double before filtering it:

>> f2 = im2double(f);
>> g2 = imfilter(f2, w, 'replicate');
>> imshow(g2, [1)

The result, shown in Fig. 3.15(c), is more what a properly processed Laplacian
image should look like.

Finally, we restore the gray tones lost by using the Laplacian by subtracting
(because the center coefficient is negative) the Laplacian image from the orig-
inal image:

>> g = f2 - ¢2;
>> imshow(g)

The result, shown in Fig. 3.16(d), is sharper than the original image.

Enhancement problems often require the specification of filters beyond
those available in the toolbox. The Laplacian is a good example. The toolbox
supports a 3 X 3 Laplacian filter with a —4 in the center. Usually, sharper en-
hancement is obtained by using the 3 X 3 Laplacian filter that has a —8 in the
center and is surrounded by 1s, as discussed earlier. The purpose of this exam-
ple is to implement this filter manually, and also to compare the results ob-
tained by using the two Laplacian formulations. The sequence of commands is
as follows:

>> f = imread('moon.tif');

>> w4 = fspecial('laplacian', 0); % Same as w in Example 3.9.
>> w8 [111;1-81;111];

>> f = im2double(f);

>> g4 = f — imfilter(f, w4, 'replicate');

>> g8 = f — imfilter(f, w8, 'replicate');

>> imshow(f)

>> figure, imshow(g4)

>> figure, imshow(g8)

EXAMPLE 3.10:
Manually
specifying filters
and comparing
enhancement
techniques.

104 Chapter 3

a
bc

FIGURE 3.17 (a)
Image of the North
Pole of the moon.
(b) Image
enhanced using the
Laplacian

filter 'laplacian’,
which has a —4 in
the center. (c)
Image enhanced
using a Laplacian
filter with a —8 in
the center.

Intensity Transformations and Spatial Filtering

Figure 3.17(a) shows the original moon image again for easy comparison.
Fig. 3.17(b) is g4, which is the same as Fig. 3.16(d), and Fig. 3.17(c) shows g8.
As expected, this result is significantly sharper than Fig. 3.17(b).

Nonlinear Spatial Filters

A commonly-used tool for generating nonlinear spatial filters in IPT is func-
tion ordfilt2, which generates order-statistic filters (also called rank filters).
These are nonlinear spatial filters whose response is based on ordering (rank-
ing) the pixels contained in an image neighborhood and then replacing the
value of the center pixel in the neighborhood with the value determined by the

3.5 m Image Processing Toolbox Standard Spatial Filters 105

ranking result. Attention is focused in this section on nonlinear filters generat-
ed by ordfilt2. A number of additional nonlinear filters are developed and
implemented in Section 5.3.

The syntax of function ordfilt2 is

g = ordfilt2(f, order, domain)

This function creates the output image g by replacing each element of f by the
order-th element in the sorted set of neighbors specified by the nonzero ele-
ments in domain. Here,domainis an m X n matrix of 1s and Os that specify the
pixel locations in the neighborhood that are to be used in the computation. In
this sense, domain acts like a mask. The pixels in the neighborhood that corre-
spond to 0 in the domain matrix are not used in the computation. For example,
to implement a min filter (order 1) of size m X n we use the syntax

g = ordfilt2(f, 1, ones(m, n))

In this formulation the 1 denotes the 1st sample in the ordered set of mn sam-
ples,and ones (m, n) creates an m X n matrix of 1s, indicating that all samples
in the neighborhood are to be used in the computation.

In the terminology of statistics, a min filter (the first sample of an ordered
set) is referred to as the Oth percentile. Similarly, the 100th percentile is the last
sample in the ordered set, which is the mnth sample. This corresponds to a max
filter, which is implemented using the syntax

g = ordfilt2(f, m*n, ones(m, n))
The best-known order-statistic filter in digital image processing is the
median’ filter, which corresponds to the 50th percentile. We can use MATLAB
function median in ordfilt2 to create a median filter:

g = ordfilt2(f, median(1:m*n), ones(m, n))

where median(1:m*n) simply computes the median of the ordered sequence
1,2,..., mn. Function median has the general syntax

v = median(A, dim)
where v is vector whose elements are the median of A along dimension dim.

For example,if dim = 1, each element of v is the median of the elements along
the corresponding column of A.

Recall that the median, £, of a set of values is such that half the values in the set are less than or equal
to &, and half are greater than or equal to &.

ordfilt2

median

106 Chapter 3

medfilt2

EXAMPLE 3.11:

Median filtering
with function
medfilt2.

imnoise

Intensity Transformations and Spatial Filtering

Because of its practical importance, the toolbox provides a specialized im-
plementation of the 2-D median filter:

g = medfilt2(f, [m n], padopt)

where the tuple [m n] defines a neighborhood of size m x n over which the
median is computed, and padopt specifies one of three possible border
padding options: 'zeros' (the default), 'symmetric' in which f is extended
symmetrically by mirror-reflecting it across its border, and 'indexed', in
which f is padded with 1s if it is of class double and with Os otherwise. The de-
fault form of this function is

g = medfilt2(f)

which uses a 3 X 3 neighborhood to compute the median, and pads the border
of the input with Os.

Median filtering is a useful tool for reducing salt-and-pepper noise in an
image. Although we discuss noise reduction in much more detail in Chapter 5,
it will be instructive at this point to illustrate briefly the implementation of
median filtering.

The image in Fig. 3.18(a) is an X-ray image, f, of an industrial circuit board
taken during automated inspection of the board. Figure 3.18(b) is the same
image corrupted by salt-and-pepper noise in which both the black and white
points have a probability of occurrence of 0.2. This image was generated using
function imnoise, which is discussed in detail in Section 5.2.1:

>> fn = imnoise(f, 'salt & pepper', 0.2);

Figure 3.18(c) is the result of median filtering this noisy image, using the
statement:

>> gm = medfilt2(fn);

Considering the level of noise in Fig. 3.18(b), median filtering using the de-
fault settings did a good job of noise reduction. Note, however, the black
specks around the border. These were caused by the black points surrounding
the image (recall that the default pads the border with Os). This type of effect
can often be reduced by using the 'symmetric' option:

>> gms = medfilt2(fn, 'symmetric');

The result, shown in Fig. 3.18(d), is close to the result in Fig. 3.18(c), except that
the black border effect is not as pronounced.

® Summary 107

ab
cd

FIGURE 3.18
Median filtering,
(a) X-ray image.
(b) Image
corrupted by salt-
and-pepper noise.
(c) Result of
median filtering
with medfilt2
using the default
settings.

(d) Result of
median filtering
using the
'symmetric’
image extension
option. Note the
improvement in
border behavior
between (d) and
(c). (Original
image courtesy
of Lixi, Inc.)

Summary

In addition to dealing with image enhancement, the material in this chapter is the foun-
dation for numerous topics in subsequent chapters. For example, we will encounter spa-
tial processing again in Chapter 5 in connection with image restoration, where we also
take a closer look at noise reduction and noise-generating functions in MATLAB.
Some of the spatial masks that were mentioned briefly here are used extensively in
Chapter 10 for edge detection in segmentation applications. The concept of convolu-
tion and correlation is explained again in Chapter 4 from the perspective of the fre-
quency domain. Conceptually, mask processing and the implementation of spatial
filters will surface in various discussions throughout the book. In the process, we will
extend the discussion begun here and introduce additional aspects of how spatial filters
can be implemented efficiently in MATLAB.

108

Preview

For the most part, this chapter parallels the filtering topics discussed in Chapter 3,
but with all filtering carried out in the frequency domain via the Fourier trans

form. In addition to being a cornerstone of linear filtering, the Fourier transform

offers considerable flexibility in the design and implementation of filtering solu-
tions in areas such as image enhancement, image restoration, image data com-

pression, and a host of other applications of practical interest. In this chapter, the

focus is on the foundation of how to perform frequency domain filtering in MAT-
LAB. As in Chapter 3, we illustrate filtering in the frequency domain with exam-
ples of image enhancement, including lowpass filtering, basic highpass filtering,
and high-frequency emphasis filtering. We also show briefly how spatial and fre-
quency domain processing can be used in combination to yield results that are su-
perior to using either type of processing alone. The concepts and techniques
developed in the following sections are quite general, as is amply illustrated by
other applications of this material in Chapters 5,8, and 11.

The 2-D Discrete Fourier Transform

Let f(x,y),forx =0,1,2,..., M —land y = 0,1,2,..., N — 1, denote an
M X N image. The 2-D, discrete Fourier transform (DFT) of f, denoted by
F(u,v), is given by the equation

RPN
foru=0,12,....M—1landv=01,2,..., N = 1. We could expand the

exponential into sines and cosines with the variables u and v determining their
frequencies (x and y are summed out). The frequency domain is simply the

e —j2a(ux/M+vy/N)

4.1 & The 2-D Discrete Fourier Transform

coordinate system spanned by F(u, v) with u and v as (frequency) variables.
‘This is analogous to the spatial domain studied in the previous chapter, which
is the coordinate system spanned by f(x, y), with x and y as (spatial) variables.
The M X N rectangular region defined by u=10,1,2,...,M — 1 and
v.=0,1,2,..., N — 1is often referred to as the frequency rectangle. Clearly,
the frequency rectangle is of the same size as the input image.

The inverse, discrete Fourier transform is given by

M-1N-1

1
F u, v e}27(ur/M+vv/N)
My 2 2Ty

flx,y) =

forx=01,2,....M~-1landy =0,1,2,...,N — 1. Thus, given F(u, v), we
can obtain f(x, y) back by means of the inverse DFT. The values of F(u, v) in this
equation sometimes are referred to as the Fourier coefficients of the expansion.

In some formulations of the DFT, the 1/MN term is placed in front of the
transform and in others it is used in front of the inverse. To be consistent with
MATLAB'’s implementation of the Fourier transform, we assume throughout
the book that the term is in front of the inverse, as shown in the preceding
equation. Because array indices in MATLAB start at 1, rather than 0,F (1, 1)
~and f(1, 1)in MATLAB correspond to the mathematical quantities F (0 0)
and £(0, 0) in the transform and its inverse.

- The value of the transform at the origin of the frequency domain [i.e.,
F (0, 0)] is called the dc component of the Fourier transform. This termmology
s from electrical engineering, where “dc” signifies direct current (current of
ero frequency). It is not difficult to show that F(0, 0) is equal to MN times the
verage value of f(x, y).

Evenif f(x, y) isreal, its transform in general is complex. The principal method
- of visually analyzing a transform is to compute its spectrum [i.e., the magnitude of
(1, v)] and display it as an image. Letting R(u, v) and / (u, v) represent the real
~and imaginary components of F(u, v), the Fourier spectrum is defined as

[F (1, v)| = [R¥(u, v) + I*(u, v)]¥2

'Fq

The phase angle of the transform is defined as

)]

d(u,v) = tan‘{R(u’ o)

- The preceding two functions can be used to represent F(u, v) in the familiar
; polar representation of a complex quantity:
F(u,v) = [F(u, v)le 7
* . The power spectrum is defined as the square of the magnitude:
| P(u.v) = [F(u,v)*
= R¥u,v) + I*(u,v)

- For Purposes of visualization it typically is immaterial whether we view
L IF)| or P(u, v).

109

110

a.

b:

FIGURE 4.1

(a) Fourier
spectrum showing
back-to-back half
periods in the
interval

[0,M - 1].

(b) Centered
spectrum in the
same interval,
obtained by
multiplying f(x)
by (—1)* prior to
computing the
Fourier
transform.

Chapter 4 @ Frequency Domain Processing

If f(x,y) is real, its Fourier transform is conjugate symmetric about the:
origin; that is,

which implies that the Fourier spectrum also is symmetric about the origin:

It can be shown by direct substitution into the equation for F(u, v) that
F(u,

In other words, the DFT is infinitely periodic in both the u and v direction
with the periodicity determined by M and N. Periodicity is also a property of:
the inverse DFT:

f(xy)

That is, an image obtained by taking the inverse Fourier transform is also inf
nitely periodic. This is a frequent source of confusion because it is not atall i
tuitive that images resulting from taking the inverse Fourier transform shoul
turn out to be periodic. It helps to remember that this is simply a mathematic
property of the DFT and its inverse. Keep in mind also that DFT implement
tions compute only one period, so we work with arrays of size M X N.

The periodicity issue becomes important when we consider ~ow DFT data 1
late to the periods of the transform. For instance, Fig. 4.1(a) shows the spectrum
of a one-dimensional transform, F{u). In this case, the periodicity expression b
comes F(u) =
also, because of symmetry, |F(u)| = |F(
that F(u) has a period of length M, and the symmetry property indicates that th
magnitude of the transform is centered on the origin, as Fig. 4.1(a) shows. This fj
ure and the preceding comments demonstrate that the magnitudes of the tran

4.1 & The 2-D Discrete Fourier Transform

m values from M/2 to M — 1 are repetitions of the values in the half period to
the left of the origin. Because the 1-D DFT is implemented for only M points
e, for values of u in the interval [0, M — 1}), it follows that computing the 1-D
+ransform yields two back-to-back half periods in this interval. We are interested
| obtaining one full, properly ordered period in the interval [0, M ~ 1]. Itis not
difficult to show (Gonzalez and Woods [2002]) that the desired period is obtained
multiplying f(x) by (—1)” prior to computing the transform. Basically, what
is.does is move the origin of the transform to the point u = M /2, as Fig. 4.1(b)
'hows Now, the value of the spectrum at u = 0 in Fig. 4.1(b) corresponds to
—M/2)| in Fig. 4.1(a). Similarly, the values at |[F(M/2)| and |F(M — 1)| in

> 4.1(b) correspond to |F(0)| and |F(M/2 — 1)| in Fig. 4.1(a).

similar situation exists with two-dimensional functions. Computing the 2-D
FT now yields transform points in the rectangular interval shown in Fig. 4.2(a),
ere the shaded area indicates values of F(u, v) obtained by implementing the
D Fourier transform equation defined at the beginning of this section. The
ed rectangles are periodic repetitions, as in Fig. 4.1(a). The shaded region
ws that the values of F(u, v) now encompass four back-to-back quarter peri-
that meet at the point shown in Fig. 4.2(a). Visual analysis of the spectrum is
Imphﬁed by moving the values at the origin of the transform to the center of the
equency rectangle. This can be accomplished by multiplying f(x, y) by (~ 1)+
or to computing the 2-D Fourier transform. The periods then would align as
own in Fig. 4.2(b). As in the previous discussion for 1-D functions, the value of
spectrum at (M/2, N/2) in Fig. 42(b) is the same as its value at (0,0) in
g 4.2(a), and the value at (0,0) in Fig. 4.2(b) is the same as the value at
/2,—N/2) in Fig. 4.2(a). Similarly, the value at (M — 1,N — 1) in
2. 4. 2(b) is the same as the value at (M/2 — 1, N/2 — 1) in Fig. 4.2(a).

F(u,v) = F'(—u, —v)

|F(u, v)| = [F(=u, —v)|

v) = Flu+ M,v) = Fluyv + N) = F(u+ M,v + N)

=flx+M,y)=f(x,y + N) = f(x+ M,y + N)

~—

F(u + M), from which it follows that |F(u)] = |F(u + M
—u)|. The periodicity property indicat

!

| I

N2-11 N-1 |

0 N ~ !

IF ()l v

1

I

I

4

l

i

!

o * u t

Mz 0 miz- 1—/ \—M/z M—/’ LM :Four back-to-back ! !
One period (M samples) ! periods meet here H
- U :
|

IF) i1 = Periods of the 2-D DFT.

[:l = M X N data array resulting from
the computation of F(u, v).

FIGURE 4.2 (a) M X N Fourier spectrum (shaded), showing four back-to-back quarter
3 Tiods contained in the spectrum data. (b) Spectrum obtained by multiplying f(x, y) by

—

S M2

T LM -1
}«——One period (M samples)—-‘

s) **¥ prior to computing the Fourier transform. Only one period is shown shaded because
18 1S the data that would be obtained by an implementation of the equation for F(u, v) .

111

112 Chapter 4 m Frequency Domain Processing

- Eftsnift

The preceding discussion for centering the transform by multiplying f(x, y)
by (—1)**? is an important concept that is included here for completeness,
When working in MATLAB, the approach is to compute the transform without
multiplication by (—1)*"* and then to rearrange the data afterwards using func-
tion fftshift. This function and its use are discussed in the following section;

Computing and Visualizing the 2-D DFT in MATLAB

The DFT and its inverse are obtained in practice using a fast Fourier trans-
form (FFT) algorithm. The FFT of an M X N image array f is obtained in the
toolbox with function fft2, which has the simple syntax:

F = fft2(f)

This function returns a Fourier transform that is also of size M X N, with the.
data arranged in the form shown in Fig. 4.2(a); that is, with the origin of
the data at the top left, and with four quarter periods meeting at the center
of the frequency rectangle. :

As explained in Section 4.3.1, it is necessary to pad the input image with zeros
when the Fourier transform is used for filtering. In this case, the syntax becomes:

F = fft2(f, P, Q)

With this syntax, fft2 pads the input with the required number of zeros s
that the resulting function is of size P X Q.
The Fourier spectrum is obtained by using function abs:

S = abs(F)

which computes the magnitude (square root of the sum of the squares of th
real and imaginary parts) of each element of the array.

Visual analysis of the spectrum by displaying it as an image is an importan
aspect of working in the frequency domain. As an illustration, consider th
simple image, f, in Fig. 4.3(a). We compute its Fourier transform and displa;
the spectrum using the following sequence of steps:

vhere F is the transform computed using fft2 and Fc is the centered trans-
orm. Function fftshift operates by swapping quadrants of F. For example, if
[1 2; 38 4],fftshift(a) = {4 3; 2 1].When applied to a transform
fte.r it has been computed, the net result of using fftshift is the same as if
the input image had been multiplied by (—1)**” prior to computing the trans-
‘for{n. Note, however, that the two processes are not interchangeable. That is
etting (-] denote the Fourier transform of the argument, we have tha£
SU=1)f(x,)] is equal to fftshift(fft2(f)), but this quantity is not
:equal to frt2(fftshift(f)).
In the present example, typing

>> F = Tft2(f);
>> § = abs(F);
>> imshow(S, [])

—

Figure 4.3(b) shows the result. The four bright spots in the corners of th
image are due to the periodicity property mentioned in the previous section

IPT function fftshift can be used to move the origin of the transform t
the center of the frequency rectangle. The syntax is

> lfc = fftshift(F);
> imshow(abs(Fc), [1)

.Elded the ima (53 i I i 4 (5] € i i \4 i i i
- g m lg. .3 C). Th I‘eSult Of t
' i ' () cen erlng 1S € ldent n thlS

4.2 @ Computing and Visualizing the 2-D DFT in MATLAB 113

ah

c.d

FIGURE 4.3

(a) A simple image.
(b) Fourier
spectrum.

(c) Centered
spectrum.

(d) Spectrum
visually enhanced
by alog
transformation.

114 Chapter 4 ® Frequency Domain Processing

= floor(A)
rounds each element

of A to the nearest
integer less than or
equal 10 its value.
Function ceil
rounds to the nearest
integer greater than
or equal to the value
of each element of A.

Ciffte

Although the shift was accomplished as expected, the dynamic range of the
values in this spectrum is so large (0 to 204000) compared to the 8 bits of the
display that the bright values in the center dominate the result. As discussed in
Section 3.2.2, this difficulty is handled via a log transformation. Thus, the
commands

om round-off errors that are characteristic of floating point computatjons.

ns can be combined:
>> 82 = log(1 + abs(Fc)); >.f = real(ifft2(F));
>> imshow(S2, [1)
s in the forward case, this function has the alternate format 1fft2(F, P, Q),
which pads F with zeros so that its size is P X before computing the inverse.
is option is not used in the book.

resulted in Fig. 4.3(d). The increase in visual detail is evident in this image.
Function ifftshift reverses the centering. Its syntax is

F = ifftshift(Fc))
%1 Filtering in the Frequency Domain
This function can be used also to convert a function that is initially centered on
a rectangle to a function whose center is at the top, left corner of the rectang
We make use of this property in Section 4.4.

While on the subject of centering, keep in mind that the center of the fr
quency rectangle is at (M /2, N/2) if the variables u and v run from O to M — 1
and N — 1, respectively. For example, the center of an 8 X 8 frequency square
is at point (4,4), which is the 5th point along each axis, counting up from (0, ;
If, as in MATLADB, the variables run from 1 to M and 1 to NV, respectively, then
the center of the square is at [(M/2) + 1, (N/2) + 1]. In the case of our
8 X 8 example, the center would be at point (5, 5), counting up from (1,
Obviously, the two centers are the same point, but this can be a source of cons
fusion when deciding how to specify the location of DFT centers in MATLAB
computations.

If M and N are odd, the center for MATLAB computations is obtained by
rounding M/2 and N/2 down to the closest integer. The rest of the analysis is
as in the previous paragraph. For example, the center of a 7 X 7 region is at
(3,3) if we count up from (0,0) and at (4,4) if we count up from (1, 1). In el
ther case, the center is the fourth point from the origin. If only one of the di-
mensions is odd, the center along that dimension is similarly obtained by
rounding down in the manner just explamed Using MATLAB’s function
floor, and keeping in mind that the origin is at (1, 1), the center of the fre-
quency rectangle for MATLAB computations is at

ltering in the frequency domain is quite simple conceptually. In this section
e give a brief overview of the concepts involved in frequency domain filter-
g and its implementation in MATLAB.

3.1 Fundamental Concepts

e foundation for linear filtering in both the spatial and frequency domains is
e-convolution theorem, which may be written as’

F(x,y) #h(h, y) & H(u, v)F(u, v)

d, conversely,
f(x, y)h(h, y) & H(u,v) * G(u, v)

ere, the symbol “*” indicates convolution of the two functions, and the ex-
pressions on the sides of the double arrow constitute a Fourier transform pair.
For example, the first expression indicates that convolution of two spatial
f}lnctions can be obtained by computing the inverse Fourier transform of the
product of the Fourier transforms of the two functions. Conversely, the for-
ward Fourier transform of the convolution of two spatial functions gives the
product of the transforms of the two functions. Similar comments apply to the
second expression.

In terms of filtering, we are interested in the first of the two previous ex-
Pressions. Filtering in the spatial domain consists of convolving an image
f(x, y) with a filter mask, /(x, y). Linear spatial convolution is precisely as ex-
Plained in Section 3.4.1. According to the convolution theorem, we can obtain
the same result in the frequency domain by multiplying F(u, v) by H(u, v),
the Fourier transform of the spatial filter. It is customary to refer to H (i, v) as
the filter transfer function.

Basically, the idea in frequency domain filtering is to select a filter transfer
nction that modifies F(u, v) in a specified manner. For example, the filter in

{floor(M/2) + 1, floor(N/2) + 1]

The center given by this expression is valid both for odd and even values of M

and N.
Finally, we point out that the inverse Fourier transform is computed using
function 1fft2, which has the basic syntax

f = ifft2(F)

For digital images, these expressions are strictly valid only when f(x. y) and /1(x, v) have been proper-

where F is the Fourier transform and f is the resulting image. If the input used
Y:Padded with zeros. as discussed later in this section,

to compute F is real, the inverse in theory should be real. In practice, however

¢ output of 1fft2 often has very small imaginary components resulting

“Thus, it is good practice to extract the real part of the result after computing
e inverse to obtain an image consisting only of real values. The two opera-

4.3 @ Filtering in the Frequency Domain 115

real(arg) and
imag(arg) extract
the real and imagi-
nary paris of arg,
respectively.

116 Chapter 4 @ Frequency Domain Processing

ab

FIGURE 4.4
Transfer functions
of (a) a centered
lowpass filter, and
(b) the format
used for DFT
filtering. Note
that these are
frequency domain
filters.

4.3 % Filtering in the Frequency Domain 117

/The following function, called paddedsize, computes the minimum even’
values of P and Q required to satisfy the preceding equations. It also has an
.;option to pad the inputs to form square images of size equal to the nearest in-
teger power of 2. Execution time of FFT algorithms depends roughly on the
sumber of prime factors in P and Q. These algorithms generally are faster
‘when P and Q are powers of 2 than when P and Q are prime. In practice, it is
advisable to work with square images and filters so that filtering is the same in
both directions. Function paddedsize provides the flexibility to do this via the
‘choice of the input parameters.

In function paddedsize, the vectors AB, CD, and PQ have elements [A B],
: {€.D],and [P Q], respectively, where these quantities are as defined above.
Fig. 4.4(a) has a transfer function that, when multiplied by a centered F(u, v), :
attenuates the high-frequency components of F(u, v), while leaving the low
frequencies relatively unchanged. Filters with this characteristic are called
lowpass filters. As discussed in Section 4.5.2, the net result of lowpass filtering
is image blurring (smoothing). Figure 4.4(b) shows the same filter after it was

pction PQ = paddedsize(AB, CD, PARAM) paddedsize
ADDEDSIZE Computes padded sizes useful for FFT-based filtering. i
.. PQ = PADDEDSIZE(AB), where AB is a two-element size vector,

computes the two-element size vector PQ = 2*AB.

processed with fftshift. This is the filter format used most frequently in the
book when dealing with frequency domain filtering in which the Fourier trans:
form of the input is not centered.

Based on the convolution theorem, we know that to obtain the correspond:
ing filtered image in the spatial domain we simply compute the inverse Fourier
transform of the product H (u, v)F(u, v). It is important to keep in mind tha

PQ = PADDEDSIZE(AB, 'PWR2') computes the vector PQ such that

PQ(1) = PQ(2) = 2"nextpow2(2*m), where m is MAX(AB).

PQ = PADDEDSIZE(AB, CD), where AB and CD are two-element size
vectors, computes the two-element size vector PQ. The elements
of PQ are the smallest even integers greater than or equal to

the process just described is identical to what we would obtain by using convo- AB +CD~ 1.
lution in the spatial domain, as long as the filter mask, A(x, y), is the inverse
Fourier transtorm of H (u, v). In practice, spatial convolution generally is sim-
plified by using small masks that attempt to capture the salient features of
their frequency domain counterparts.

As noted in Section 4.1, images and their transforms are automatical
considered periodic if we elect to work with DFTs to implement filtering. It is
not difficult to visualize that convolving periodic functions can cause interfe
ence between adjacent periods if the periods are close with respect to the du:
ration of the nonzero parts of the functions. This interference, called:
wraparound error, can be avoided by padding the functions with zeros, in the;
following manner.

Assume that functions f(x, y) and A(x, y) are of size 4 X B and C X
respectively. We form two extended (padded) functions, both of size P X Q
appending zeros to f and g. It can be shown that wraparound error is avoide
by choosing

PQ = PADDEDSIZE(AB, CD, 'PWR2') computes the vector PQ such that
PQ(1) = PQ(2) = 2*nextpow2(2*m), where m is MAX([AB CD]).

nargin ==

PQ = 2*AB;

1seif nargin == 2 & ~ischar(CD)
PQ = AB + CD - 1;

PQ = 2 * ceil(PQ / 2);

elseif nargin ==

m = max(AB); % Maximum dimension.

% Find power-of-2 at least twice m.
P = 2*nextpow2(2*m);

p = nextpow2(n)
returns the smallest
integer power of 2

M = max([AB CDJ]); % Maximum dimension.
Pi= 2*nextpow2(2*m);

P=zA+C-1 Pa =[P, Py; that is greater than or
e equal to the absolute
and eérror{'Wrong number of inputs.') value of n.
Q=B+D-1)

Most of the work in this chapter deals with functions of the same size, M X N
in which case we use the following padding values: P = 2M — 1 an
Q=2N -1

tis Customary to work with arrays of even dimensions to speed-up FFT computations.

118

Chupter 4 % Frequency Domain Processing

With PQ thus computed using function paddedsize, we use the followip
syntax for fft2 to compute the FFT using zero padding:
= fft2(f, PQ(1), PQ(2))

This syntax simply appends enough zeros to T such that the resulting image'
of size PQ(1) x PQ(2), and then computes the FFT as previously describe

Note that when using padding the filter function in the frequency domain mug
be of size PQ(1) x PQ(2) also.

& The image, f, in Fig. 4.5(a) is used in this example to illustrate the diffe
ence between filtering with and without padding. In the following discussio,
we use function lpfilter to generate a Gaussian lowpass filters [similar
Fig. 4.4(b)] with a specified value of sigma (sig). This function is discussed
detail in Section 4.5.2, but the syntax is straightforward, so we use it here ar
defer further explanation of 1pfilter to that section.

The following commands perform filtering without padding:

EXAMPLE 4.1:
Effects of filtering
with and without
padding.

>> [M, N] = size(f);

>> F = fft2(f); .
>> sig = 10; .
>> H = lpfilter('gaussian’', M, N, sig);

>> G = H.*F;
>> g real (1fft2(G));
>> imshow(g, [1)

Figure 4.5(b) shows image g. As expected, the image is blurred, but nof
that the vertical edges are not. The reason can be explained with the aid o
Fig. 4.6(a), which shows graphically the implied periodicity in DFT compu

03, The thin white lines between the images are included for convenience in

ing. They are not part of the data. The dashed lines are used to designate
bitrarily) the M X N i image processed by fft2. Imagine convolving a blur-
filter with this infinite periodic sequence. It is clear that when the filter is
sing through the top of the dashed image it will encompass part of the
age itself and also the bottom part of the periodic component right above it.
us; when a light and a dark region reside under the filter, the result will be
mid-gray, blurred output. This is precisely what the top of the image in

abc
FIGURE 4.5 (a) A simple image of size 256 % 256. (b) Image lowpass-filtered in the frequency domain'Wi
out padding. (¢) Image lowpass-filtered in the frequency domain with padding. Compare the light portiont
the vertical edges in (b) and (c).

4.3 = Filtering in the Frequency Domain

119

a
b

FIGURE 4.6

(a) Implied,
infinite periodic
sequence of the
image in

Fig. 4.5(a). The
dashed region
represents the
data processed by
fft2. (b) The
same periodic
sequence after
padding with Os.
The thin white
lines in both
images are shown
for convenience
in viewing; they
are not part

of the data,

120

FIGURE 4.7 Full
padded image
resulting from
ifft2 after
tiltering. This
image is of size

512 X 512 pixels.

Chopter 4 @ Frequency Domain Processing

Recall from Section 3.4.1 that this call to function imfilter pads the border

Fig. 4.5(b) shows. On the other hand, when the filter is on the light sides of th,
of the image with Os by default. "

dashed image, it will encounter an identical region on the periodic componen

Since the average of a constant region is the same constant, there is no bly

ring in this part of the result. Other parts of the image in Fig. 4.5(b) are ex

plained in a similar manner. '
Consider now filtering with padding:

1.2 Basic Steps in DFT Filtering
e discussion in the previous section can be summarized in the following

p-by-step procedure involving MATLAB functions, where f is the image to
e filtered, g is the result, and it is assumed that the filter function H (i, v) is of

>> PQ = paddedsize(size(f)); : . .)
>> Fp = £ft2(f, PQ(1), PQ(2)); % Compute the FFT with padding e same size as the padded image:

>> Hp = lpfilter('gaussian', PQ(1), PQ(2), 2*sig);]
>> Gp = Hp.*Fp; Obtain the padding parameters using function paddedsize:
>> gp = PQ = paddedsize(size(f));

real (ifft2(Gp));
>> gpc = gp(1:size(f,1), 1:size(f,2));

>> imshow(gp, []) “Obtain the Fourier transform with padding:

-F = fft2(f, PQ(1), PQ(2));

Generate a filter function, H, of size PQ(1) x PQ(2) using any of the
~methods discussed in the remainder of this chapter. The filter must be in
- the format shown in Fig. 4.4(b). If it is centered instead, as in Fig. 4.4(a),

letH = fftshift(H) before using the filter.

where we used 2*sig because the filter size is now twice the size of the filte
used without padding.

Figure 4.7 shows the full, padded result, gp. The final result in Fig. 4.5(c) wa
obtained by cropping Fig. 4.7 to the original image size (see the next-to-las
command above). This result can be explained with the aid of Fig. 4.6(b)
which shows the dashed image padded with zeros as it would be set up inter:
nally in fft2(f, PQ(1), PQ(2)) prior to computing the transform. The im:
plied periodicity is as explained earlier. The image now has a uniform black
border all around it, so convolving a smoothing filter with this infinite se:
quence would show a gray blur in the light edges of the images. A similar resuft
would be obtained by performing the following spatial filtering,

v Multiply the transform by the filter:
G = H.*F;

5.. Obtain the real part of the inverse FFT of G:
g = real(ifft2(G));

6. Crop the top, left rectangle to the original size:
g = g(l:size(f, 1), 1:size(f, 2));

>> h = fspecial('gaussian', 15, 7);

>> gs = imfilter(f, h); This filtering procedure is summarized in Fig. 4.8. The preprocessing stage

light encompass procedures such as determining image size, obtaining the
adding parameters, and generating a filter. Postprocessing entails computing
he real part of the result, cropping the image, and converting it to class uint8
Tuint16 for storage.

Frequency domain filtering operations

. Filter Inverse
Fourier) g
function Fourier
transform
H(u,v) transform

F(u,v) H(u, v)F(u,v)

_ Pre-. Post-

Processing processing 4
8(x,y)
Filtered

image

4.3 # Filtering in the Frequency Domain

FIGURE 4.8
Basic steps for
filtering in the
frequency
domain.

121

122 Chapter 4 @ Frequency Domain Processing

dftfilt

bt s

The filter function H({u, v) in Fig. 4.8 multiplies both the real and imaginary;
parts of F (1, v). If H(u, v) is real, then the phase of the result is not changed,
fact that can be seen in the phase equation (Section 4.1) by noting that, if the myj
tipliers of the real and imaginary parts are equal, they cancel out, leaving th
phase angle unchanged. Filters that operate in this manner are called zero-phase
shift filters. These are the only types of linear filters considered in this chapter,

It is well known from linear system theory that, under certain mild cond;
tions, inputting an impulse into a linear system completely characterizes th
system. When working with finite, discrete data as we do in this book, the re
sponse of a linear system, including the response to an impulse, also is finite. I
the linear system is just a spatial filter, then we can completely determine th
filter simply by observing its response to an impulse. A filter determined in thj
manner is called a finite-impulse-response (FIR) filter. All the linear spatial fil

ters in this book are FIR filters.

an
J

+.3.3 An M-function for Filtering in the Frequency Domain

The sequence of filtering steps described in the previous section is used
throughout this chapter and parts of the next, so it will be convenient to have
available an M-function that accepts as inputs an image and a filter function
handles all the filtering details, and outputs the filtered, cropped image. The

following function does this.

function g =

O o of o QP J° &P o°

%
g
%

g

Techniques for generating frequency-domain filters are discussed in the fol-

Obtaln the FFT of the padded input.
= fft2(f, size(H,

erform filtering.

n

cr

DFTFILT assumes that F is real and that H is a real, uncentered,
circularly-symmetric filter function. :

dftfilt(f, H)
SDFTFILT Performs frequency domain filtering.

G = DFTFILT(F, H) filters F in the frequency domain using the
filter transfer function H. The output, G, is the filtered
image, which has the same size as F. DFTFILT automatically pads
F to be the same size as H. Function PADDEDSIZE can be used

to determine an appropriate size for H.

real (1fft2(H.*F))

op to original size.

g(1:size(f,

1), 1isize(f, 2));

lowing three sections.

o
3
In general, filtering in the spatial domain is more efficient computationally,
than frequency domain filtering when the filters are small. The definition of:
small is a complex question whose answer depends on such factors as the:

Obtaining Frequency Domain Filters from Spatial Filters

1), size(H, 2));

o SR

schine and algorithms used and on issues such the sizes of buffers, how well
mplex data are handled, and a host of other factors beyond the scope of this
scussion. A comparison by Brigham [1988] using 1-D functions shows that
filtering using an FFT algorithm can be faster than a spatial implementation
hen the functions have on the order of 32 points, so the numbers in question
e not large. Thus, it is useful to know how to convert a spatial filter into an
equivalent frequency domain filter in order to obtain meaningful comparisons
between the two approaches.

‘One obvious approach for generating a frequency domain filter H, that
rresponds to a given spatial filter, h, is to let H = fft2(h, PQ(1), PQ(2)),
where the values of vector PQ depend on the size of the image we want to fil-
ter, as discussed in the last section. However, we are interested in this section
) two major topics: (1) how to convert spatial filters into-equivalent fre-
quency domain filters; and (2) how to compare the results between spatial
ymain filtering using function imfilter, and frequency domain filtering
using the techniques discussed in the previous section. Because, as explained
in‘detail in Section 3.4.1, imfilter uses correlation and the origin of the fil-
teris considered at its center, a certain amount of data preprocessing is re-
quired to make the two approaches equivalent. The toolbox provides a
function, freqz2, that does precisely this and outputs the corresponding fil-
rin the frequency domain.

‘Function freqz2 computes the frequency response of FIR filters, which, as
entioned at the end of Section 4.3.2, are the only linear filters considered in
this book. The result is the desired filter in the frequency domain. The syntax
interest in the present discussion is

H = freqz2(h, R, C)

where h is a 2-D spatial filter and H is the corresponding 2-D frequency do-
main filter. Here, R is the number of rows, and C the number of columns that
we wish filter H to have. Generally,we letR = PQ(1) and C = PQ(2),asex-
plained in Section 4.3.1, If freqz2 is written without an output argument, the
absolute value of H is displayed on the MATLAB desktop as a 3-D perspec-
tive plot. The mechanics involved in using function freqz2 are easily ex-
lained by an example.

B Consider the i image, ¥, of size 600 X 600 pixels shown in Fig. 4.9(a). In
what follows, we generate the frequency domain filter, H, corresponding to
the Sobel spatial filter that enhances vertical edges (see Table 3.4). We then
fompare the result of filtering f in the spatial domain with the Sobel mask
\using imfilter) against the result obtained by performing the equivalent
Process in the frequency domain. In practice, filtering with a small filter like
2 Sobel mask would be implemented directly in the spatial domain, as men-
ned earlier. However, we selected this filter for demonstration purposes
Decause its coefficients are simple and because the results of filtering are in-
Uitive and straightforward to compare. Larger spatial filters are handled in
fXactly the same manner.

4.4 % Obtaining Frequency Domain Filters from Spatial Filters 123

EXAMPLE 4.2
A comparison of
filtering in the
spatial and
frequency
domains.

124

ab

FIGURE 4.9

(a) A gray-scale
image. (b) Its

Fourier spectrum.

Chapter 4 % Frequency Domain Processing

>> F = fft2(f);

>> § = fftshift(log(1 + abs(F)));
>> S gscale(S),;

>> imshow(S)

I

Next, we generate the spatial filter using function fspecial:

h = fspecial('sobel')’
h = :
1 0 -1 imshow(abs(H), [])
0 -2 figure, imshow(abs(H1), [])
10 -

‘Next, we generate the filtered images. In the spatial domain we use
To view a plot of the corresponding frequency domain filter we type -

2:gs = imfilter(double(f), h);
>> freqz2(h) '

Which pads the border of the image with Os by default. The filtered image ob-
Figure 4.10(a) shows the result, with the axes suppressed (techniques for o : tained by frequency domain processing is given by
taining perspective plots are discussed in Section 4.5.3). The filter itself was o :

tained using the commands: T = dftfilt(f, H1);
>> PQ = paddedsize(size(f)); Figures 4.11(a) and (b) show the result of the commands:
>> H = freqz2(h, PQ(1), PQ(2));
>> H1 = ifftshift(H); 7 imshow(gs, [1)

> figure, imshow(gf, [1)
where, as noted earlier, ifftshift is needed to rearrange the data so that the
origin is at the top, left of the frequency rectangle. Figure 4.10(b) shows a plO\
of abs (H1). Figures 4.10(c) and (d) show the absolute values of H and H1 i

image form, displayed with the commands he scaled imshow command. As discussed in Sections 6.6.1 and 10.1.3, the

4.4 @ Obtaining Frequency Domain Filters from Spatial Filters

The gray tonality in the images is due to the fact that both gs and gf have neg-
Ve values, which causes the average value of the images to be increased by

125

ab
cd

FIGURE 4.10

(a) Absolute
value of the
frequency

domain filter
corresponding to
a vertical Sobel
mask. (b) The
same filter after
processing with
function
fftshift. Figures
(c) and (d) are the
filters in (a) and
(b) shown as
images.

We use double(f)
here so that
imfilter will pro-
duce an outpur of
class double, as ex-
plained in Section
3.4.1. The double
format is required
for some of the oper-
ations that follow.

126

ab
cd

FIGURE 4.11

(a) Result of
filtering

Fig. 4.9(a) in the
spatial domain
with a vertical
Sobel mask.

(b) Result
obtained in the
frequency domain
using the filter
shown in

Fig. 4.10(b).
Figures (c) and
(d) are the
absolute values of
(a) and (b),
respectively.

Chapter 4 # Frequency Domain Processing

The images obtained using spatial and frequency domain filtering are for all
ractical purposes identical, a fact that we confirm by computing their difference:

> d = abs(gs - gf);

he maximum and minimum differences are

Sobel mask, h, generated above is used to detect vertical edges in an image
using the absolute value of the response. Thus, it is more relevant to show the
absolute values of the images just computed. Figures 4.11(c) and (d) show’
the images obtained using the commands

The approach just explained can be used to implement in the frequency do-
main the spatial filtering approach discussed in Sections 3.4.1 and 3.5.1, as well
as any other FIR spatial filter of arbitrary size. w

>> figure, imshow(abs(gs), [1)
>> figure, imshow(abs(gf), [1) 24 Generating Filters Directly in the Frequency Domain

In this section, we illustrate how to implement filter functions directly in the
frequency domain. We focus on circularly symmetric filters that are specified
s various functions of distance from the origin of the transform. The M-
functions developed to implement these filters are a foundation that is easily
xtendable to other functions within the same framework. We begin by imple-
Menting several well-known smoothing (lowpass) filters. Then, we show how
t_ use several of MATLAB’s wireframe and surface plotting capabilities that
aid in filter visualization. We conclude the section with a brief discussion of

sharpening (highpass) filters.

The edges can be seen more clearly by creating a thresholded binary:
image: ;

>> figure, imshow(abs(gs) > 0.2*abs{max(gs{:))))
>> figure, imshow(abs(gf) > 0.2*abs(max(gf(:))))

where the 0.2 multiplier was selected (arbitrarily) to show only the edges withé
strength greater than 20% of the maximum values of gs and gf. Figures 4.12(a
and (b) show the results.

4.5 ® Generating Filters Directly in the Frequency Domain

127

ab

FIGURE 4.12
Thresholded
versions of
Figs.4.11(c) and
(d), respectively, to
show the principal
edges more clearly.

128 Chapter 4 - Frequency Domain Processing

dftuv
e

Function find is
discussed in Section
52.2.

EXAMPLE 4.3
Using function
dftuv.

ote that the distance is 0 at the top, left, and the larger distances are in the
-center of the frequency rectangle, following the basic format explained in

ig. 4.2(a). We can use function fftshift to obtain the distances with respect
“to the center of the frequency rectangle,

4,5.1 Creating Meshgrid Arrays for Use in Implementing Filters
in the Frequency Domain

Central to the M-functions in the following discussion is the need to comput
distance functions from any point to a specified point in the frequency rectangle
Because FFT computations in MATLAB assume that the origin of the trans
form is at the top, left of the frequency rectangle, our distance computations ar
with respect to that point. The data can be rearranged for visualization purpose ans

> fftshift(D)

(so that the value at the origin is translated to the center of the frequency rec 20 17 16 17 20
tangle) by using function fftshift. 13 10 9 10 13

The following M-function, which we call dftuv, provides the necessary 8 5 4 5 8
meshgrid array for use in distance computations and other similar applica. 5 2 1 2 5
tions. (See Section 2.10.4 for an explanation of function meshgrid used in th 4 1 0 1 4
following code.). The meshgrid arrays generated by dftuv are in the order re 5 2 1 2 5
quired for processing with fft2 or ifft2, so no rearranging of the data i 13 1(5) g 18 13

required.

e distance is now 0 at coordinates (5, 3), and the array is symmetric about

function [U, V] = dftuv(M, N) hi point
S .
b

%DFTUV Computes meshgrid frequency matrices.
[U, V] = DFTUV(M, N) computes meshgrid frequency matrices U and

o

5.2 Lowpass Frequency Domain Filters

% V. U and V are useful for computing frequency-domain filter

% functions that can be used with DFTFILT. U and V are both Anideal lowpass filter (ILPF) has the transfer function

% M-by-N.

% Set up range of variables. H(u,v) = {l ?fD(u, v) = Dy

u=0:(M-1); 0 ifD(u,v) > D,

vE0r(N - 1); tere Dy is a specified nonnegative number and D(i, v) is the distance from

ivnbt.(u, v) to the center of the filter. The locus of points for which D(u, v) = D
acircle. Keeping in mind that filter /' multiplies the Fourier transform of an
dge, we see that an ideal filter “cuts off” (multiplies by 0) all components of F
_ES}de the circle and leaves unchanged (multiplies by 1) all components on, or
H}slqe, the circle. Although this filter is not realizable in analog form using el,ec-
tronic components, it certainly can be simulated in a computer using the preced-
ng transfer function. The properties of ideal filters often are useful in explaining
henomena such as wraparound error.

~A Butterworth lowpass filter (BLPF) of order n, with a cutoff frequency at a
distance D, from the origin, has the transfer function

_ 1
1+ [D(u, v)/ Do

% Compute the indices for use in meshgrid.
idx = find(u > M/2);

u(idx) = u(idx) — M;

idy = find(v > N/2);

v(idy) = v(idy) - N;

% Compute the meshgrid arrays.

[V, U] = meshgrid(v, u); "

#® As an illustration, the following commands compute the distance squared
from every point in a rectangle of size 8 X 5 to the origin of the rectangle:

>> [U, V] = dftuv(8, 5);
>> D = U."2 +V,"2
D =

H(u,v)

‘lﬁilke the ILPF,. the BI.,PF transfer function does not have a sharp disconti-

Cug at Dy. For filters with smooth transfer functions, it is customary to define

. VOff'frequeI?cy locus at points for which H (u, v) is down to a specified frac-

! ;/1 of its maximum value. In the preceding equation, H (i, v) = 0.5 (down
o from its maximum value of 1) when D(u,v) = Dy.

The transfer function of a Gaussian lowpass filter (GLPF) is given by

H(u’ 1)) - e—DZ(u. u)/2cr2

—_
- OO L -+0O
s
~
n
o
N
(=]

—_
~

4.5 8 Generating Filters Directly in the Frequency Domain

129

130 Chapter 4 “# Frequency Domain Processing 4.5 @ Generating Filters Directly in the Frequency Domain 131

where o is the standard deviation. By letting o = D, we obtain the following We can view the filter as an image [Fig. 4.13(b)] by typing

expression in terms of the cutoff parameter Dy:
s> figure, imshow(fftshift(H), [1)

H(u,v) = o~ D 2)208
When D(u, v) = Dy the filter is down to 0.607 of its maximum value of 1. similarly, the spectrum can be displayed as an image [Fig ()] by typing

55 figure, imshow(log(1 + abs(fftshift(F))), [1)
EXAMPLE 4.4: # As an illustration, we apply a Gaussian lowpass filter to the 500 X 500-pixel
Lowpass filtering. image, f,in Fig. 4.13(a). We use a value of D, equal to 5% of the padded image

width. With reference to the filtering steps discussed in Section 4.3.2 we have

ally, Fig. 4.13(d) shows the output image, displayed using the command

> figure, imshow(g, [1)
>> PQ = paddedsize(size(f));

>> [U, V] = dftuv(PQ(1), PQ(2));
>> DO = 0.05*PQ(2);

expected, this image is a blurred version of the original.

>> F = fft2(f, PQ(1), PQ(2)); The following function generates the transfer functions of all the lowpass
>> H = exp(—(U."2 + V.”2)/(2*(D0"2))); ilters discussed in this section.
>> g = dftfilt(f, H);

unction [H, D] = lpfilter(type, M, N, DO, n) 1pfilter
LPFILTER Computes frequency domain lowpass filters.

H = LPFILTER(TYPE, M, N, DO, n) creates the transfer function of
a lowpass filter, H, of the specified TYPE and size (M-by-N), To
view the filter as an image or mesh plot, it should be centered
using H = fftshift(H).

ab
cd

FIGURE 4.13 -nm Ill.

Lowpass filtering.
(a) Original

) Valid values for TYPE, DO, and n are:
image.

f:&,gg??ﬂf; ® 'ideal’ Ideal lowpass filter with cutoff frequency DO. n need
shown as an not be supplied. DO must be positive.

image. :

(c) Spectrum of "btw' Butterworth lowpass filter of order n, and cutoff

(a). (d) Processed DO. The default value for n is 1.0. DO must be

image. positive.

'‘gaussian’ Gaussian lowpass filter with cutoff (standard
deviation) DO. n need not be supplied. DO must be
positive,.

aaaaaaadd

:96 Use function dftuv to set up the meshgrid arrays needed for
% computing the required distances.
U, V] = dftuv(M, N);

‘%VCompute the distances D(U, V).
D= sqrt(U.~2 + V.*2);

% Begin filter computations.
switch type
tase 'ideal’
H = double(D <= DO);
case 'btw'
if nargin ==
n=1j;

i

»aaad gi“vgi’ gi' -

132

Chapter 4 @ Frequency Domain Processing

end

H=1./(1+ (D./D0).*(2*n));
case 'gaussian' :

H = exp(—(D."2)./(2*(D0"2)));
otherwise

error('Unknown filter type.'}
end e SO

Function Ipfilter is used again in Section 4.6 as the basis for generating
highpass filters. ,

4.5.3 Wireframe and Surface Plotting

Plots of functions of one variable were introduced in Section 3.3.1. In the fol-,
lowing discussion we introduce 3-D wireframe and surface plots, which are:
useful for visualizing the transfer functions of 2-D filters. The easiest way to:
draw a wireframe plot of a given 2-D function, H, is to use function mesh, whic
has the basic syntax

mesh (H)

This function draws a wireframe for x = 1:M and y = 1:N, where [M, N}
size(H). Wireframe plots typically are unacceptably dense if M and N ar
large, in which case we plot every kth point using the syntax

mesh(H(1:k:end, 1:k:end))
As a rule of thumb, 40 to 60 subdivisions along each axis usually provide

good balance between resolution and appearance.
MATLAB plots mesh figures in color, by default. The command

colormap([0 0 0])

sets the wireframe to black (we discuss function colormap in Chapter 6)
MATLAB also superimposes a grid and axes on a mesh plot. These can be
turned off using the commands

grid off
axis off

They can be turned back on by replacing off with on in these two statements.
Finally, the viewing point (location of the observer) is controlled by function
view, which has the syntax

view(az, el)

As Fig. 4.14 shows, az and el represent azimuth and elevation angles (in de-
grees), respectively. The arrows indicate positive direction. The default values

W Consider a Gaussian lowpass filter similar to the one used in Example 4.4:

>> H = fftshift(lpfilter('gaussian', 500, 500, 50));

4.5 ® Generating Filters Directly in the Frequency Domain 133

z FIGURE 4.14
Geometry for
function view.

Viewpoint

Center of
plot box

¢az=-37.5 and el = 30, which place the viewer in the quadrant defined by

the —x and —y axes, and looking into the quadrant defined by the positive x

and y axes in Fig. 4.14.
To determine the current viewing geometry, we type

>> [az, el] = view;

To set the viewpoint to the default values, we type

> view(3)

The viewpoint can be modified interactively by clicking on the Rotate 3D

utton in the figure window’s toolbar and then clicking and dragging in the fig-
re window.

-~ As discussed in Chapter 6, it is possible to specify the viewer location in
~Cartesian coordinates, (x, y, z), which is ideal when working with RGB data,
-However, for general plot-viewing purposes, the method just discussed in-

-volves only two parameters and is more intuitive.

EXAMPLE 4.5:
Wireframe
plotting.

. Figure 4.15(a) shows the wireframe plot produced by the commands

>> mesh(H(1:10:500, 1:10:500))

> axis([0 50 0 50 0 1])

Where the axis command is as described in Section 3.3.1, except that it con-

tains a third range for the z axis.

134

cd

FIGURE 4.15

(a) A plot
obtained using
function mesh.
(b) Axes and grid
removed. (c) A
different
perspective view
obtained using
function view.
(d) Another view
obtained using

the same function.

< surf

Chopter 4 ® Frequency Domain Processing

This function produces a plot identical to mesh, with the exception that the
uadrilaterals in the mesh are filled with colors (this is called faceted shading).
o:convert the colors to gray, we use the command

/;"‘:\\\\

R

i
/l/;/ll,l"':::‘:“\‘\\‘ colormap (gray)
I
i ,,0,,':0,'0:0::“8?‘\\\\\‘\\\ ~The axis, grid, and view functions work in the same way as described ear-
SN er for mesh. For example, Fig. 4.16(a) is the result of the following sequence
f commands:
) »H = fftshift(lpfilter('gaussian’, 500, 500, 50));
ﬂ“ surf(H(1:10:500, 1:10:500))
) /”W‘ axis([0 50 0 50 0 1])
/“\\ //”““\\\ >.colormap(gray)
N g grid off; axis off
o
’///l/“““\l\l\‘:\\\ ,//’”‘“‘“h‘ The faceted shading can be smoothed and the mesh lines eliminated by in-
! "“‘“\\\\\\\‘ /! ”‘ { ||\|\\\ rpolation using the command
M,“"\\‘\‘\\‘ﬁ\ shading interp

yping this command at the prompt produced Fig. 4.16(b).

. When the objective is to plot an analytic function of two variables, we use
eshgrid to generate the coordinate values and from these we generate the
black and eliminate the axes and grid by typing screte (sampled) matrix to use in mesh or surf. For example, to plot
¢ function

>> colormap([0 0 0])
>> axis off

>> grid off

fx.y) = xe7)
om —2 to 2 in increments of 0.1 for both x and v, we write

Figure 4.15(b) shows the result. Figure 4.15(c) shows the result of
command

> [Y, X] = meshgrid{(-2:0.1:2, -2:0.1:2);
“Z = X.*exp(—X."2 ~ Y."2);

and then use mesh (Z) or surf(Z) as before. Recall from the discussion in
Section 2.10.4 that that columns (Y) are listed first and rows (X) second in
function meshgrid.

>> view(—-25, 30)

which moved the observer slightly to the right, while leaving the elevation cons
stant. Finally, Fig. 4.15(d) shows the result of leaving the azimuth at —25 and;
setting the elevation to 0:

>> view(-25, 0)
This example shows the significant plotting power of the simple function mesh.

Sometimes it is desirable to plot a function as a surface instead of as a wir
frame. Function surf does this. Its basic syntax is

surf(H)

4.5 % Generating Filters Directly in the Frequency Domain

135

a b

FIGURE 4.16

(a) Plot obtained
using function
surf. (b) Result
of using the
command
shading interp.

136 Chapter 4 # Frequency Domain Processing

hpfilter
Sy ——— e

EXAMPLE 4.6;
Highpass filters.

4.6 @ Sharpening Frequency Domain Filters 137

Sharpening Frequency Domain Filters

Just as lowpass filtering blurs an image, the opposite process, highpass filterin
sharpens the image by attenuating the low frequencies and leaving the hig
frequencies of the Fourier transform relatively unchanged. In this section w
consider several approaches to highpass filtering.

4,6.1 Basic Highpass Filtering

Given the transfer function Hiy(u, v) of a lowpass filter, we obtain the transfe
function of the corresponding highpass filter by using the simple relation

Hyp(u,v) = 1 = Hp(u, v).

Thus, function 1pfilter developed in the previous section can be used as th
basis for a highpass filter generator, as follows: :

function H = hpfilter(type, M, N, DO, n)

%HPFILTER Computes frequency domain highpass filters. ‘
H = HPFILTER(TYPE, M, N, DO, n) creates the transfer function of
a highpass filter, H, of the specified TYPE and size (M-by-N).
Valid values for TYPE, DO, and n are:

'ideal’ Ideal highpass filter with cutoff frequency DO. n

need not be supplied. DO must be positive. ylGURE 4.17 Top row: Perspective plots of ideal, Butterworth, and Gaussian highpass filters.v Bottom row:

Corresponding images.

‘btw' Butterworth highpass filter of order'n, and cutoff
DO0. The default value for n is 1.0. DO must be
positive.
_ colormap([0 0 0])
'gaussian' Gaussian highpass filter with cutoff (standard > axis off
deviation) DO. n need not be supplied. DO must be >-grid off
positive.

The transfer function Hhp of a highpass filter is 1 — Hlp, The corresponding image in Fig. 4.17(d) was generated using the command

where Hlp is the transfer function of the corresponding lowpass
filter. Thus, we can use function lpfilter to generate highpass
filters.

> figure, imshow(H, [1)

S o P 9° I O OF O° I° G Of Of O° P O° J° of P

here the thin black border is superimposed on the image to delineate its
oundary. Similar commands yielded the rest of Fig. 4.17 (the Butterworth fil-
er is of order 2). B

if nargin == 4
n = 1; % Default value of n.
nd

D

% Generate highpass filter.
Hlp = lpfilter(type, M, N, DO, n); Figure 4.18(a) is the same test pattern, f, shown in Fig. 4.13(a). EXAMPLE4.7:
H =

1 - Hlp; .. Jgure 4.18(b), obtained using the following commands, shows the result of ap- Highpass filtering.
lying a Gaussian highpass filter to f:

¥ Figure 4.17 shows plots and images of ideal, Butterworth, and Gaussi

highpass filters. The plot in Fig. 4.17(a) was generated using the commands g = paddedsize(size(f));

0.05*PQ(1);
= hpfilter('gaussian', PQ(1), PQ(2), DO);
>g = dftfilt(f, H);
> figure, imshow(g, [1)

> P
>.D
H

>> H = fftshift(hpfilter('ideal', 500, 500, 50));
>> mesh(H(1:10:500, 1:10:500));
>> axis([0 50 0 50 0 1})

138

ab.
FIGURE 4.18
(a) Original image.
(b) Result of
Gaussian highpass
filtering.

EXAMPLE 4.8:
Combining high-
frequency
emphasis and
histogram
equalization.

Chapter 4 ® Frequency Domain Processing

As Fig. 4.18(b) shows, edges and other sharp intensity transitions in the image:
were enhanced. However, because the average value of an image is given by
F(0,0), and the highpass filters discussed thus far zero-out the origin of the;
Fourier transform, the image has lost most of the background tonality present’

in the original, This problem is addressed in the following section. |
a1 the oniginal. This problem 1s addressed in the following section Figure 4.19(b) shows the result of filtering Fig. 4.19(a) with a Butterworth

highpass filter of order 2, and a value of D; equal to 5% of the vertical dimen-
sion of the padded image. Highpass filtering is not overly sensitive to the value
of Dy, as long as the radius of the filter is not so small that frequencies near the
origin of the transform are passed. As expected, the filtered result is rather fea-
tireless, but it shows faintly the principal edges in the image. The advantage of
igh-emphasis filtering (with 2 = 0.5 and b = 2.0 in this case) is shown in the
image of Fig. 4.19(c), in which the gray-level tonality due to the low-frequency
omponents was retained. The following sequence of commands was used to
enerate the processed images in Fig. 4.19, where f denotes the input image
the last command generated Fig. 4.19(d)]:

4.6.2 High-Frequency Emphasis Filtering

As mentioned in Example 4.7, highpass filters zero out the dc term, thus r
ducing the average value of an image to 0. An approach to compensate for this:
is to add an offset to a highpass filter. When an offset is combined with multi-
plying the filter by a constant greater than 1, the approach is called high-
freqiency emphasis filtering because the constant multiplier highlights the.
high frequencies. The multiplier increases the amplitude of the low frequen-:
cies also, but the low-frequency effects on enhancement are less than those’
due to high frequencies, as long as the offset is small compared to the multipli-
er. High-frequency emphasis has the transfer function

> PQ = ize(size(f));
Hyge(u, v) = a + bHyy(u, v) > D0 - g?ggiggﬁﬂsue(1)
: N _ . , , \

where a is the offset, b is the multiplier, and th(u, v) is the transfer function’; 5 :BV=V agpf_léfﬁgv% btw', PQ(1), PA(2), DO, 2);
ofa highpass filter. > gbw = dftfil‘t(f: HBW) ;

> gbw = gscale(gbw);
#@ Figure 4.19(a) shows a chest X-ray image, f. X-ray imagers cannot be fo > ghf = dftfilt(f, H):
cused in the same manner as optical lenses, so the resulting images generall : > ghf = gscale(ghf);
tend to be slightly blurred. The objective of this example is to sharpen; > ghe = histeq(ghf, 256);

Fig. 4.19(a). Because the gray levels in this particular image are biased toward”
the dark end of the gray scale, we also take this opportunity to give an exam
ple of how spatial domain processing can be used to complement frequenc
domain filtering.

‘Asindicated in Section 3.3.2, an image characterized by gray levels in a nar-
T0Wrange of the gray scale is an ideal candidate for histogram equalization. As
18.4.19(d) shows, this indeed was an appropriate method to further enhance

4.6 ® Sharpening Frequency Domain Filters

139

di

FIGURE 4.19 High-
frequency
emphasis filtering,
(a) Original image.
(b) Highpass
filtering result.

(c) High-frequency
emphasis result.
(d) Image (c) after
histogram
equalization.
(Original image
courtesy of Dr.
Thomas R. Gest,
Division of
Anatomical
Sciences,
University of
Michigan Medical
School.)

140

Chapter 4 # Frequency Domain Processing

the image in this example. Note the clarity of the bone structure and other d
tails that simply are not visible in any of the other three images. The final eg.
hanced image appears a little noisy, but this is typical of X-ray images whep
their gray scale is expanded. The result obtained using a combination of high-
frequency emphasis and histogram equalization is superior to the result that
would be obtained by using either method alone.)

Summary

In addition to the image enhancement applications that we used as illustrations in th;
and the preceding chapter, the concepts and techniques developed in these two chap:
ters provide the basis for other areas of image processing addressed in subsequent dis-
cussions in the book. Intensity transformations are used frequently for intensity scaling,

and spatial filtering is used extensively for image restoration in the next chapter, for:

color processing in Chapter 6, for image segmentation in Chapter 10, and for extractin

descriptors from an image in Chapter 11. The Fourier techniques developed in this:

chapter are used extensively in the next chapter for image restoration, in Chapter 8 f
image compression, and in Chapter 11 for image description.

Preview
The objective of restoration is to improve a given image in some predefined
sense. Although there are areas of overlap between image enhancement and
image restoration, the former is largely a subjective process, while image
restoration is for the most part an objective process. Restoration attempts to
reconstruct or recover an image that has been degraded by using a priori
knowledge of the degradation phenomenon. Thus, restoration techniques are
oriented toward modeling the degradation and applying the inverse process in
order to recover the original image.

- This approach usually involves formulating a criterion of goodness that
ields an optimal estimate of the desired result. By contrast, enhancement
echniques basically are heuristic procedures designed to manipulate an image
n order to take advantage of the psychophysical aspects of the human visual
ystem. For example, contrast stretching is considered an enhancement tech-
- ique because it is based primarily on the pleasing aspects it might present to
- the viewer, whereas removal of image blur by applying a deblurring function is
considered a restoration technique.

In this chapter we explore how to use MATLAB and IPT capabilities to
odel degradation phenomena and to formulate restoration solutions. As in
-Chapters 3 and 4, some restoration techniques are best formulated in the spa-
tial domain, while others are better suited for the frequency domain. Both
methods are investigated in the sections that follow.

141

142 Chapter 5 @ Image Restoration 5.2 @ Noise Models 143

m Noise Models

e ability to simulate the behavior and effects of noise is central to image
restoration. In this chapter, we are interested in two basic types of noise
models: noise in the spatial domain (described by the noise probability density
function), and noise in the frequency domain, described by various Fourier
j‘;‘roperties of the noise. With the exception of the material in Section 5.2.3, we
assume in this chapter that noise is independent of image coordinates.

A Model of the Image Degradation/Restoration Process

As Fig. 5.1 shows, the degradation process is modeled in this chapter as 3
degradation function that, together with an additive noise term, operates on
an input image f(x, y) to produce a degraded image g(x, y):

g(x,y) = H[f(x,y)] + n(x, y)

Given g(x, y), some knowledge about the degradation function H, and some
knowledge about the additive noise term n(x, y), the objective of restoration is to
obtain an estimate, f (x, y), of the original image. We want the estimate to be ag
close as possible to the original input image. In general, the more we know about

H and m, the closer f(x, y) will be to f(x, y).
If His a linear, spatially invariant process, it can be shown that the degraded
image is given in the spatial domain by

:2.] Adding Noise with Function imnoise

The toolbox uses function imnoise to corrupt an image with noise. This func-
tion has the basic syntax

g = imnoise(f, type, parameters)

ﬁgoxﬁgﬁve’“ 8(x, y) = h(x, y) * f(x, y) + m(x,y) g where f is the input image, and type and parameters are as explained later.
in-line asterisk in where h(x, y) is the spatial representation of the degradation function and, as Function imnoise converts the input image to class double in the range [0, 1]

before adding noise to it. This must be taken into account when specifying
joise parameters. For example, to add Gaussian noise of mean 64 and variance
00 to an uint8 image, we scale the mean to 64/255 and the variance to
00/(255)? for input into imnoise. The syntax forms for this function are:

equations io denote in Chapter 4, the symbol “#” indicates convolution. We know from the discus-

convolution and a L TN
superscript asterisk 5107 in Section 4.3.1 that convolution in the spatial domain and multiplication,

to denote the com- in the frequency domain constitute a Fourier transform pair, so we may write

plex conjugate. As the preceding model in an equivalent frequency domain representation:
required, we also use

an asterisk in MAT- G(u, v) = H(u, v)F(u,v) + N(u, v) g = imnoise(f, 'gaussian', m, var) adds Gaussian noise of mean m
LAB expressions to . . . - and variance var to image f. The default is zero mean noise with 0.01
denote multiplica- where the terms in capital letters are the Fourier transforms of the correspondin, variance

tion. Care should be - o1 i1 the convolution equation. The degradation function H (1, v) sometimes’
taken not to confuse N A . . .
these unrelated uses is called the optical transfer function (OTF), a term derived from the Fourier:
of the same symbol. analysis of optical systems. In the spatial domain, 4(x, y) is referred to as the:
point spread function (PSF), a term that arises from letting A(x, y) operate on
point of light to obtain the characteristics of the degradation for any type of;
input. The OTF and PSF are a Fourier transform pair, and the toolbox provid
two functions, otf2psf and psf2otf, for converting between them.

Because the degradation due to a linear, space-invariant degradation fun
tion, H, can be modeled as convolution, sometimes the degradation process
referred to as “convolving the image with a PSF or OTFE.” Similarly, the restor
tion process is sometimes referred to as deconvolution.

In the following three sections, we assume that H is the identity operato
and we deal only with degradation due to noise. Beginning in Section 5.6 we;
look at several methods for image restoration in the presence of both H and

-g=1imnoise(f, 'localvar', V) adds zero-mean, Gaussian noise of local
variance, V, to image f, where V is an array of the same size as f containing
the desired variance values at each point.

g = imnoise(f, 'localvar', image_intensity, var) adds zero-mean,
Gaussian noise to image f, where the local variance of the noise, var, is a func-
tion of the image intensity values in f. The image_intensity and var argu-
ments are vectors of the same size, and plot (image_intensity, var) plots
the functional relationship between noise variance and image intensity. The
image_intensity vector must contain normalized intensity values in the
range [0, 1].

g =1imnoise(f, 'salt & pepper', d) corrupts image f with salt and
pepper noise, where d is the noise density (i.e., the percent of the image
area containing noise values). Thus, approximately d*numel(f) pixels are
affected. The default is 0.05 noise density.

g =imnoise(f, 'speckle’, var) adds multiplicative noise to image f,
using the equation g = f + n*f, where n is uniformly distributed random
noise with mean 0 and variance var. The default value of var is 0.04.
g=1imnoise(f, 'poisson’) generates Poisson noise from the data instead
of adding artificial noise to the data. In order to comply with Poisson statis-
tics, the intensities of uint8 and uint16 images must correspond to the num-
Per of photons (or any other quanta of information). Double-precision
Images are used when the number of photons per pixel is larger than 65535

FIGURE 5.1

A model of the

image degradation/ f(x, y)
restoration process.

8(xy)

Degradation
function

Restoration] H
o filter(s) —> [y

Noise
n(x ¥)

Degradation Restoration

144 Chopter 5 & Image Restoration

EXAMPLE 5.1:
Using uniform
random numbers
to generate
random numbers
with a specified
distribution.

In MATLAB this result is easily generalized to an M X N array, R, of ran-

(but less than 10*?). The intensity values vary between 0 and 1 and corre.
. dom numbers by using the expression

spond to the number of photons divided by 10"

Several illustrations of imnoise are given in the following sections. i R =a+ sqrt(b*log(1 — rand(M, N))):

5.2.2 Generating Spatial Random Noise with a Specified
Distribution

Often, it is necessary to be able to generate noise of types and parameters be-
yond those available in function imnoise. Spatial noise values are random num-
bers, characterized by a probability density function (PDF) or, equivalently, by
the corresponding cumulative distribution function (CDF). Random number
generation for the types of distributions in which we are interested follow some
fairly simple rules from probability theory.

Numerous random number generators are based on expressing the genera-
tion problem in terms of random numbers with a uniform CDF in the interval
(0,1). In some instances, the base random number generator of choice is 4
generator of Gaussian random numbers with zero mean and unit variance:
Although we can generate these two types of noise using imnoise, it is more;
meaningful in the present context to use MATLAB function rand for uniform
random numbers and randn for normal (Gaussian) random numbers. These
functions are explained later in this section.

The foundation of the approach described in this section is a well-known:
result from probability (Peebles [1993]) which states that if w is a uniform
distributed random variable in the interval (0, 1), then we can obtain a ran-
dom variable z with a specified CDF, F,, by solving the equation

z = F{(w)

This simple, yet powerful, result can be stated equivalently as finding a solu-,
tion to the equation F,(z) = w.

where, as discussed in Section 3.2.2, log is the natural logarithm, and, as men-
tioned earlier, rand generates uniformly distributed random numbers in the inter-
val (0, 1). If we let M=N =1, then the preceding MATLAB command line yields a
single value from a random variable with a Rayleigh distribution characterized by
parameters a and b. -

The expression z = a + \/ b In(1 — w) sometimes is called a random num-
ber generator equation because it establishes how to generate the desired ran-
dom numbers. In this particular case, we were able to find a closed-form
solution. As will be shown shortly, this is not always possible and the problem
then becomes one of finding an applicable random number generator equation
whose outputs will approximate random numbers with the specified CDF.

Table 5.1 lists the random variables of interest in the present discussion, along
with their PDFs, CDFs, and random number generator equations. In some cases,
with the Rayleigh and exponential variables, it is possible to find a closed-form
ution for the CDF and its inverse. This allows us to write an expression for the
andom number generator in terms of uniform random numbers, as illustrated in
Example 5.1. In others, as in the case of the Gaussian and lognormal densities,
losed-form solutions for the CDF do not exist, and it becomes necessary to find

fernate ways to generate the desired random numbers. In the lognormal case,
or instance, we make use of the knowledge that a lognormal random variable, z,
such that In(z) has a Gaussian distribution and write the expression shown in
able 5.1 in terms of Gaussian random variables with zero mean and unit vari-
ance. Yet in other cases, it is advantageous to reformulate the problem to obtain
n easier solution. For example, it can be shown that Erlang random numbers
ith parameters a and b can be obtained by adding b exponentially distributed
ndom numbers that have parameter a (Leon-Garcia [1994]).

The random number generators available in imnoise and those shown in
able 5.1 play an important role in modeling the behavior of random noise in
age-processing applications. We already saw the usefulness of the uniform
IS'trit?ution for generating random numbers with various CDFs. Gaussian
vise is used as an approximation in cases such as imaging sensors operating at
W light levels. Salt-and-pepper noise arises in faulty switching devices. The
z¢ of silver particles in a photographic emulsion is a random variable de-
Crl_bed by a lognormal distribution. Rayleigh noise arises in range imaging,
h;1§ exponential and Erlang noise are useful in describing noise in laser
ging.
;M-function imnoise2, listed later in this section, generates random num-
1s having the CDFs in Table 5.1. This function makes use of MATLAB func-
1 rand, which, for the purposes of this chapter, has the syntax

8 Assume that we have a generator of uniform random numbers, w, in the in-
terval (0, 1), and suppose that we want to use it to generate random numbers,
with a Rayleigh CDF, which has the form

F(z) = 1-e @9 forzz=a
AL 0 forz < a

To find z we solve the equation
1 = e @%b = 4

z=a+\/bln(l - w)

Because the square root term is nonnegative, we are assured that no values of Z;
less than a are generated. This is as required by the definition of the Raylei
CDF. Thus, a uniform random number w from our generator can be used in th
previous equation to generate a random variable z having a Rayleigh distrib
tion with parameters a and b.

or 5

A = rand(M, N)

5.2 # Noise Models

145

146

TABLE 5.1 Generation of random variables.

(]
5 2 —_
c & = |8
= = |5
= = = L
= = = = .
£ S g S8 S |'8.,.73
il kS 3 o ek =
g & =) ==l I + 5.&33
3 & = £73 = oo'p E2
&) @ m m o g g |4 & gg
< < :5 £ 3 + —~ls | L2 EE
= © = S e “ 8 s N L=
<< << < S I I I =R =
= C = c =& N [¥) w2 wT 8%
2
v SEENY
o S NN NV o
v v Nw oo | Bl gy
~ =
VoA 55 S B
> DN N NN — <
[~ B N = 2 T LWQ
a — Qo = N Y ¥
2 — | i ¥
@) SRS o) 2 v v O
[x + = | | |
D NSO y? OQ:Q-“ N:c =] =] —
S————— ~ N o’ [N —
Il it It 1l i il Il
~ w S ~ ~ ~ S
I~ = = = = = =
T, L3 53 o R R, Ry
% —
& 5 s
o) | | <
~ oL S
° = g - N
& ~ i ey
=1 i — 1
=5 o 0 Y I
g s = g o
> I + I > o o
g % % & % % —[% =%
« f S > B i Ii
E ~ o = S E ~ o
2 'i 5 + oy i o 5
~ s T
- 5 N
© < Qév hY © — s o3
I i i Il [[I
- o~
£ g £ b g g g 3
[=
NV
) g s =) v e =
~
Voo AR A = A
3 v il 3 .
N g o, w R} QJ;‘ N =
s 8 vy s 3 | L & oo
T £ |3 e z o Ry v
B = ©° L Bl w ~ 5 = o F
Q - o =] < NN (¥
i | = © —
[-™ = (V) S 8 09 ~ | N
o o N 4 IO
—! & T 4 —~| & ~ s N
oo = |l Al Al o ™ N e o 3 o %Slo
e — N e’ et | N =
I il i Il Il I Il
~ ~ ~ ~ ~ ~ w
Z = s s = A o
7 7 9 g % 7 7
= Q Y Y Y U Y
T
2 = K
o - = S = = =
£ £ 3 a =) =0 3
17} =] = =g
) & & £ £ o 2 =
Z = 3 -) S -3 =
=] -a o 9 » =
= &}] | = = =

" N(0, 1) denotes normal (Gaussian) raudom numbers with mean 0 and a variance of 1. U(0, 1) denotes uniform random numbers in the range (0, 1).

This function generates an array of size M x N whose entries are uniformly dis-
tributed numbers with values in the interval (0, 1). If N is omitted it defaults to
If called without an argument, rand generates a single random number that
-hanges each time the function is called. Similarly, the function

A = randn{M, N)

enerates an M x N array whose elements are normal (Gaussian) numbers
ith zero mean and unit variance. If N is omitted it defaults to M. When called
vithout an argument, randn generates a single random number.

Function imnoise2 also uses MATLAB function find, which has the fol-
pwing syntax forms:

I = find(A)
[r, c] = find(A)
[r, ¢, v] = find(A)

e first form returns in I all the indices of array A that point to nonzero ele-
nts. If none is found, find returns an empty matrix. The second form
urns the row and column indices of the nonzero entries in the matrix A. In
ddition to returning the row and column indices, the third form also returns
he nonzero values of A as a column vector, v.

The first form treats the array A in the format A(:),so I is a column vector.
is.form is quite useful in image processing. For example, to find and set to 0
pixels in an image whose values are less than 128 we write

'I = find(A < 128);
A(I) = 0;

Recall that the logical statement A < 128 returns a 1 for the elements of A that
isfy the logical condition and 0 for those that do not. To set to 128 all pixels
he closed interval [64, 192] we write

I = find(A >= 64 & A <= 192);
A(I) = 128;

¢ first two forms of function find are used frequently in the remaining
hapters of the book.

Unlike imnoise, the following M-function generates an M x N noise array, R,
atis not scaled in any way. Another major difference is that imnoise outputs
loisy image, while imnoise2 produces the noise pattern itself. The user speci-
esthe desired values for the noise parameters directly. Note that the noise
ITay resulting from salt-and-pepper noise has three values: 0 corresponding to
EPper noise, 1 corresponding to salt noise, and 0.5 corresponding to no noise.

5.2 ® Noise Models

~¥ind

147

148 Chapter 5 ® Image Restoration

imnoise2
R —"

5.2 # Noise Models

This array needs to be processed further to make it useful. For example, to co -get default values.
rupt an image with this array, we find (using function find) all the coordinate f nargin ==

in R that have value 0 and set the corresponding coordinates in the image to th =0; b=1;
smallest possible gray-level value (usually 0). Similarly, we find all the coordi M=y N=A
nates in R that have value 1 and set all the corresponding coordinates in th seif gar‘ gln 1__

a=0;0b=1;

image to the highest possible value (usually 255 for an 8-bit image). This proces

simulates how salt-and-pepper noise affects an image in practice. .
gin processing. Use lower(type) to protect against input

being capitalized.

itch lower(type)

se 'uniform’

“R=a+ (b-a)*rand(M, N);
se 'gaussian’

‘R = a + b*randn(M, N);

se 'salt & pepper’

“if nargin <= 3

a = 0.05; b = 0.05;

function R = imnoise2(type, M, N, a, b)

%IMNOISE2 Generates an array of random numbers with specified PDF,
R = IMNOISE2(TYPE, M, N, A, B) generates an array, R, of size
M-by-N, whose elements are random numbers of the specified TYPE';
with parameters A and B. If only TYPE is included in the :
input argument list, a single random number of the specified

TYPE and default parameters shown below is generated. If only
TYPE, M, and N are provided, the default parameters shown below

are used. If M = N = 1, IMNOISE2 generates a single random
number of the specified TYPE and parameters A and B.

nd
Check to make sure that Pa + Pb is not > 1.
f{a+b)>1

valid values for TYPE and parameters A and B are: error('The sum Pa + Pb must not exceed 1.')

"uniform' Uniform random numbers in the interval (A, B). (1:M, 1:N) = 0.5;
The default values are (0, 1). ‘ Generate an M-by-N array of uniformly-distributed random numbers
'gaussian’ Gaussian random numbers with mean A and standard in the range (0, 1). Then, Pa*(M*N) of them will have values <=

deviation B. The default values are A = 0, B =1, a. The coordinates of these points we call 0 (pepper
'salt & pepper' Salt and pepper numbers of amplitude 0 with ;% noise). Similarly, Pb*(M*N) points will have values in the range
probability Pa = A, and amplitude 1 with >a & <= (a+b). These we call 1 (salt noise).
probability Pb = B. The default values are Pa X = rand(M, N);
Pb = A =B = 0.05. Note that the noise has »¢.= find(X <= a);
values 0 (with probability Pa = A) and 1 (with ‘R(c) = 0;
probability Pb = B), so scaling is necessary if" =a+b;
values other than 0 and 1 are required. The nois ¢ =find(X > a & X <= u);
matrix R is assigned three values. If R(x, y) = “R(c) = 1;
0, the noise at (x, y) is pepper (black). If case 'lognormal’
R(x, y) = 1, the noise at (x, y) is salt -if nargin <= 3
(white). If R(x, y) = 0.5, there is no noise a=1; b=0.25

assigned to coordinates (x, y). -end

‘lognormal’ Lognormal numbers with offset A and shape R = a*exp(b*randn(M, N});

parameter B. The defaults are A =1 and B = se- 'rayleigh'

0.25. R=a+ (~b*log(1 - rand(M, N)))."0.5;
'rayleigh’ Rayleigh noise with parameters A and B. The Se- 'exponential’

default values are A = 0 and B = 1. Af nargin <= 3
'exponential' Exponential random numbers with parameter A. Th Loa= 1

default is A = 1. end

a<=gQ
errar('Parameter a must be positive for exponential type.')

‘erlang’ Erlang (gamma) random numbers with parameters A
and B. B must be a positive integer. The
defaults are A = 2 and B = 5. Erlang random
numbers are approximated as the sum of B
exponential random numbers.

k'=—1/a;
R'= k*log(1 ~ rand(M, N));

of of of of of o° O° P o O o o S O O O° OF OF O O OF Of O Of P G° O° P P O I O O o of of o O o°

149

150

EXAMPLE 5.2:
Histograms of
data generated
using the function
imnoise2.

Chapter 5 s Image Restoration

case ‘erlang’ ; —T T T T T T T 2500 T T T T T T T
if nargin <=3 (T 2000 Perlberetr e e e
a=2; b =5; il 7 i MM er m
end 4
if (b ~= round(b) | b <= 0) 1500
error('Param b must be a positive integer for Erlang.') 7 1000
end - 1
k= -1/a; L _
R = zeros(M, N); L 4 S00
for j = 1:b) f i I 0
R =R + k*log(1 — rand(M, N)); ~5-4-3-2-10 1 2 3 4 5 0 010203040506070809 1
end
otherwise T T T T T T 6000 T - T T T T T
error('Unknown distribution type.') § (| : sooo - (I ~
end T i i
r 4000 1
Figure 5.2 shows histograms of all the random number types in Table 5.1} = 41 3000 7
The data for each plot were generated using function imnoise?2. For example r 7 2000 L i
the data for Fig. 5.2(a) were generated by the following command: N]
r 1000 7
>> r = imnoise2('gaussian', 100000, 1, 0, 1); 0— ; L 0 I i L
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
This statement generated a column vector, r, with 100000 elements, ea .
being a random number from a Gaussian distribution with mean 0 and sta a 10. T T T T T T T T T
dard deviation of 1. The histogram was then obtained using function hist. 7
which has the syntax 7 7
p = hist(r, bins)] §
where bins is the number of bins. We used bins = 50 to generate the hi 7
tograms in Fig. 5.2. The other histograms were generated in a similar manner; 0. A)
In each case, the parameters chosen were the default values listed in the ex-]
planation of function imnoise2. 00 2 4 é é]'0 1'-2 14 4 6 8 10 12

3.2.3 Periodic Noise
Periodic noise in an image arises typically from electrical and/or electromechani-
cal interference during image acquisition. This is the only type of spatially depe
dent noise that will be considered in this chapter. As discussed in Section 5.4,
periodic noise is typically handled in an image by filtering in the frequency do-
main, Our model of periodic noise is a 2-D sinusoid with equation

r(x.y) = Asin[2mug(x + By)/M + 2mvy(y + B,)/N]

which we see is a pair of complex conjugate impulses located at
(e + uy, v + vy) and (u — ug, v — 1), respectively.

- The following M-function accepts an arbitrary number of impulse locations
frequency coordinates), each with its own amplitude, frequencies, and phase
displacement parameters, and computes r(x, y) as the sum of sinusoids of the
orm described in the previous paragraph. The function also outputs the Fourier
transform of the sum of sinusoids, R{x, v), and the spectrum of R(u, v). The sine
Waves are generated from the given impulse location information via the inverse
DFT. This makes it more intuitive and simplifies visualization of frequency con-
-tent in the spatial noise pattern. Only one pair of coordinates is required to de-
fine the location of an impulse. The program generates the conjugate symmetric

where A is the amplitude, 1, and v, determine the sinusoidal frequencies with:
respect to the x- and y-axis, respectively, and B, and B, are phase displace-
ments with respect to the origin. The M X N DFT of this equation is

A 2
R(u.v) = j—z—[(e’z"r”oax/”’)ﬁ(u + 1y, v + vy) = (20BN (1 — g, v —)]

5.2 & Noise Models

151

ab

c-d

e f

FIGURE 5.2
Histograms of
random numbers:
(a) Gaussian,

(b) uniform,

(c) lognormal,
(d) Rayleigh,

(e) exponential,
and (f) Erlang. In
each case the
default
parameters listed
in the explanation
of function
imnoise2 were
used.

152

Chapter 5 # Image Restoration

imnoise3

i

impulses. (Note in the code the use of function ifftshift to convert the ce
tered R into the proper data arrangement for the ifft2 operation, as discusse

in Section 4.2.)

function [r, R, 8] = imnoise3(M, N, C, A, B)

%IMNOISE3 Generates periodic noise.

[r, R, S] = IMNOISE3(M, N, C, A, B), generates a spatial
sinusoidal noise pattern, r, of size M-by-N, its Fourier
transform, R, and spectrum, S. The remaining parameters are as
follows:

C is a K-by-2 matrix containing K pairs of frequency domain
coordinates (u, v) indicating the locations of impulses in the
frequency domain. These locations are with respect to the
frequency rectangle center at (M/2 + 1, N/2 + 1),
of coordinates is required for each impulse. The program
automatically generates the locations of the conjugate symmetri
impulses. These impulse pairs determine the frequency content
of r.

A is a 1-by-K vector that contains the amplitude of each of the
K impulse pairs. If A is not included in the argument, the
default used is A = ONES(1, K). B is then automatically set to
its default values (see next paragraph). The value specified
for A(j) is associated with the coordinates in C(j, 1:2).

B is a K-by-2 matrix containing the Bx and By phase components
for each impulse pair. The default values for B are B(1:K, 1:2)
= 0.

% Process input parameters.
[K, n] = size(C);

o of o o O OP o° O° OF P OGP OF I O° O O° OF Of AP O° O oF of

if nargin ==
A(1:K) =1.0;
B(1:K, 1:2) = 0;
elseif nargin == 4
B(1:K, 1:2) = 0;
end
% Generate R.
R = zeros(M, N);
for j = 1:K
ul = M/2 + 1 + C(j, ; vi = N/2 + 1+ C(], 2);
*

1);
R(ut, v1) =1 * (A(j)/2)
% Complex conjugate.
u2 = M/2 +1 - C(j, 1); v2 = N/2 + 1 - C(j, 2);
R(u2, v2) = —1i * (A(j)/2) * exp(i*2*pi*C(j, 2) * B(j, 2)/N);
end

exp(i*2*pi*C(j, 1) * B(j, 1)/M);

Compute spectrum and spatial sinusoidal pattern.
= abs(R);
real (ifft2(ifftshift(R))); -

3w e

Only one pair

5.2 # Noise Models

Figures 5.3(a) and (b) show the spectrum and spatial sine noise pattern

nerated using the following commands: Using
imnoise3.

C = [0 64; 0 128; 32 32; 64 0; 128 0; -32 32];

ir, R, 8] = imnoise3(512, 512, C);

imshow(S, [1)

igure, imshow(r, [1)

all that the order of the coordinates is (u, v). These two values are speci-
d'with reference to the center of the frequency rectangle (see Section 4.2 for
definition of the coordinates of this center point). Figures 5.3(c) and (d)
show the result obtained by repeating the previous commands, but with

= [0 32; 0 64; 16 16; 32 0; 64 0; —16 16];
nilarly, Fig. 5.3(e) was obtained with

= [6 32; -2 2];

Figure 5.3(f) was generated with the same C, but using a nondefault amplitude
tor:

i

= [15];
r, R, 8] = imnoise3(512, 512, C, A);
Hig. 5.3(f) shows, the lower-frequency sine wave dominates the image. This
s expected because its amplitude is five times the amplitude of the higher-
juency component.]

14 Estimating Noise Parameters

’Ihe; parameters of periodic noise typically are estimated by analyzing the
ourier spectrum of the image. Periodic noise tends to produce frequency
es that often can be detected even by visual inspection. Automated analy-
is possible in situations in which the noise spikes are sufficiently pro-
ounced, or when some knowledge about the frequency of the interference is
Vailable,

- In the case of noise in the spatial domain, the parameters of the PDF may
€ known partially from sensor specifications, but it is often necessary to esti-
ate them from sample images. The relationships between the mean, m, and
ance, o2, of the noise, and the parameters a and b required to completely
Pecify the noise PDFs of interest in this chapter are listed in Table 5.1. Thus,
1€ problem becomes one of estimating the mean and variance from the sam-
le'llTl-'flge(s) and then using these estimates to solve for z and b.

Let z; be a discrete random variable that denotes intensity levels in an
age, and let p(z;), i = 0,1,2,..., L — 1, be the corresponding normalized

153

EXAMPLE 5.3:
Using function

156

Chapter 5 1 Image Restoration

histroi
SRR e e s e

5.2 @ Noise Models 157

interest (ROI) in MATLAB we use function roipoly, which generates' ompute the histogram of the pixels in the ROI.

polygonal ROL. This function has the basic syntax imhist(T(B});
Btain the number of pixels in the ROI if requested in the output.
B = roipoly(f, c, r) pargout > 1

columns are specified first). The output, B, is a binary image the same size ag f
with (s outside the region of interest and 1°s inside. Image B is used as a magj
to limit operations to within the region of interest. |

To specify a polygonal ROI interactively, we use the syntax

igure 5.4(a) shows a noisy image, denoted by f in the followi.ng discussion. g)iAM:"LE ige
¢ objective of this example is to estimate the noise type and its parameters . ;r;f[ﬂni tl:r% '“
ing the techniques and tools developed thus far. Figure 5.4(b) shows the
sk, B, generated interactively using the command:
B = roipoly(f) ’
[B, ¢, r] = roipoly(f);
using the mouse. If f is omitted, roipoly operates on the last image displaye gure 5.4(c) was generated using the commands
Using normal button clicks adds vertices to the polygon. Pressing Backspace:
or Delete removes the previously selected vertex. A shift-click, right-click, ot
double-click adds a final vertex to the selection and starts the fill of the poly
onal region with 1s. Pressing Return finishes the selection without addi
a vertex.,

To obtain the binary image and a list of the polygon vertices, we use th

[p, npix] = histroi(f, c, r);
igure, bar(p, 1)

construct FIGURE 5.4
(a) Noisy image.
[By ¢, r] = roipoly(. .) ég;igéd
.. . . . : interactively.
where roipoly (. . .) indicates any valid syntax for this function and, as be (c) Histogram of
fore, ¢ and r are the column and row coordinates of the vertices. This format i ROIL
particularly useful when the ROI is specified interactively because it gives th (d) Histogram of

Gaussian data
generated using
function
imnoise2.
(Original image
courtesy of Lixi,
Inc.)

plication of the same ROI.

The following function computes the histogram of an image within a polyg-
onal region whose vertices are specified by vectors ¢ and r, as in the preceding
discussion. Note the use within the program of function roipoly to duplicat
the polygonal region defined by ¢ and r.

140
function [p, npix] = histroi(f, c, r) n 120 -
%HISTROI Computes the histogram of an ROI in an image. T
% [P, NPIX] = HISTROI(F, C, R) computes the histogram, P, of a
% polygonal region of interest (ROI) in image F. The polygonal 7 80
% region is defined by the column and row coordinates of its - 60
% vertices, which are specified {sequentially) in vectors C and R, i wlh
% respectively. All pixels of F must be >= 0. Parameter NPIX is the
% number of pixels in the polygonal region. - 201
% Generate the binary mask image. 300 00 100 200 300

B = roipoly(f, c, r);

158

Chapter 5 # Image Restoration

The mean and variance of the region masked by B were obtained as follow] Spatial Noise Filters

le 5.2 lists the spatial filters of interest in this section, where S, denotes an

>> [v, unv] = statmoments(h, 2); | :
X nsubimage (region) of the input noisy image, g. The subscripts on S indi-

>> vy
= ite that the subimage is centered at coordinates (x, y), and f(x, y) (an esti-

v = ! g) .
ate of f) denotes the filter response at those coordinates. The linear filters
0.5794 0.0063 e implemented using function imfilter discussed in Section 3.4, The
>> unv edian, max, and min filters are nonlinear, order-statistic filters. The median

ter can be implemented directly using IPT function medfilt2. The max and
in filters are implemented using the more general order-filter function
rdfilt2 discussed in Section 3.5.2.

‘The following function, which we call spfilt, performs filtering in the spa-
| domain with any of the filters listed in Table 5.2. Note the use of function
ilincomb (mentioned in Table 2.5) to compute the linear combination of the
outs. The syntax for this function is

147.7430 410.9313

It is evident from Fig. 5.4(c) that the noise is approximately Gaussian. [
general, it is not possible to know the exact mean and variance of the noise be
cause it is added to the gray levels of the image in region 8. However, by se
lecting an area of nearly constant background level (as we did here), an
because the noise appears Gaussian, we can estimate that the average gra
level of the area B is reasonably close to the average gray level of the i imag
without noise, indicating that the noise has zero mean. Also, the fact that tk
area has a nearly constant gray level tells us that the variability in the regio
defined by B is due primarily to the variance of the noise. (When feasible, an
other way to estimate the mean and variance of the noise is by imaging a tar.
get of constant, known gray level.) Figure 5.4(d) shows the histogram of a se
of npix (this number is returned by histroi) Gaussian random variables with
mean 147 and variance 400, obtained with the following commands:

B = imlincomb(ct, A1, c2, A2, . . ., ck, Ak)
ich implements the equation
B = c1*A1 + c2*A2 + - - - + ck*AK

ere the ¢’s are real, double scalars, and the A’s are numeric arrays of the
ame class and size. Note also in subfunction gmean how function warning can
be turned on and off. In this case, we are suppressing a warning that would be
ued by MATLARB if the argument of the 1og function becomes 0. In general,
warning can be used in any program. The basic syntax is

>> X = imnoise2('gaussian', npix, 1, 147, 20);
>> figure, hist(X, 130)
>> axis([0 300 O 1401)

where the number of bins in hist was selected so that the result would be
compatible with the plot in Fig. 5.4(c). The histogram in this figure was ob
tained within function histroi using imhist (see the preceding code), whid
employs a different scaling than hist. We chose a set of npix random vari
ables to generate X, so that the number of samples was the same in both his-
tograms. The similarity between Figs. 5.4(c) and (d) clearly indicates that the
noise is indeed well-approximated by a Gaussian distribution with parameters
that are close to the estimates v (1) and v(2). =

warning('message’)

Ihis function behaves exactly like function disp, except that it can be turned
0 and off with the commands warning on and warning off.

Unction f = spfilt(g, type, m, n, parameter)

SPFILT Performs linear and nonlmear spatial filtering.

- F = SPFILT(G, TYPE, M, N, PARAMETER) performs spatial filtering
- of image G using a TYPE fllter of size M-by-N. Valid calls to

- SPFILT are as follows:

Restoration in the Presence
of Noise Only—Spatial Filtering

When the only degradation present is noise, then it follows from the model it F = SPFILT(G, 'amean', M, N) Arithmetic mean filtering.
Section 5.1 that F = SPFILT(G, ‘gmean’, M, N) Geometric mean filtering.
F = SPFILT(G, 'hmean', M, N) Harmonic mean filtering.
g(x,y) = f(x,y) + n(x,) F = SPFILT(G, 'chmean', M, N, Q) Contraharmonic mean

filtering of order Q. The

. . o . o1 filterine. usi
The method of choice for reduction of noise in this case is spatial filtering, default is Q = 1.5.

techniques similar to those discussed in Sections 3.4 and 3.5. In this section we su

. . o . . . ; F = SPFILT(G, 'median', M, N Median filtering.
marize and implement several spatial filters for noise reduction. Additional details F = SPFILT{ G, M’ N;) Max filtering g
.. . . 3 3 .
on the characteristics of these filters are discussed by Gonzalez and Woods [2002): F = SPFILT(G, 'min', M, N) Min filtering.

3.3 & Restoration in the Presence of Noise Only—Spatial Filtering 159

spfilt
LAt -

161

[
>
]
)
]
>
o
c -
c + [}
S
c 3 n
o
© Y= =
@
- o T n
=3 =y
= %]
- +
“ w -~ .
o = oY)
+— g .~
— o on
- =)
— [= ¥a]
[
+ [TRE)
| 2 A
B @ -
=] 1= @®
o @S = 3
] g gt
- S > @©
= o o >

5.3 @ Restoration in the Presence of Noise Only—Spatial Filtering

F = SPFILT(G, 'atrimmed’, M, N, D) Alpha-trimmed mean filtering.

“(uop93S sy ur 3TT4ds UONSUN] WOISND
99s) wrJieydTe uonouny Jursn pajusweidul] ‘pooysoqydiou
oy ut sjaxid p — ww Swurewax sy sayouap (7 's)'F ‘pojajep

are g ur (745)9 jo speas| Ansusiut 1saySiy z/p pue 159moy 7/p Ay,
'suonerado
FULIo)[1} MW pue XBUI 9Y) JO WNS 9Y) SO §'() Se pojuswafduy

“((u *w)seuo ‘L ‘B)gITTIPUO = 4
1231TT4pJo uonouny J 4] Suisn poruswoejdw]

“((u ‘w)ssuo ‘uyw ‘6)zITTIpIO = 3
12ATT4pJ0 uonouny 1 4] Suisn pajuswajduuf

([u w] ‘B)gatripou = 4
1g1TT4pauw uorpuny 147 Sursn pajuswardury

*(uo1309s ST} UT 3T A0S UOLIIUNG WOISHD
99s) ueawueyd uonouny Juisn pajustra(dur SI 193]1] 1LIUI[UOU ST,

*(uo1393s SNy} Ul 3TT 4dS UOIDUN] WOISND
995) ueawdJey uonouny Juisn pajuawadt st 1)1y TEIUIUOU S,

*(uor3oas s1y) ul 37T4ds uonIUN} WoISNo
35s) ueawb uotjpuny Fuisn pajuswsdwt 1 19){1y JEIUIUOU SIY],

“(m ‘B)asiTriuT = 4 pue ([u ‘u]
¢ eBeuane,)Teroads) = msuonouny I 47 Suisn pajuswajduyg

=
D
<.
<
-
=
o
=
Eal
D
[4
<
L
=
&=
— k=}
= =t
s .
- iy .
= o z Ry
. Pl
- . enem » o
- — o I + = 4=
= = I S ©
f o [=] n + (=1 =E O
= > 2 E 9 .
o = o E=3 - —~ —
o @ < -a =]
k=3 = == o Y - D
=) = [Te] 123 (=] [P 3 .- -
= - - o o - —~
A » o - I & - =
Mw: H ! m Mnlvw'- = >
- = -
1] — k=1 = . > =
= T o [T v 2 =) 8 s 2 -
. . = R -
jar} o » e - — = = 2
— + o -+ ™ i o n n (=) [— - ~— =
[T ~ © = NN - = (] o O {=>] j g faed
[« 3 o n c o s o [=] + ol =4 — o - @ -
w [l - f==t 1] - E [48 — - O 4 - c - L E
Y- = Do O -- = H O C OO Em
LI} L5} . — L = Y 2 Q% © D © L B S -
o W C +m (@O O © . S yesmemeamhd
o 0 -H M C 0O b D E-HAEDE L C O D
m__ wmv:f:f: ﬂrv mha—— __g = © =
e EEfEedocRoe s oL o= . . .
. R Y= © Y4 D Y- @ @
N - T ‘.n‘\v‘. L RN T d.D.Ms w % st
o6 & : 5 S S

(1s)8 K

frga(ys)

)

M

ordfilt2(g, m*n, ones(m, n), 'symmetric');
ordfilt2(g, 1, ones(m, n), 'symmetric')

medfilt2(g, [m n], 'symmetric')

'max’
f =
ase. '‘min’

ase

M=) o w
1
.—..a.&lWA&.HV N

{(2%6)8} w4 {(4:5)8} xewr |Z

I

.?M.W:.u.v

{(1+5)8} ww

Ax) r.&.v
((55)8} s

itga(rs)
{(155)8} Ew._me

....‘.ww
208 K
A...f..ﬂ

(rs)
5(7°%)
1 ,TQAN J)vm W

(1°5)8 520

— <

Hut

¥es(ss)
*H?)8] Q

NSs0s) 1y

(15)8 K -

f
f
£

.
3

)

)

ordfilt2(g, m*n, ones{m, n), 'symmetric')

imlincomb(0.5, 1, 0.5, f2)

‘atrimmed"
if (d < 0) | (d/2 -= round(d/2))

ordfilt2(g, 1, ones(m, n), 'symmetric'})

1
2
ase

= Aa,kﬂ\

= (4x)f

= ()

(€)

I

= ({x)f

= (£x)f

()

— (£ x%)f

= (%)

error('d must be a nonnegative, even integer.’)
R

. @
— Pt
h=] =
o)
(=3 [
®
- -
= —
e
- —

=3
= £
- o
[c
+* X
© =4
K= 5
=Y =
—~ @~
<25
T o= o
= o oo
D - D D

= o

uesw pawuwin-eydyy

rodpiy

WA

XEW

ueIpay

ueatu drroulLIeyeliuo)

ugswl duowurey

UBIW OLIIIWOIO

UROW DIPWYILY

SIUSWUWO))

uonenby

awreN I

"POOYYIOqYSIaU J3}]1) BY] JO SUWN|OD PUB SMOI JO Jaquintt a3 A]9ANdadsat oj0uap i pue w sojqeiiea 2], 103y [eeds 7°6 319VL

160

162 Chapter 5 = Image Restoration

EXAMPLE 5.5
Using function
spfilt.

- f = changeclass{inclass, f);

5.3 # Restoratjon in the Presence of Noise Only—Spatial Filtering 163

function f = gmean(g, m, n) ab
% Implements a geometric mean filter. cd
inclass = class(g); : e f
g = im2double(g); FIGURE 5.5
% Disable log(0) warning. (a) Image

corrupted by
pepper noise with
probability 0.1.

warning off;
f = exp(imfilter(log(g), ones{m, n), 'replicate')}."(1 / m / n);
warning on;
f = changeclass({inclass, f); (b} Image

: = . : £ ; corrupted by salt
f i ittt s , s : noise with the
function f = harmean(g, m, n) ‘ % > same probability.
% Implements a harmonic mean filter. (c) Result of)
inclass = class(g); filtering (a) with a
g = im2double(g}; 3xX3

f=m*n ./ imfilter(1./(g + eps), ones(m, n), 'replicate'); ;(f[ntralgarrgonic
- ; £ 1lter of order
f = changeclass(inclass, f); 0= 15 (d)
[tk il el Result of filtering
function f = charmean(g, m, n, q) (b) with
Q= ~15.

% Implements a contraharmonic mean filter.

inclass = class(g);

im2double(g);

imfilter({g."(qt1), ones(m, n), 'replicate');

f ./ (imfilter{g."q, ones{m, n), 'replicate’') + eps)
changeclass(inclass, f);

(e) Result of
filtering (a) with a
3 X 3 max filter.
(f) Result of
filtering (b) with a
3 X 3 min filter.

[

- —h —h @
(1]

function f = alphatrim(g, m, n, d)
% Implements an alpha-trimmed mean filter.
inclass = class{g);
g = im2double(g);
f = imfilter(g, ones(m, n}, 'symmetric'};
for k = 1:d/2

f = imsubtract(f, ordfilt2(g, k, ones(m, n), 'symmetric'));
end :
for k = (m*n ~ (d/2) + 1):m*n

f = imsubtract(f, ordfilt2(g, k, ones(m, n, "symmetric'});
end
f=1f/ (mn-4d);

The image in Fig. 5.5(a) is an uint8 image corrupted by pepper noise onl
with probability 0.1. This image was generated using the following comman
[f denotes the original image, which is Fig. 3.18(a)]:

>> [M, N] = size(f);

>> R = imnoise2('salt & pepper', M, N, 0.1, 0);
>> ¢ = find(R == 0);
>> gp = f;

>> gp(c) = 0;

The image in Fig. 5.5(b), corrupted by salt noise only, was generated using thé
statements

164 Chapter 5 @ Image Restoration 5.3 #@ Restoration in the Presence of Noise Only—Spatial Filtering 165
A good approach for filtering pepper noise is to use a contraharmonic fijt
with a positive value of (. Figure 5.5(c) was generated using the statement.

>> fp = spfilt(gp, 'chmean', 3, 3, 1.5);

Similarly, salt noise can be filtered using a contraharmonic filter with a neg
tive value of Q:

>> fs = spfilt(gs, 'chmean', 3, 3, -1.5);

Figure 5.5(d) shows the result. Similar results can be obtained using max a
min filters. For example, the images in Figs. 5.5(¢) and (f) were generated frg
Figs. 5.5(a) and (b), respectively, with the following commands:
GURE 5.6 (a) Image corrupted by salt-and- -pepper noise with density 0.25. (b) Result obtained using a
edian fllter of size 7 X 7 (c) Result obtamed using adaptlve median filtering w1th Soax = 7.

>> fpmax spfilt(gp, 'max', 3, 3);
>> fsmin = spfilt(gs, 'min', 3, 3);

Other solutions using spfilt are implemented in a similar manner. e embedded in a constant background having the same value as pepper

alt) noise.
1 M-function that implements this algorithm, which we call adpmedian, is
luded in Appendix C.The syntax is

3.3.2 Adaptive Spatial Filters

The filters discussed in the previous section are applied to an image withol
regard for how image characteristics vary from one location to another
some applications, results can be improved by using filters capable of adap
their behavior depending on the characteristics of the image in the area be
filtered. As an illustration of how to implement adaptive spatial filter
MATLAB, we consider in this section an adaptive median filter. As before,§
denotes a subimage centered at location (x, y) in the image being process
The algorithm, which is explained in detail in Gonzalez and Woods [2002],i 1
follows: Let

f = adpmedian(g, Smax) adpmedlan

re g is the image to be filtered, and, as defined above, Smax is the maxi-
mum allowed size of the adaptive filter window.

-Figure 5.6(a) shows the circuit board image, f, corrupted by salt-and- EXAMPLE 5.6:
epper noise, generated using the command Adaptive median
: filtering.

Zmin = Iinimum intensity value in S,

= maximum intensity value in S, = imnoise(f, 'salt & pepper’, .25):

zmax
Zmed = Median of the intensity values in §,, _
Fig. 5.6(b) shows the result obtained using the command (see Section 3.5.2

arding the use of medfilt2):

7,y = intensity value at coordinates (x, y)

The adaptive median filtering algorithm works in two levels, denoted leve

and level B: . .
= medfilt2(g, [7 7], 'symmetric');
Level A: If Zmin < Zmed < Zmax, 2O tO level B
Elsg Increase the window size IS image is reasonably free of noise, but it is quite blurred and distorted
If window size = Spqy, repeat level A . 8- 5ee the connector fingers in the top middle of the image). On the other
Else output z;e4 and; the command
Level B: If Zmin < Zyy < Zmax, OULPUL Z,

Else output Zieq 2 = adpmedian(g, 7);

where S, denotes the maximum allowed size of the adaptive filter wind
" Another option in the last step in Level A is to output z,, instead of the medi
This produces a slightly less blurred result but can fail to detect salt (pepp

ed the image in Fig. 5.6(c), which is also reasonably free of noise, but is
nslderably less blurred and distorted than Fig. 5.6(b). ®

166

Chapter 5 % Image Restoration

-ﬁltefs.Another important degradation model is image blur due to uniform lin-
.ar motion between the sensor and scene during image acquisition. Image blur
i be modeled using IPT function fspecial;

ﬁ%@ Periodic Noise Reduction
by Frequency Domain Filtering

As noted in Section 5.2.3, periodic noise manifests itself as impulse-like burg
that often are visible in the Fourier spectrum. The principal approach for
tering these components is via notch filtering. The transfer function of a Bu
terworth notch filter of order is given by

PSF = fspecial('motion', len, theta)

is call to fspecial returns a PSF that approximates the effects of linear
otion of a camera by len pixels. Parameter theta is in degrees, measured
th respect to the positive horizontal axis in a counter-clockwise direction.
ie default value of len is 9 and the default theta is 0, which corresponds to
otion of 9 pixels in the horizontal direction.

We use function imfilter to create a degraded image with a PSF that is
her known or is computed by using the method just described:

1

2 143
1 + ___L_
Dy(u, v)Dy(u, v)

Dy(u,v) = [(u = M/2 = up)* + (v = NJ2 — v)}]'"?

H(u,v) =

where
5> g = imfilter(f, PSF, 'circular');
and . ‘

ere ‘circular' (Table 3.2) is used to reduce border effects. We then com-

Dy(u, v) = [(u = M/2 + up)? + (v = N/2 + 1)?]" te the degraded image model by adding noise, as appropriate:

where (i, vy) (and by symmetry) (-1, ~1;) are the locations of the “notches;
and D, is a measure of their radius. Note that the filter is specified with respec
to the center of the frequency rectangle, so it must be preprocessed with func
tion fftshift prior to its use, as explained in Sections 4.2 and 4.3. _
Writing an M-function for notch filtering follows the same principles use
in Section 4.5. It is good practice to write the function so that multiple notche;
can be input, as in the approach used in Section 5.2.3 to generate multiple si:
nusoidal noise patterns. Once H has been obtained, filtering is done usi
function dftfilt explained in Section 4.3.3. ;

= g + noise;

ere noise is a random noise image of the same size as g, generated using
e of the methods discussed in Section 5.2.
When comparing in a given situation the suitability of the various ap-
aches discussed in this and the following sections, it is useful to use the
ame image or test pattern so that comparisons are meaningful. The test pat-
generated by function checkerboard is particularly useful for this pur-
e because its size can be scaled without affecting its principal features. The
ﬁ%@ Modeling the Degradation Function tax is

When equipment similar to the equipment that generated a degraded image is C = checkerboard(NP, M, N)

available, it is generally possible to determine the nature of the degradation by:
experimenting with various equipment settings. However, relevant imaging
equipment availability is the exception, rather than the rule, in the solution of
image restoration problems, and a typical approach is to experiment by gene
ating PSFs and testing the results with various restoration algorithms. Another:
approach is to attempt to model the PSF mathematically. This approach is out-
side the mainstream of our discussion here: for an introduction to this topic
see Gonzalez and Woods [2002]. Finally, when no information is available
about the PSF, we can resort to “blind deconvolution” for inferring the PSE:
This approach is discussed in Section 5.10. The focus of the remainder of th
present section is on various techniques for modeling PSFs by using functions
imfilter and fspecial, introduced in Sections 3.4 and 3.5, respectively, an
the various noise-generating functions discussed earlier in this chapter.

One of the principal degradations encountered in image restoration prob-:
lems is image blur. Blur that occurs with the scene and sensor at rest with re--
spect to each other can be modeled by spatial or frequency domain lowpass

‘here NP is the number of pixels on the side of each square, M is the number of
ows, and N is the number of columns. If N is omitted, it defaults to M. If both M
nd N are omitted, a square checkerboard with 8 squares on the side is gener-
ed, If, in addition, NP is omitted, it defaults to 10 pixels. The light squares on
€ left half of the checkerboard are white. The light squares on the right half
the checkerboard are gray. To generate a checkerboard in which all light
Squares are white we use the command

K = im2double(checkerboard(NP, M, N)) > 0.5;

The images generated by function checkerboard are of class double with val-
s in the range [0, 1].

- Because some restoration algorithms are slow for large images, a good ap-
Proach is to experiment with small images to reduce computation time and
thus improve interactivity. In this case, it is useful for display purposes to be

5.5 @ Modeling the Degradation Function 167

i ,:*"c,hecker‘boar'd

Using the > operutor
prodiuces ¢ Logical
result; im2double is
used to produce an
image of cluss
double, which is
consistent with the
output formar of
Sfunction
checkerboard.

5.6 @ Direct Inverse Filtering 169

168 Chapter 5 & Image Restoration

EXAMPLE 5.7;
Modeling a
blurred, noisy
image.

ab

c..d

FIGURE 5.7

(a) Original
image. (b) Image
blurred using
fspecial with
len=7,and
theta=-45
degrees.

(c) Noise image.
(d) Sum of (b)
and (c).

able to zoom an image by pixel replication. The following function does thj .Note that the PSF is just a spatial filter. Its values are

(see Appendix C for the code):

B = pixeldup(A, m, n)

; 0 0 0 0 0 0.0145 0

This function duplicates every pixel in A a total of m times in the vertical direc 8 g 8 0 0372 ggggg ggg?g 0'0143
tion and n times in the horizontal direction. If n is omitted, it defaults to m, 0 0 0.0376 0' 1283 0.0376 ' 0 0
U . 0 0.0376 0.1283 0.0376 0 0 0
58 Figure 5.7(a) shows a checkerboard image generated by the command 0.0145 0.1283 0.0376 0 0 0 0
0 0.0145 0 0 0 0 0

>> f = checkerboard(8); o
)) The noisy pattern in Fig. 5.7(c) was generated using the command
The degraded image in Fig. 5.7(b) was generated using the commands
noise = imnoise(zeros(size(f)), 'gaussian', 0, 0.001);
>> PSF = fspecial('motion', 7, 45);

>> gh = imfilter(f, PSF, 'circular');

Normally, we would have added noise to gb directly using imnoise(gb,
aussian', 0, 0.001).However, the noise image is needed later in this
apter, so we computed it separately here.

The blurred noisy image in Fig. 5.7(d) was generated as

-g = gb + noise;

e

“The noise is not easily visible in this image because its maximum value is on
order of 0.15, whereas the maximum value of the image is 1. As shown in
ctions 5.7 and 5.8, however, this level of noise is not insignificant when at-
empting to restore g. Finally, we point out that all images in Fig. 5.7 were
omed to size 512 X 512 and displayed using a command of the form

‘imshow(pixeldup(f, 8), [1)

e image in Fig. 5.7(q) is restored in Examples 5.8 and 5.9. ﬂ

m Direct Inverse Filtering

_ e simplest approach we can take to restoring a degraded image is to form an
Stimate of the form

‘ G(u, v)
H(u,v)

d then obtain the corresponding estimate of the image by taking the inverse
‘ourier transform of F(u, v) {recall that G(u, v) is the Fourier transform of
the degraded image]. This approach is appropriately called inverse filtering.
Tom the model discussed in Section 5.1, we can express our estimate as

A 3 N(u,v)
F(u,v) = F(u,v) + m

ﬁ(u, V) =

170

Chapter 5 @ Image Restoration

This deceptively simple expression tells us that, even if we knew H (u, v)e
actly, we could not recover F(u, v) [and hence the original, undegraded i imat
f(x.)] because the noise component is a random function whose Fourj;
transform, N(i, v), is not known. In addition, there usually is a problem’
practice with function H (i, v) having numerous zeros. Even if the tef
N(u, v) were negligible, dividing it by vanishing values of H (i, v) would dop
inate restoration estimates.

The typical approach when attempting inverse filtering is to form the rat
F(u v) = G(u, v)/H(u, v) and then limit the frequency range for Ou.ainin,
the inverse, to frequencies “near” the origin. The idea is that zeros in H(u,
are less likely to occur near the origin because the magnitude of the transfor
typically is at its highest value in that region, There are numerous variations
this basic theme, in which special treatment is given at values of (u, v) fo
which H is zero or near zero. This type of approach sometimes is calle
pseudoinverse filtering. In general, approaches based on inverse filtering g
this type are seldom practical, as Example 5.8 in the next section shows,

e 3 35w

re M and N denote the vertical and horizontal sizes of the image and noise
ays, respectively. These quantities are scalar constants, and their ratio,

=Ja
fa

ich is also a scalar, is used sometimes to generate a constant array in place
“the function S,{u, v)/S(u, v). In this case, even if the actual ratio is not
own, it becomes a simple matter to experiment interactively varying the
nstant and viewing the restored results. This, of course, is a crude approxi-
' that assumes that the functions are constant. Replacing
(i, v)/S;(u, v) by a constant array in the preceding filter equation results in
e so-called parametric Wiener filter. As illustrated in Example 5.8, the simple
t of using a constant array can yield significant improvements over direct in-

&FY Wiener Filtering

Wiener filtering (after N. Wiener, who first proposed the method in 1942)j
one of the earliest and best known approaches to linear Image restoration;’/
Wiener filter seeks an estimate f that minimizes the statistical error functior

= E{(f ~)}
where E is the expected value operator and f is the undegraded image. The so
lution to this expression in the frequency domain is

ﬁ(u v) = [L [, 0)F G(u, v)
’ H (e, v) |H (1,) + S, (u, v)/Sp(u, v) ’

Wiener filtering is implemented in IPT using function deconvwnr, which
three possible syntax forms. In all these forms, g denotes the degraded
e and fr is the restored image. The first syntax form,

fr = deconvwnr(g, PSF)

mes that the noise-to-signal ratio is zero. Thus, this form of the Wiener fil-
is the inverse filter mentioned in Section 5.6. The syntax

fr = deconvwnr(g, PSF, NSPR)

umes that the noise-to-signal power ratio is known, either as a constant or
S an array; the function accepts either one. This is the syntax used to imple-
nent the parametric Wiener filter, in which case NSPR would be an interactive
calar input. Finally, the syntax

where

H(u, v) = the degradation function

|H (u, v)* = H*(u, v)H (u, v)

H*(u, v) = the complex conjugate of H (i, v)

Syy(ee, v)

Sj'(ll, 'U)
The ratio S, (1. v)/S(u, v} is called the noise-to-signal power ratio. We see thaf_
if the noise power spectrum is zero for all relevant values of u and v, this ratio
becomes zero and the Wiener filter reduces to the inverse filter discussed ifl
the previous section. :

Two related quantities of interest are the average noise power and the aver:
age image power, defined as

fr = deconvwnr(g, PSF, NACORR, FACORR)

IN (1, v)|* = the power spectrum of the noise

Sumes that autocorrelation functions, NACORR and FACORR, of the noise and
ndegraded image are known. Note that this form of deconvwnr uses the au-
correlation of 7 and f instead of the power spectrum of these functions.
rom the correlation theorem we know that

[F o) = 3[f(x,y) o f(x.y)]

here “ o » denotes the correlation operation and J denotes the Fourier
ansform. This expression indicates that we can obtain the autocorrelation
netion, f(x, y) o f(x, y), for use in deconvwnr by computing the inverse
tourier transform of the power spectrum. Similar comments hold for the auto-
forrelation of the noise.

|F(u, v)|* = the power spectrum of the undegraded image

—lﬁ 2 2 S, (1, v)

5.7 % Wiener Filtering 171

i deconvwnr

172

: édgetape r

EXAMPLE 5.8:
Using function
deconvwnr to
restore a blurred,
noisy image.

a.b
c.d

FIGURE 5.8

(a) Blurred, noisy
image. (b) Result
of inverse
filtering.

(c) Result of
Wiener filtering
using a constant
ratio. (d) Result
of Wiener filtering
using
autocorrelation
functions.

Chapter 5 % Image Restoration

here g is the corrupted image and PSF is the point spread function computed
‘Example 5.7. As noted earlier in this section, Tr1 is the result of direct in-
erse filtering and, as expected, the result is dominated by the effects of noise.
s-in Example 5.7, all displayed images were processed with pixeldup to
com their size to 512 X 512 pixels.)

The ratio, R, discussed earlier in this section, was obtained using the original
dnoise images from Example 5.7:

If the restored image exhibits ringing introduced by the discrete Fouriey:
transform used in the algorithm, it sometimes helps to use function edgetape
prior to calling deconvwnr. The syntax is

J = edgetaper(I, PSF)
This function blurs the edges of the input image, I, using the point spread fun,
tion, PSF. The output image, J, is the weighted sum of I and its blurred versio

The weighting array, determined by the autocorrelation function «. PS = abs(fft2(noise))."2 % noise power spectrum
makes J equal to I in its central region, and equal to the blurred version of = sum(Sn(:))/prod(size(noise)); % noise average power
near the edges. = abs(fft2(f))."2; % image power spectrum

= sum(Sf(:))/prod(size(f)); % image average power

Figure 5.8(a) is the same as Fig. 5.7(d), and Fig. 5.8(b) was obtained usin R = nA/fA;

the command
orestore the image using this ratio we write

>> fr1 = deconvwnr(g, PSF);

~fr2 = deconvwnr(g, PSF, R);

s Fig. 5.8(c) shows, this approach gives a significant improvement over direct
yerse filtering.

inally, we use the autocorrelation functions in the restoration (note the use
Efftshift for centering):

= fftshift(real (ifft2(Sn)));
= fftshift(real(ifft2(Sf)));
deconvwnr(g, PSF, NCORR, IC

3
ORR) ;

n-be accomplished with Wiener deconvolution in this case. The challenge in
actice, when one (or more) of these quantities is not known, is the intelligent

of 2-D discrete convolution is

M-1 N-1
s P50) = 1o) S (s = my =)

ir{g this equation, we can express the linear degradation model discussed in
lon 5.1, g(x, y) = hA(x, y)*f(x, y) + n(x, y), in vector-matrix form, as

g=Hf+1n

5.8 @ Constrained Least Squares (Regularized) Filtering 173

174 Chapter 5 3% Image Restoration 5.8 m Constrained Least Squares (Regularized) Filtering 175

For example, suppose that g(x, y} is of size M X N.Then we can form the firg 0 1 0
N elements of the vector g by using the image elements in the first row ¢ (ty) =11 -4 1
g(x. y), the next N elements from the second row, and so on. The resulting vec: plx.y) = 0 1 0

tor will have dimensions MN X 1. These also are the dimensions of f and », 5
these vectors are formed in the same manner. The matrix H then has dimen:
sions MN X MN. Its elements are given by the elements of the preceding con.
volution equation.

It would be reasonable to arrive at the conclusion that the restoration prob
lem can now be reduced to simple matrix manipulations. Unfortunately thisj
not the case. For instance, suppose that we are working with images of medium
size; say M = N = 512. Then the vectors in the preceding matrix equatio
would be of dimension 262,144 X 1, and matrix H would be of dimensions
262,144 x 262,144, Manipulating vectors and matrices of these sizes is not a
trivial task. The problem is complicated further by the fact that the inverse o
H does not always exist due to zeros in the transfer function (see Section 5.6);
However, formulating the restoration problem in matrix form does facilitat
derivation of restoration techniques. :

Although we do not derive the method of constrained least squares that we
are about to present, central to this method is the issue of the sensitivity of th
inverse of H mentioned in the previous paragraph. One way to deal with this
issue is to base optimality of restoration on a measure of smoothness, such as the
second derivative of an image (e.g., the Laplacian). To be meaningful, the
restoration must be constrained by the parameters of the problem at hand. Thus
what is desired is to find the minimum of a criterion function, C, defined as

We recognize this function as the Laplacian operator introduced in Section 3.5.1.
¢ only unknowns in the preceding formulation are y and |[9%. However, it can
shown that y can be found iteratively if |0}, which is proportional to the noise
ower (a scalar), is known.

Constrained least squares filtering is implemented in IPT by function
econvreg, which has the syntax

fr = deconvreg(g, PSF, NOISEPOWER, RANGE)

ere g is the corrupted i image, fr is the restored image, NOISEPOWER is pro-
tional to |nll>, and RANGE is the range of values where the algorithm is lim-
ed to look for a solution for y. The default range is [107°, 10°] ([1e~10, 1e10]
1 MATLAB notation). If the last two parameters are excluded from the argu-
ient, deconvreg produces an 1nverse filter solution. A good starting estimate
or NOISEPOWER is MN[o2 + m 2], where M and N are the dimensions of the

age and the parameters 1n51de the brackets are the noise variance and noise
quared mean. This estimate is simply a starting point and, as the next example
hows, the final value used can be quite different.

. We now restore the image in Fig. 5.7(d) using deconvreg. The image is of EXAMPLE 5.9:
€ 64 X 64 and we know from Example 5.7 that the noise has a variance of Using function

001 and zero mean. So, our initial estimate of NOISEPOWER is deconvregto

)’[0.001 — 0] =~ 4. Figure 5.9(a) shows the result of using the command restore a blurred,

M-1IN-1

ZZ [V2F(x,)

x=0 y=0

subject to the constraint noisy image.
a2 2
lg — Hf|" = |0l = deconvreg(g, PSF, 4);
where !|w||2 w'w is the Euclidean vector norm,’ £is the estimate of the un:
degraded image, and the Laplacian operator V* is as defined in Section 3.5.1;
The frequency domain solution to this optimization problem is given by the ab

expression FIGURE 5.9
(a) The image in
Fig. 5.7(d)

restored using a
regularized filter
with NOISEPQWER
equal to 4. (b) The
same image
restored with
NOISEPOWER equal
to 0.4 and a RANGE
of {1e-7 1e7].

£ B i: H*(u, v)]
(u,v) = G(u, v)

|[H (u,)P + y|P(u,)

where v is a parameter that must be adjusted so that the constraint is satisfied
(if v is zero we have an inverse filter solution), and P (i, v) is the Fourier trans-
form of the function

"

*For a column vector w with 11 components, w’w = > w7, where 1. is the kth component of w.
£=

176

Chapter 5 # Image Restoration

where g and PSF are from Example 5.7. The image was improved somewhat fy
the original, but obviously this is not a particularly good value for NOISEPQw;
After some experimenting with this parameter and parameter RANGE, we arrive
at the result in Fig. 5.9(b), which was obtained using the command

efore, “*” indicates convolution, f is the estimate of the undegraded

ge, and both g and / are as defined in Section 5.1. The iterative nature of
orithm is evident. Its nonlinear nature arises from the division by f on

ght side of the equation.

with most nonlinear methods, the question of when to stop the L-R al-

tthm is difficult to answer in general. The approach often followed is to ob-

the output and stop the algorithm when a result acceptable in a given

lication has been obtained.

The L-R algorithm is implemented in IPT by function deconvlucy, which

the basic syntax

>> fr = deconvreg(g, PSF, 0.4, [1e-7 1e7]);

Thus we see that we had to go down one order of magnitude on NOISEPQW
and RANGE was tighter than the default. The Wiener filtering 1 sult-§
Fig. 5.8(d) is much better, but we obtained that result with full knowledge
the noise and image spectra. Without that information, the results obtainabj
by experimenting with the two filters often are comparable, fr = deconvlucy(g, PSF, NUMIT, DAMPAR, WEIGHT)

If the restored image exhibits ringing introduced by the discrete Four
transform used in the algorithm, it usually helps to use function edgetapei
(see Section 5.7) prior to calling deconvreg.

re fr is the restored image, g is the degraded image, PSF is the point
ad function, NUMIT is the number of iterations (the default is 10), and
PAR and WEIGHT are defined as follows.

AMPAR is a scalar that specifies the threshold deviation of the resulting
age from image g. Iterations are suppressed for the pixels that deviate
thin the DAMPAR value from their original value. This suppresses noise gen-
ation in such pixels, preserving necessary image details. The default is 0 (no
mping).

WEIGHT is an array of the same size as g that assigns a weight to each pixel
reflect its quality. For example, a bad pixel resulting from a defective imag-
g array can be excluded from the solution by assigning to it a zero weight
lue. Another useful application of this array is to let it adjust the weights of
e pixels according to the amount of flat-field correction that may be neces-
sary based on knowledge of the imaging array. When simulating blurring with
pecified PSF (see Example 5.7), WEIGHT can be used to eliminate from com-
putation pixels that are on the border of an image and thus are blurred differ-
ently by the PSE. If the PSF is of size n X n, the border of zeros used in
WEIGHT is of width ceil(n/2). The default is a unit array of the same size as
ut image g.

1 If the restored image exhibits ringing introduced by the discrete Fourier
Iansform used in the algorithm, it sometimes helps to use function edgetaper
see Section 5.7) prior to calling deconvlucy.

Iterative Nonlinear Restoration Using the
Lucy-Richardson Algorithm

The image restoration methods discussed in the previous three sections
linear. They also are “direct” in the sense that, once the restoration filter i¢
specified, the solution is obtained via one application of the filter. This simplic:
ity of implementation, coupled with modest computational requirements and
a well-established theoretical base, have made linear techniques a fundamen-
tal tool in image restoration for many years.

During the past two decades, nonlinear iterative techniques have been gain-
ing acceptance as restoration tools that often yield results superior to those;
obtained with linear methods. The principal objections to nonlinear methods
are that their behavior is not always predictable and that they generally
quire significant computational resources. The first objection often loses i
portance based on the fact that nonlinear methods have been shown to be
superior to linear techniques in a broad spectrum of applications (Janss
(1997]). The second objection has become less of an issue due to the dramatic
increase in inexpensive computing power over the last decade. The nonlinear
method of choice in the toolbox is a technique developed by Richardson
[1972] and by Lucy [1974], working independently. The toolbox refers to this
method as the Lucy-Richardson (L-R) algorithm, but we also see it quoted in
the literature as the Richardson-Lucy algorithm.

The L-R algorithm arises from a maximum-likelihood formulation (see
Section 5.10) in which the image is modeled with Poisson statistics. Maximiz
ing the likelihood function of the model yields an equation that is satisfied
when the following iteration converges:

Figure 5.10(a) shows an image generated using the command
> f = checkerboard(8);

hich produced a square image of size 64 X 64 pixels. As before, the size of
“the image was increased to size 512 X 512 for display purposes by using func-
fon pixeldup:

Feer(x,¥) = filx, y)[h(—x, —y)* :
h >> imshow(pixeldup(f, 8));

5.9 # Iterative Nonlinear Restoration Using the Lucy-Richardson Algorithm 177

EXAMPLE 5.10:
Using function
deconvlucy to
restore a blurred,
noisy image.

178

ab

cd

e f

FIGURE 5.10

(a) Original
image. (b) Image
blurred and

corrupted by
Gaussian noise.
(c) through (f)
Image (b)
restored using the
L-R algorithm
with 5,10, 20, and
100 iterations,
respectively.

Chapter 5 % Image Restoration

The following command generated a Gaussian PSF of size 7 X 7 with a
ard deviation of 10

SF = fspecial('gaussian', 7, 10);

;we blurred image f using PDF and added to it Gaussian noise of zero
#n.and standard deviation of 0.01:

D = 0.01;

imnoise(imfilter(f, PSF), ‘'gaussian', 0, SD"2);

]

»guré 5.10(b) shows the result.
e remainder of this example deals with restoring image g using function
nvlucy. For DAMPAR we specified a value equal to 10 times SD:

DAMPAR = 10*8D;

ay WEIGHT was created using the approach discussed in the preceding ex-
anation of this parameter:

IM = ceil(size(PSF, 1)/2);
WEIGHT = zeros(size(g));
VEIGHT (LIM + t:end — LIM, LIM + 1:end — LIM) = 1;

irray WEIGHT is of size 64 X 64 with a border of Os 4 pixels wide; the rest of

pixels are 1s.
The only variable left is NUMIT, the number of iterations. Figure 5.10(c)

ows the result obtained using the commands

= 5;
= deconvlucy(g, PSF, NUMIT, DAMPAR, WEIGHT):
imshow(pixeldup(fr, 8))

Aithough the image has improved somewhat, it is still blurry. Figures 5.10(d)
d (e) show the results obtained using NUMIT = 10 and 20. The latter result is a
sonable restoration of the blurred, noisy image. In fact, further increases in the
umber of iterations did not produce dramatic improvements in the restored re-
ult. For example, Fig. 5.10(f) was obtained using 100 iterations. This image is only
lightly sharper and brighter than the result obtained using 20 iterations. The thin
ck border seen in all results was caused by the Os in array WEIGHT. G

ne of the most difficult problems in image restoration is obtaining a suitable es-
Mmate of the PSF to use in restoration algorithms such as those discussed in the
eceding sections. As noted earlier, image restoration methods that are not based
Nspecific knowledge of the PSF are called blind deconvolution algorithms.

5.10 # Blind Deconvolution

182 Chapter 5 # Image Restoration

Geometric Transformations and Image Registration

We conclude this chapter with an introduction to geometric transformatig
for image restoration. Geometric transformations modify the spatial relatig
ship between pixels in an image. They are often called rubber-sheet transf,
mations because they may be viewed as printing an image on a sheet of rubb
and then stretching this sheet according to a predefined set of rules.
Geometric transformations are used frequently to perform image egistr,
tion, a process that takes two images of the same scene and aligns the
they can be merged for visualization, or for quantitative comparison. In t
following sections, we discuss (1) spatial transformations and how to defi
and visualize them in MATLAB; (2) how to apply spatial transformations’
images; and (3) how to determine spatial transformations for use in im
registration. :

orm as

yntax is

5.11.1 Geometric Spatial Transformations

5.1 % Geometric Transformations and Image Registration 183

ne of the most commonly used forms of spatial transformations is the
e transform (Wolberg [1990]). The affine transform can be written in ma-

ty, 0O
m; 1

transformation can scale, rotate, translate, or shear a set of points, de-
ding on the values chosen for the elements of T. Table 5.3 shpws how to
oose the values of the elements to achieve different transformations.

PT represents spatial transformations using a so-called tform structure.
way to create such a structure is by using function maketform, whose call-

tform = maketform(transform_type, transform_parameters)

Suppose that an image, f, defined over a (w, z) coordinate system, undergo
geometric distortion to produce an image, g, defined over an (x, y) coordina

system. This transformation (of the coordinates) may be expressed as

1
0
(%) = T{(w,2)} ’
For example, if (x,y) = T{(w,v)} = (w/2, z/2), the “distortion” is simply
shrinking of f by half in both spatial dimensions, as illustrated in Fig. 5.12. Sy
0
0
Ti(5.2)} = (2.5.1)
cosf
—sinf
7 w Y X 0
ﬂ hear (horizontal) (1
LO
hear (vertical) r
b4 y 0
FIGURE 5.12 A simple spatial transformation. (Note that the xy-axes in this figure d -
not correspond to the image axis coordinate system defined in Section 2.1.1. A N
mentioned in that section, IPT on occasion uses the so-called spatial coordinat 1
system in which y deSIgnates rows and x designates columns. This is the system useé! 0
throughout this section in order to be consistent with IPT documentation on the tOPl .
of geometric transformations.) L O

00 x=w

10 r=z

01

00 =50

s, 0 Yy =82

01

sing 0 x = wcosd — zsing

cosf 0 y = wsinf + zcosd
0 1

0 0] x=w+az

1 =2

O -

B 0O] x=w

1 0 y=Bw+z

01

0 0] x=w+8,

L0 y=z1+38,

8. 1|

See Sections 2.10.6
and 11.1.1 for a dis-
cussion of structures.

TABLE 5.3

Types of affine
transformations.

5.11 ® Geometric Transformations and Image Registration 185

184 Chopter 5 ® Image Restoration

The first input argument, transform_type, is one of these strings: 'affing
'projective’, 'box', 'composite', or 'custom'. These transform types 4
described in Table 5.4, Section 5.11.3. Additional arguments depend on
transform type and are described in detail in the help page for maketforn,

In this section our interest is on affine transforms. For example, one way f
create an affine tformis to provide the T matrix directly, as in

To get a better feel for the effects of a particular spatial transformation, it
often useful to see how it transforms a set of points arranged on a grid. The
llowing M-function, vistformfwd, constructs a grid of points, transforms
the grid using tformfwd, and then plots the grid and the transformed grid
de by side for comparison. Note the combined use of functions meshgrid
Section 2.10.4) and linspace (Section 2.8.1) for creating the grid. The fol-
owing code also illustrates the use of some of the functions discussed thus
“in this section.

>T=[(200; 030; 00 1];
>> tform = maketform('affine', T)
tform =
ndims_in: 2
ndims_out: 2
forward_fcn: @fwd_affine
inverse_fcn: @inv_affine
tdata: [1 x 1 struct]

Although it is not necessary to use the fields of the tform structure directl
to be able to apply it, information about T, as well as about T~ is containe
the tdata field:

nction vistformfwd(tform, wdata, zdata, N) vistformfwd
ISTFORMFWD Visualize forward geometric transform.

- VISTFORMFWD (TFORM, WRANGE, ZRANGE, N) shows two plots: an N-by-N
2 grid in the W-Z coordinate system, and the spatially transformed
“grid in the X-Y coordinate system. WRANGE and ZRANGE are
two-element vectors specifying the desired range for the grid. N
. can be omitted, in which case the default value is 10.

>> tform.tdata

ans =
T: [3 x 3 double]
Tinv: [3 x 3 double]

>> tform.tdata.T

;nar‘gin < 4
N = 10;

ans =
2 0 0 Create the w-z grid and transform it
0 3 0 y z] = meshgrid(linspace(wdata(1), zdata(2), N),
0 0 1 linspace(wdata(1), zdata(2), N));
>> tform.tdata.Tinv = [w(:) z(:)1;
ans = = tformfwd ([w(:) z(:)], tform);
0.5000 0 0 .
0 0.3333 0 alculate the minimum and maximum values of w and x,
0 0 1.0000 as well as z and y. These are used so the two plots can be

isplayed using the same scale.
reshape(xy(:, 1), size(w)); % reshape is discussed in Sec. 8.2.2.

IPT provides two functions for applying a spatial transformation = reshape(xy(:, 2), size(z));
B A b)

points: tformfwd computes the forward transformation, T{(w, z)}, ancg

tforminv computes the inverse transformation, 77}{(x, y)}. The calling xLlimits
syntax for tformfwd is XY = tformfwd(WZ, tform). Here, WZ is a P X
matrix of points; each row of WZ contains the w and z coordinates of 0
point. Similarly, XY is a P X 2 matrix of points; each row contains the x a
y coordinates of a transformed point. For example, the following co
mands compute the forward transformation of a pair of points, followed by
the inverse transform to verify that we get back the original data:

= [min{wx) max(wx)];
)i v

= [min(zy) max(zy)];

-Lreate the w-z plot.

Ubplot(1,2,1) % See Section 7.2.1 for a discussion of this function.
lot(w, z, 'b'), axis equal, axis ij

> WZ = [11; 3 2];
>> XY = tformfwd(WZ, tform)
XY =

Lim(wx1imits)
Lim(zylimits)

186

EXAMPLE 5.12:
Visualizing affine
transforms using
vistformfwd.

Chapter 5 =% Image Restoration

set(gca, 'XAxislLocation',
xlabel('w'), ylabel('z")

% Create the x-y plot.
subplot (1, 2, 2)

"top')

plot(x, vy, 'b'), axis egual, axis ij
hold on

plot(x‘, y'; 'b")

hold off

xlim(wxlimits)

ylim(zylimits)

set(gca, 'XAxisLocation', 'top')

xlabel('x"), ylabel('y"')

® In this example we use vistformfwd to visualize the effect of several di
ferent affine transforms. We also explore an alternate way to create an affi
tform using maketform. We start with an affine transform that scales horizos

tally by a factor of 3 and vertically by a factor of 2;
> T1 =[300; 020; 00 1}];

>> tformt = maketform('affine', T1);
>> vistformfwd(tformi, [0 100], [0 100]);

Figures 5.13(a) and (b) show the result.

A shearing effect occurs when t,; or t;, is nonzero in the affine T matri

such as

>>T2=[100; .210; 00 1};
>> tform2 = maketform('affine', T2);
>> vistformfwd(tform2, [0 100], [0 100]);

Figures 5.13(c) and (d) show the effect of the shearing transform on a grid.

An interesting property of affine transforms is that the composition of sev
eral affine transforms is also an affine transform. Mathematically, affine trans
forms can be generated simply by using multiplication of the T matrices. Th
next block of code shows how to generate and visualize an affine transform

that is a combination of scaling, rotation, and shear.

>> Tscale = [1.5 00; 02 0; 00 1};

>> Trotation = [cos(pi/4) sin(pi/4) O
—-sin(pi/4) cos(pi/4) O
00 1];

>> Tshear = [1 00; .2 10; 00 1];

>> T3 = Tscale * Trotation * Tshear;
>> tform3 = maketform('affine', T3);
>> vistformfwd(tform3, [0 100], [0 100])

Figures 5.13(e) and (f) show the results.

w X
100 200 300 o° 100 200 300
T
Saus
anam . 50F |
1 = 100F 7
4 150p s
' ' 200
w X
4060 8 100 120 0 20 40 6080 100 120
T T T

100

~50 0 50 100

- B 100

= - 150

200

5112 Applying Spatial Transformations to Images

Most computational methods for spatially transforming an image fall into
One of two categories: methods that use forward mapping, and methods that
use inverse mapping. Methods based on forward mapping scan each input
Pixel in turn, copying its value into the output image at the location dete'r—
mined by 7'{(w, z)}. One problem with the forward mapping procedure is
that two or more different pixels in the input image could be transformed
into the same pixel in the output image, raising the question of how to

5.11 @ Geometric Transformations and Image Registration

187
ab
¢ d
e f

FIGURE 5.13
Visualizing affine
transformations
using grids.

(a) Grid 1.

(b) Grid 1
transformed using
tformi.

(c) Grid 2.

(d) Grid 2
transformed using
tform2.

(e) Grid 3.

(f) Grid 3
transformed using
tform3.

188

mtransform

EXAMPLE 5.13:
Spatially
transforming
images.

Chapter 5 4 Image Restoration

combine multiple input pixel values into a single output pixel value. Anot
er potential problem is that some output pixels may not be assigned a va]ji
at all. In a more sophisticated form of forward mapping, the four corners
each input pixel are mapped onto quadrilaterals in the output image. Inpy;
pixels are distributed among output pixels according to how much each oy
put pixel is covered, relative to the area of each output pixel. Althoug
more accurate, this form of forward mapping is complex and computatio
ally expensive to implement.

IPT function imtransform uses inverse mapping instead. An inverse ma
ping procedure scans each output pixel in turn, computes the corresponding:
location in the input image using 77'{(x, y)}, and interpolates among th
nearest input image pixels to determine the output pixel value. Inverse map
ping is generally easier to implement than forward mapping.

The basic calling syntax for imtransformis

g = imtransform(f, tform, interp)

where interp is a string that specifies how input image pixels are interpolated t
obtain output pixels; interp can be either 'nearest', 'bilinear’, o
‘bicubic'.The interp input argument can be omitted, in which case it default
to 'bilinear'. As with the restoration examples given earlier, functio
checkerboard is useful for generating test images for experimenting with spati:
transformations. :

In this example we use functions checkerboard and imtransform fe
explore a number of different aspects of transforming images. A linear con
formal transformation is a type of affine transformation that preserve
shapes and angles. Linear conformal transformations consist of a scale fac
tor, a rotation angle, and a translation. The affine transformation matrix i
this case has the form '

scosf ssinf O
T=| —ssinf scos@ O
8, 8, 1

The following commands generate a linear conformal transformation and
apply it to a test image.

>> f = checkerboard(50);
>> s = 0.8;
>> theta = pi/6;

>> T = [s*cos(theta) s*sin(theta) 0
—-s*sin(theta) s*cos(theta) 0
0 0 1];

>> tform = maketform('affine', T);

>> g = imtransform(f, tform);

Figures 5.14(a) and (b) show the original and transformed checkerboard images
The preceding call to imtransform used the default interpolation method;

5.11 & Geometric Transformations and Image Registration

189

ab
cd
3

FIGURE 5.14
Affine
transformations
of the
checkerboard
image.

(a) Original
image. (b) Linear
conformal
transformation
using the default
interpolation
(bilinear).

(c) Using nearest
neighbor
interpolation.
(d) Specitying an
alternate fill
value.

(e) Controlling
the output space
location so that
translation is
visible,

190

Chapter 5 & Image Restoration

'bilinear'. As mentioned earlier, we can select a different interpolatig Image Registration
method, such as nearest neighbor, by specifying it explicitly in the ca]l t

ge registration methods seek to align two images of the same scene. For ex-
imtransform:

le, it may be of interest to align two or more images taken at roughly the
ame time, but using different instruments, such as an MRI (magnetic reso-
nce imaging) scan and a PET (positron emission tomography) scan. Or, per-
haps the images were taken at different times using the same instrument, such
tellite images of a given location taken several days, months, or even years
part In either case, combining the images or performing quantitative analysis
d comparisons requires compensating for geometric aberrations caused by
ifferences in camera angle, distance, and orientation; sensor resolution; shift
1 subject position; and other factors.

The toolbox supports image registration based on the use of control points,
so known as fie poinrs, which are a subset of pixels whose locations in the two
ges are known or can be selected interactively. Figure 5.15 illustrates the idea
ficontrol points using a test pattern and a version of the test pattern that has un-
ergone projective distortion. Once a sufficient number of control points have
n chosen, IPT function cp2tform can be used to fit a specified type of spatial

>> g2 = imtransform(f, tform, 'nearest');

Figure 5.14(c) shows the result. Nearest neighbor interpolation is faster thy
bilinear interpolation, and it may be more appropriate in some situation,
but it generally produces results inferior to those obtained with bxlmea
interpolation.

Function imtransform has several additional optional parameters that ag,
useful at times. For example, passing it a FillValue parameter controls thy
color imtransform uses for pixels outside the domain of the input image:

>> g3 = imtransform(f, tform, 'Fillvalue', 0.5);

In Fig. 5.14(d) the pixels outside the original image are mid-gray instead of bla

Other extra parameters can help resolve a common source of confusion
garding translating images using imtransform. For example, the followi
commands perform a pure translation:

> T2 =[100; 010; 5050 1];
>> tform2 = maketform('affine', T2);
>> g4 = imtransform(f, tform2);

.';g.,;\ @,5: -
(21 B

I

»_a 2222229

The result, however, would be identical to the original image in Fig, 5.14(a)
This effect is caused by default behavior of imtransform. Specifically
imtransform determines the bounding box (see Section 11.4.1 for a definition
of the term bounding box) of the output image in the output coordinate sys:
tem, and by default it only performs inverse mapping over that bounding box
This effectively undoes the translation. By specifying the parameters XData
and YData, we can tell imtransform exactly where in output space to com-
pute the result. XData is a two-element vector that specifies the location of the
left and right columns of the output image; YData is a two-element vector that
specifies the location of the top and bottom rows of the output image. The fol:
lowing command computes the output image in the region between
(x,y) = (1,1) and (x, y) = (400, 400).

>> g5 = imtransform(f, tform2,'XData', [1 400], 'YData', [1 400],
'FillvValue', 0.5);

I

aavaaaaaa

Figure 5.14(e) shows the resuit. .

Other settings of imtransform and related IPT functions provide addition-
al control over the result, particularly over how interpolation is performed.
Most of the relevant toolbox documentation is in the help pages for functions:
imtransformand makeresampler. L

511 ® Geometric Transformations and Image Registration ~ 191

FIGURE 5.15
Image registration
based on control
points.

(a) Original image
with control
points (the small
circles
superimposed on
the image).

(b) Geometrically
distorted image
with control
points.

(c) Corrected
image using a
projective
transformation
inferred from the
control points.

192 Chapter 5 # Image Restoration

TABLE 5.4
Transformation
types supported
by cp2tform and
maketform.

but parallel lines converge toward
vanishing points.

Transformation

Type Description Functions

Affine Combination of scaling, rotation, maketform
shearing, and translation. Straight cp2tform
lines remain straight and parallel
lines remain parallel.

Box Independent scaling and translation maketform
along each dimension; a subset
of affine.

Composite A collection of spatial maketform :
transformations that are applied T
sequentially. xw

Custom User-defined spatial transform; maketform : Fa B
user provides functions that define . e s a
Tand T7". TP

Linear conformal Scaling (same in all dimensions), cp2tform 1 l l I I l l ”
rotation, and translation; a subset IR))
of affine. 8 aaaaadad

LWM Local weighted mean; a locally- cp2tform
varying spatial transformation.

Piecewise linear Locally varying spatial transformation. cp2tform The toolbox inciudes a graphical user interface designed for the interactive

Polynomial Input spatial coordinates are a cp2tform ction gf control points on a pair of images. Figure 5.16 shows a screen cap-
polynomial function of output of this tool, which is invoked by the command cpselect.
spatial coordinates.

Projective As with the affine transformation, maketform
straight lines remain straight, cp2tform

material in‘this chapter is a good overview of how MATLAB and IPT functions
be used for image restoration, and how they can be used as the basis for generating
ls that help explain the degradation to which an image has been subjected. The

transformation to the control points (using least squares techniques). The spatiak
transformation types supported by cp2tform are listed in Table 5.4. :

For example, let ¥ denote the image in Fig. 5.15(a) and g the image i
Fig. 5.15(b). The control point coordinates in f are (83,81), (450,5
(43,293), (249,392), and (436, 442). The corresponding control point loc
tions in g are (68, 66), (375, 47), (42,286), (275, 434), and (523, 532). The
the commands needed to align image g to image f are as follows:

>> basepoints =

>> inputpoints

>> tform = cp2tform(inputpoints, basepoints,
>> gp = imtransform(g, tform, 'XData', [1 502], 'YData', [1 502]);

[83 81; 450 56; 43 293; 249 392; 436 442];
[68 66; 375 47; 42 286; 275 434; 523 532];
'projective');

Figure 5.15(c) shows the transformed image.

pab.ilities of IPT for noise generation were enhanced significantly by the develop-
ent in this chapter of functions imnoise2 and imnoise3. Similarly, the spatial fil-
TS a\"ailable in function spfilt, especially the nonlinear filters, are a significant
ension of IPT"s capabilities in this area. These functions are perfect examples of how
atlyely sirpple it is to incorporate MATLAB and IPT functions into new code to cre-
pplications that enhance the capabilities of an already large set of existing tools.

Summary 193

FIGURE 5.16
Interactive tool
for choosing
control points.

194

iG
2B
The three color Blue component image
e
comlp one'ntsl of Green component image
a color pixel.

Red component image

possible colors in an RGB image is (2°)3, where b is the number of bits in each
component image. For the 8-bit case, the number is 16,777,216 colors.

‘Let R, fG,and fB represent three RGB component images. An RGB image
is formed from these images by using the cat (concatenate) operator to stack
the images:

Preview

In this chapter we discuss fundamentals of color image processing using th
Image Processing Toolbox and extend some of its functionality by developin
additional color generation and transformation functions. The discussioni
this chapter assumes familiarity on the part of the reader with the principle
and terminology of color image processing at an introductory level.

rgb_image = cat(3, fR, fG, fB)

The order in which the images are placed in the operand matters. In general,
cat(dim, A1, A2, . . .) concatenates the arrays along the dimension spec-
ified by dim. For example, if dim = 1, the arrays are arranged vertically, if dim =
2, they are arranged horizontally, and, if dim = 3, they are stacked in the third
dimension, as in Fig. 6.1.

If all component images are identical, the result is a gray-scale image. Let
rgb_image denote an RGB image. The following commands extract the three
component images:

m Color Image Representation in MATLAB

As noted in Section 2.6, the Image Processing Toolbox handles color image
either as indexed images or RGB (red, green, blue) images. In this section w
discuss these two image types in some detail.

&1 >> fR = rgb_image(:, :, 1);
».1.7 RGB Images : >> fG = rgb_image(:, :, 2);
An RGB color image isan M X N X 3 array of color pixels, where each colo >> B = rgb_image(:, :, 3);

pixel is a triplet corresponding to the red, green, and blue components of &
RGB image at a specific spatial location (see Fig. 6.1). An RGB image may bé;
viewed as a “stack” of three gray-scale images that, when fed into the red
green, and blue inputs of a color monitor, produce a color image on the screen.
By convention. the three images forming an RGB color image are referred t
as the red, green, and blue component images. The data class of the componen
images determines their range of values. If an RGB image is of class double
the range of values is [0, 1]. Similarly, the range of values is [0,255] or [0, 6553.5
for RGB images of class uint8 or uint16, respectively. The number of bib
used to represent the pixel values of the component images determines the bf
depth of an RGB image. For example, if each component image is an 8-bil
image, the corresponding RGB image is said to be 24 bits deep. Generally, th
number of bits in all component images is the same. In this case, the number

depicted in Fig. 6.2. The vertices of the cube are the primary (red, green, and
blue) and secondary (cyan, magenta, and yellow) colors of light.

Often, it is useful to be able to view the color cube from any perspective.
Function rgbcube is used for this purpose. The syntax is

rgbcube(vx, vy, vz)

Typing rgbcube (vx, vy, vz) at the prompt produces an RGB cube on the
MATLAB desktop, viewed from point (vx, vy, vz).The resulting image
“Can be saved to disk using function print, discussed in Section 2.4. The code
or this function follows. It is self-explanatory.

6.1 @ Color Image Representation in MATLAB 195

FIGURE 6.1
Schematic
showing how
pixels of an RGB
color image are
formed from the
corresponding
pixels of the three
component
images.

rgbcube

196 Chapter 6 m Color Image Processing

ab

FIGURE 6.2

(a) Schematic of
the RGB color
cube showing the
primary and
secondary colors of
light at the vertices.
Points along the
main diagonal have
gray values from
black at the origin
to white at point
(1,1,1). (b) The
RGB color cube.

Function patch cre-
ates filled, 2-D poly-
gons based on
specified
property/value pairs.
For more informa-
tion about patch,
see the MATLAB
help page for this
Sfunction.

£+ pateh

B

Blue [(0,0,1)

Magenta

Yellow

function rgbcube(vx, vy, vz)
%RGBCUBE Displays an RGB cube on the MATLAB desktop.

as the default viewing coordinates. To view individual color

right (or above), and then moving clockwise.

S 0% P OP O° O° P O OF P O IP oP Of o° P of

COLOR PLANE (vx, vy, vz)
Blue-Magenta-White-Cyan (6, 0, 10)
Red-Yellow-White-Magenta (10, 0, 0)
Green-Cyan-White-Yellow (0, 10, 0O
Black-Red-Magenta-Blue (0, -10, 0
Black-Blue-Cyan-Green (=10, o0, 0)
Black-Red-Yellow-Green (0, 0, -10)

% Set up parameters for function patch.
vertices_matrix = [0 0 0;0 0 1;0 1 0;0 1 1;1 0 031 0 131 1 0;111];
faces matrix = [1 56 2;1375;1243;2486;3784,568 71;
colors = vertices_matrix;

% The order of the cube vertices was selected to be the same as

% the order of the (R,G,B) colors (e.g., (0,0,0) corresponds to

% black, (1,1,1) corresponds to white, and so on.)

% Generate RGB cube using function patch.
patch('Vertices', vertices_matrix, 'Faces’, faces_matrix,
‘FaceVertexCData', colors, 'FaceColor’', 'interp',
'EdgeAlpha', 0)
% Set up viewing point.
if nargin ==
vX = 10; vy = 10; vz = 4;

RGBCUBE (VX, VY, VZ) displays an RGB color cube, viewed from point
(VX, VY, VZ). With no input arguments, RGBCUBE uses (10, 10, 4)

planes, use the following viewing coordinates, where the first
color in the sequence is the closest to the viewing axis, and the
other colors are as seen from that axis, proceeding to the right

“elseif nargin ~= 3

error('Wrong number of inputs.')
end
axis off

view([vx, vy, vz])
~axis square e SRS

6.1.2 Indexed Images

An indexed image has two components: a data matrix of integers, X, and a
colormap matrix, map. Matrix map is an m X 3 array of class double containing
floating-point values in the range [0, 1]. The length, m, of the map is equal to the
number of colors it defines. Each row of map specifies the red, green, and blue
components of a single color. An indexed image uses “direct mapping” of pixel in-
tensity values to colormap values. The color of each pixel is determined by using
mumwwmm@vwmdmwynmka%amMmHMOmpﬁxsddms
double, then all of its components with values less than or equal to 1 point to the
first row in map, all components with value 2 point to the second row, and so on. If
Xis of class uint8 or uint16, then all components with value 0 point to the first
row in map, all components with value 1 point to the second row, and so on. These
concepts are illustrated in Fig, 6.3.
To display an indexed image we write

-~ >> imshow(X, map)

or, alternatively,

- >> image(X)
+>> colormap(map)

A colormap is stored with an indexed image and is automatically loaded with
the image when function imread is used to load the image.

&b
r & |b

== 7k |8k | e[~ kth row

Z rLigelby

map

2-D integer array, X .

Value of circled element = k

6.1 & Color Image Representation in MATLAB 197

If three columns of
map are equal, then
the colormap be-
comes a grayscale
map.

FIGURE 6.3
Elements of an
indexed image.
Note that the
value of an
element of integer
array X
determines the
row number in
the colormap.
Each row contains
an RGB triplet,
and L is the total
number of rows.

198 Chapter 6 @ Color Image Processing

'mépprox

. ‘whitebg

TABLE 6.1
RGB values of

some basic colors.

The long or short
names (enclosed
by quotes) can be
used instead of
the numerical
triplet to specify
an RGB color.

‘Other colors in addition to the ones shown in Table 6.1 involve fractional val-
yes. For instance, [.5 .5 .5]isgray,[.5 O 0] isdarkred,and [.49 1 .83]

is aquamarine. '
" MATLAB provides several predefined color maps, accessed using the

‘command

Sometimes it is necessary to approximate an indexed image by one with
fewer colors. For this we use function imapprox, whose syntax is

[Y, newmap]l = imapprox(X, map, n)

This function returns an array Y with colormap newmap, which has at most n colors,
The input array X can be of class uint8, uint16,or double. The output Y is of class
uint8 if n is less than or equal to 256. If n is greater than 256, Y is of class double,

When the number of rows in map is less than the number of distinct integer val-
ues in X, multiple values in X are displayed using the same color in map. For exam-
ple, suppose that X consists of four vertical bands of equal width, with values 1, 64,
128, and 256. If we specify the colormapmap = [0 0 0; 1 1 1],then all the e-
ements in X with value 1 would point to the first row (black) of the map and all the
other elements would point to the second row (white). Thus, the command
imshow(X, map) would display an image with a black band followed by three
white bands. In fact, this would be true until the length of the map became 65, at
which time the display would be a black band, followed by a gray band, followed
by two white bands. Nonsensical image displays can result if the length of the map
exceeds the allowed range of values of the elements of X.

There are several ways to specify a color map. One approach is to use the
statement

>> colormap(map_name)

which sets the colormap to the matrix map_name; an example is

>> colormap (copper)

where copper is one of the prespecified MATLAB colormaps. The colors in
this map vary smoothly from black to bright copper. If the last image displayed
was an indexed image, this command changes its colormap to copper. Alter-
natively, the image can be displayed directly with the desired colormap:

“>> imshow(X, copper)

Table 6.2 lists some of the colormaps available in MATLAB. The length (number
. of colors) of these colormaps can be specified by enclosing the number in paren-
- theses. For example, gray (16) generates a colormap with 16 shades of gray.

>> map(k, :) = [r(k k) b(k
PIo 9 Tt st vt 16.1.3 IPT Functions for Manipulating RGB and Indexed Images
Table 6.3 lists the IPT functions suitable for converting between RGB, in-
“dexed, and gray-scale images. For clarity of notation in this section, we use
. rgb_image to denote RGB images, gray_image to denote gray-scale images,
“bw to denote black and white images, and X, to denote the data matrix compo-
nent of indexed images. Recall that an indexed image is composed of an inte-
ger data matrix and a colormap matrix.

Function dither is applicable both to gray-scale and color images. Dither-
ing is a process used mostly in the printing and publishing indust.ry to give the
visual impression of shade variations on a printed page that consists of dots. In
the case of gray-scale images, dithering attempts to capture shades gf gray by
producing a binary image of black dots on a white background (or vice versa).

The sizes of the dots vary, from small dots in light areas to increasingly larger

where [r(k) g(k) b(k)] are RGB values that specify one row of a col-
ormap. The map is filled out by varying k.

Table 6.1 lists the RGB values for some basic colors. Any of the three for-
mats shown in the table can be used to specify colors. For example, the back-
ground color of a figure can be changed to green by using any of the following -
three statements:

>> whitebg('g')
>> whitebg('green')
>> whitebg([0 1 0])

dots for dark areas. The key issue in implementing a dithering algorithm is a
Long name Short name RGB values tradeoff between “accuracy” of visual perception and computational complex-
Black k [0 00] ity. The dithering approach used in IPT is based on the Floyd-Steinberg algo-
Blue b [00 1] rithm (see Floyd and Steinberg [1975], and Ulichney [1987]). The syntax used
Green 9 [0 1 0] by function dither for gray-scale images is
Cyan c [011]
Red r [10 0] bw = dither(gray_image)
Magenta m [10 1]
oo y [1 10l where, as noted earlier, gray_image is a gray-scale image and bw is the
ihite ! [t dithered result (a binary image).

6.1 @ Color Iinage Representation in MATLAB

. u:;",hdither

199

200 Chapter 6 @ Color Image Processing

TABLE 6.2
Some of the
MATLAB
predefined
colormaps.

TABLE 6.3

IPT functions for
converting
between RGB,
indexed, and gray-
scale intensity
images.

When working with color images, dithering is used pri. -ipally in conjunc-
ijon with function rgb2ind to reduce the number of colors in an image. This
function is discussed later in this section.

Function grayslice has the syntax

X = grayslice(gray_image, n)

This function produces an indexed image by thresholding gray_image with
- threshold values

As noted earlier, the resulting indexed image can be viewed with the com-
~mand imshow(X, map) using a map of appropriate length [e.g., jet (16)]. An
lternate syntax is

X = grayslice(gray_image, v)

where v is a vector whose values are used to threshold gray_image. When
used in conjunction with a colormap, grayslice is a basic tool for pseudocol-
“or image processing, where specified gray intensity bands are assigned differ-
“ent colors. The input image can be of class uint8, uint16, or double. The
‘threshold values in v must between 0 and 1, even if the input image is of class
‘uint8 or uint16. The function performs the necessary scaling.

Function gray2ind, with syntax

[X, map] = gray2ind(gray_image, n)

scales, then rounds image gray_image to produce an indexed image X with

Name Description
autumn Varies smoothly from red, through orange, to yellow.
bone A gray-scale colormap with a higher value for the blue component.
This colormap is useful for adding an “electronic” look to gray-
scale images.
colorcube Contains as many regularly spaced colors in RGB color space as
possible, while attempting to provide more steps of gray, pure red,
pure green, and pure blue.
cool Consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.
copper Varies smoothly from black to bright copper.
flag Consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.
gray Returns a linear gray-scale colormap.
hot Varies smoothly from black, through shades of red, orange, and
yellow, to white.
hsv Varies the hue component of the hue-saturation-value color
model. The colors begin with red, pass through yellow, green, cyan,
blue, magenta, and return to red. The colormap is particularly
appropriate for displaying periodic functions.
jet Ranges from blue to red, and passes through the colors cyan,
yellow, and orange.
lines Produces a colormap of colors specified by the ColorOrder
property and a shade of gray. Consult online help regarding
function Colororder.
pink Contains pastel shades of pink. The pink colormap provides sepia
tone colorization of grayscale photographs.
prism Repeats the six colors red, orange, yellow, green, blue, and violet.
spring Consists of colors that are shades of magenta and yellow.
summer Consists of colors that are shades of green and yellow.
white This is an all white monochrome colormap.
winter Consists of colors that are shades of blue and green.
Function Purpose
dither Creates an indexed image from an RGB image by dithering,
grayslice Creates an indexed image from a gray-scale intensity image by
multilevel thresholding,
gray2ind Creates an indexed image from a gray-scale intensity image.
ind2gray Creates a gray-scale intensity image from an indexed image.
rgb2ind Creates an indexed image from an RGB image.
ind2rgb Creates an RGB image from an indexed image.
rgb2gray Creates a gray-scale image from an RGB image.

colormap gray (n).If n is omitted, it defaults to 64. The input image can be of
class uint8, uint16, or double.The class of the output image X is uint8 if n is
less than or equal to 256, or of class uint16 if n is greater than 256.

Function ind2gray, with the syntax

gray_image = ind2gray (X, map)

converts an indexed image, composed of X and map, to a gray-scale image.
Array X can be of class uint8, uint16, or double. The output image is of class
double.

The syntax of interest in this chapter for function rgb2ind has the form

[X, map] = rgb2ind(rgb_image, n, dither_option)

: Where n determines the length (number of colors) of map, and dither_option
~an have one of two values: 'dither' (the default) dithers, if necessary, to

6.1 m Color Image Representation in MATLAB

ghéyslice

201

202 Chapter b @ Color Image Processing

6.1 @ Color Image Representation in MATLAB 203

“in‘d;’r‘gb

,»:',,v’qi‘r'g‘ngray gray_image = rgb2gray(rgb_image)
converts an RGB image to a gray-scale image. The input RGB image can be of
class uint8, uint16, or double; the output image is of the same class as the
input.
EXAMPLE 6.1: Function rgb2ind is quite useful for reducing the number of colors in an:
Mlustration of RGB image. As an illustration of this function, and of the advantages of using
some of the the dithering option, consider Fig, 6.4(a), which is a 24-bit RGB image, f:
functions in . .
Table 6.3, Figures 6.4(b) and (c) show the results of using the commands

achieve better color resolution at the expense of spatial resolution; conversely,

‘nodither' maps each color in the original image to the closest color in the new

map (depending on the value of n). No dithering is performed. The input image

can be of class uint8, uint16, or double. The output array, X, is of class uint8 it

n is less than or equal to 256; otherwise it is of class uint16. Example 6.1 shows

the effect that dithering has on color reduction.
Function ind2rgb, with syntax

rgb_image = ind2rgb(X, map)

converts the matrix X and corresponding colormap map to RGB format; X can

be of class uint8, uint16, or double. The output RGB image is an

M X N X 3 array of class double.
Finally, function rgb2gray, with syntax

>> [X1, map1] = rgb2ind(f, 8, 'nodither');
>> imshow(X1, map1l)

and

>> [X2, map2] = rgb2ind(f, 8, 'dither’);
>> figure, imshow(X2, map2)

Both images have only 8 colors, which is a significant reduction in the number
of possible colors in f, which, for a 24-bit RGB image exceeds 16 million, as
mentioned earlier. Figure 6.4(b) has noticeable false contouring, especially in
the center of the large flower. The dithered image shows better tonality, and
considerably less false contouring, a result of the “randomness” introduced by
dithering. The image is a little blurred, but it certainly is visually superior to
Fig. 6.4(b).

The effects of dithering are usually better illustrated with gray-scale images.
Figures 6.4(d) and (e) were obtained using the commands

>> g = rgb2gray(f};
>> g1 = dither(g);
>> figure, imshow(g); figure, imshow(gl)

a
bc
de

FIGURE 6.4

(a) RGB image.
(b) Number of
colors reduced

to 8 without
dithering.

(c¢) Number of
colors reduced to
8 with dithering.
(d) Gray-scale
version of (a)
obtained using
function
rgbh2gray.

(e) Dithered gray-
scale image (this
is a binary image).

204

Chapter 6 @ Color Image Processing

The image in Fig. 6.4(e) is a binary image, which again represents a significay R 1.000 0956 0621 || Y
degree of data reduction. By looking at Figs. 6.4(c) and (e), it is clear wh Gl=11000 -0272 —0647 || I
dithering is such a staple in the printing and publishing industry, especially ip B 1000 —1.106 1703 ||

situations (such as in newspapers) where paper quality and printing resolutig

are low. 1PT function ntsc2rgb implements this equation:

. rgb_image = ntsc2rgb(yiq_image
Converting to Other Color Spaces g°_imag 9b{yiq_image)

As explained in the previous section, the toolbox represents colors as RGB va] Both the input and output images are of class double.

ues, directly in an RGB image, or indirectly in an indexed image, where the col
ormap is stored in RGB format. However, there are other color spaces (als
called color models) whose use in some applications may be more convenies
and/or appropriate. These include the NTSC, YCbCr, HSV, CMY, CMYX, and
HSI color spaces. The toolbox provides conversion functions. from RGB to Fh(;: stored as two color-difference components, Cb and Cr. Component Cb is the dif-
NTSC, YCbCr, HSV and CMY color spaces, and bac.k. anctlops for converting ence between the blue component and a reference value, and component Cr is
to and from the HSI color space are developed later in this section. the difference between the red component and a reference value (Poynton
96]). The transformation used by IPT to convert from RGB to YCbCr is

6.2.2 The YCbCr Color Space

The YCbCr color space is used widely in digital video. In this format, luminance
ormation is represented by a single component, Y, and color information is

91
6.1 NTSC Color Space Y 16 65481 128553 24966 |[R
The NTSC color system is used in television in the United States. One of the Ch | =128 |+ | -37797 —74203 112,000 | G
main advantages of this format is that gray-scale information is separate from Cr 128 112000 —-93.786 -18214 || B

color data, so the same signal can be used for both color and monochrome:
television sets. In the NTSC format, image data consists of three components
luminance (), hue (1), and saturation (Q), where the choice of the letters YIQ
is conventional. The luminance component represents gray-scale informatior,
and the other two components carry the color information of a TV signal. The;
YIQ components are obtained from the RGB components of an image using
the transformation .

The conversion function is
ycbcr_image = rgb2ycber(rgb_image)

e input RGB image can be of class uint8, uint16, or double. The output
mage is of the same class as the input. A similar transformation converts from
YCbCr back to RGB:

Y 0299 0587 0114 || R
I |=[059%6 -0274 -0322 | G rgb_image = ycbcr2rgb(ycber_image)
Q 0211 -0523 0312 || B

The input YCbCr image can be of class uint8,uint16, or double. The output
Note that the elements of the first row sum to 1 and the elements of the ne Image is of the same class as the input.
two rows sum to 0. This is as expected because for a gray-scale image all the:
RGB components are equal, so the I and Q components should be 0 for suc

an image. Function rgb2ntsc performs the transformation:

2.3 The HSV Color Space

SV (hue, saturation, value) is one of several color systems used by people to
Select colors (e.g., of paints or inks) from a color wheel or palette. This color
ystem is considerably closer than the RGB system to the way in which hu-
-mans experience and describe color sensations. In artist’s terminology, hue,
aturation, and value refer approximately to tint, shade, and tone.

-~ The HSV color space is formulated by looking at the RGB color cube along
s gray axis (the axis joining the black and white vertices), which results in the
Xagonally shaped color palette shown in Fig. 6.5(a). As we move along the
ertical (gray) axis in Fig. 6.5(b), the size of the hexagonal plane that is perpen-
dicular to the axis changes, yielding the volume depicted in the figure. Hue is

yiq_image = rgb2ntsc(rgb_image)

where the input RGB image can be of class uint8, uint16, or double. Th
output image is an M X N X 3 array of class double. Component imag
yigq_image(:, :, 1) istheluminance, yiq_image(:, :, 2) isthe hue,an
yig_image(:, :, 3) isthe saturation image.

Similarly, the RGB components are obtained from the YIQ component
using the transformation:

6.2 m Converting to Other Color Spaces 205

To see the transforma-
tion matrix used to
convert from YCbCr
to RGB, type the fol-
lowing command at
the prompt:

>> edit ycber2rgb.

206 Chapter 6 @ Color Image Processing

ab

FIGURE 6.5

(a) The HSV
color hexagon.
(b) The HSV

hexagonal cone.

Most devices that deposit colored pigments on paper, such as color printers
and copiers, require CMY data input or perform an RGB to CMY conversion
internally. This conversion is performed using the simple equation

120°
Green Yellow

Cyan C 1 R
Mi=|1]|-|G
Y 1 B

where the assumption is that all color values have been normalized to the range
0,1]. This equation demonstrates that light reflected from a surface coated with
pure cyan does not contain red (thatis, C = 1 — R in the equation). Similarly,
pure magenta does not reflect green, and pure yellow does not reflect blue. The
preceding equation also shows that RGB values can be obtained easily from a set
of CMY values by subtracting the individual CMY values from 1.

In theory, equal amounts of the pigment primaries, cyan, magenta, and yel-
ow should produce black. In practice, combining these colors for printing pro-
duces a muddy-looking black. So, in order to produce true black (which is the
predominant color in printing), a fourth color, black, is added, giving rise to the
CMYK color model. Thus, when publishers talk about “four-color printing,”
hey are referring to the three-colors of the CMY color model plus black.

" Function imcomplement introduced in Section 3.2.1 can be used to convert
rom RGB to CMY:

—

expressed as an angle around a color hexagon, typically using the red axis as the:
0° axis. Value is measured along the axis of the cone. The V' = 0 end of the axis
is black. The V = 1 end of the axis is white, which lies in the center of the full:.
color hexagon in Fig. 6.5(a). Thus, this axis represents all shades of gray. Satura-
tion (purity of the color) is measured as the distance from the V' axis. !

The HSV color system is based on cylindrical coordinates. Converting from
RGB to HSV is simply a matter of developing the equations to map RGB val-
ues (which are in Cartesian coordinates) to cylindrical coordinates. This topic:
is treated in detail in most texts on computer graphics (e.g., see Rogers [1997])
so we do not develop the equations here.

The MATLAB function for converting from RGB to HSV is rgh2hsv,-
whose syntax is

cmy_image = imcomplement (rgb_image)
We use this function also to convert a CMY image to RGB:

rgb_image = imcomplement (cmy_image)

2.5 The HSI Color Space

‘With the exception of HSV, the color spaces discussed thus far ar- not well
uited for describing colors in terms that are practical for human interpreta-
ion. For example, one does not refer to the color of an automobile by giving
he percentage of each of the pigment primaries composing its color.

When humans view a color object, we tend to describe it by its hue, satura-
ion, and brightness. Hue is an attribute that describes a pure color (e.g., pure
ellow, orange, or red), whereas saturation gives a measure of the degree to
which a pure color is diluted by white light. Brightness is a subjective descrip-
or that is practically impossible to measure. It embodies the achromatic no-
ion of intensity and is a key factor in describing color sensation. We do know
that intensity (gray level) is a most useful descriptor of monochromatic im-
- ages. This quantity definitely is measurable and easily interpretable.

The color space we are about to present, called the HST (hue, saturation, in-
ensity) color space, decouples the intensity component from the color-carrying
formation (hue and saturation) in a color image. As a result, the HSI model is
n ideal tool for developing image-processing algorithms based on color
escriptions that are natural and intuitive to humans who, after all, are the
evelopers and users of these algorithms. The HSV color space is somewhat

hsv_image = rgb2hsv(rgb_image)

The input RGB image can be of class uint8, uint16, or double; the output
image is of class double. The function for converting from HSV back to RGB-
is hsva2rgh:

rgb_image = hsv2rgb(hsv_image}

The input image must be of class double. The output also is of class double.

5.2.4 The CMY and CMYK Color Spaces

Cyan, magenta, and yellow are the secondary colors of light or, alternatively,
the primary colors of pigments. For example, when a surface coated with cyant
pigment is illuminated with white light, no red light is reflected from the sur-
face. That is, the cyan pigment subtracts red light from reflected white light,
which itself is composed of equal amounts of red, green, and blue light.

6.2 # Converting to Other Color Spaces

207

208 Chapter 6 @ Color Image Processing

a'b

FIGURE 6.6
Relationship
between the RGB
and HSI color
models.

similar, but its focus is on presenting colors that are meaningful when interpret. Green Yellow
ed in terms of a color artist’s palette. M

As discussed in Section 6.1.1, an RGB color image is composed of three Red
monochrome intensity images, so it should come as no surprise that we should ‘

be able to extract intensity from an RGB image. This becomes quite clear if we

Cyan

take the color cube from Fig. 6.2 and stand it on the black, (0,0,0), vertex:: Blue Magenta

with the white vertex, (1, 1, 1), directly above it, as Fig. 6.6(a) shows. As noted’

in connection with Fig. 6.2, the intensity is along the line joining these two ve _

tices. In the arrangement shown in Fig. 6.6, the line (intensity axis) joining the Green Yellow Green Yellow Green

black and white vertices is vertical. Thus, if we wanted to determine the intens

sity component of any color point in Fig. 6.6, we would simply pass a plane: Red Cyan Red Cyan Vellow

perpendicular to the intensity axis and containing the color point. The inter-
section of the plane with the intensity axis would give us an intensity value in
the range [0, 1]. We also note with a little thought that the saturation (purity). Blue Magenta Blue Magenta Blue Magenta Red
of a color increases as a function of distance from the intensity axis. In fact, the.
saturation of points on the intensity axis is zero, as evidenced by the fact that
all points along this axis are gray.
In order to see how hue can be determined from a given RGB point, con-
sider Fig. 6.6(b), which shows a plane defined by three points, (black, white,
and cyan). The fact that the black and white points are contained in the plane:
tells us that the intensity axis also is contained in the plane. Furthermore, we
see that all points contained in the plane segment defined by the intensity axis
and the boundaries of the cube have the same hue (cyan in this case). This is;
because the colors inside a color triangle are various combinations or mixtures
of the three vertex colors. If two of those vertices are black and white, and the
third is a color point, all points on the triangle must have the same hue since
the black and white components do not contribute to changes in hue (of:
course, the intensity and saturation of points in this triangle do change). By ro--
tating the shaded plane about the vertical intensity axis, we would obtain dif-
ferent hues. From these concepts we arrive at the conclusion that the hue,
saturation, and intensity values required to form the HSI space can be ob-
tained from the RGB color cube. That is, we can convert any RGB point to a
corresponding point is the HSI color model by working out the geometrical
formulas describing the reasoning just outlined in the preceding discussion.

Based on the preceding discussion, we see that the HSI space consists of a
vertical intensity axis and the locus of color points that lie on a plane perpen-
dicular to this axis. As the plane moves up and down the intensity axis, the
boundaries defined by the intersection of the plane with the faces of the cube
have either a triangular or hexagonal shape. This can be visualized more read-
ily by looking at the cube down its gray-scale axis, as shown in Fig. 6.7(a). In
his plane we see that the primary colors are separated by 120°. The secondary
olors are 60° from the primaries, which means that the angle between sec-
ndary colors also is 120°.

- Figure 6.7(b) shows the hexagonal shape and an arbitrary color point
shown as a dot). The hue of the point is determined by an angle from some
eference point. Usually (but not always) an angle of 0° from the red axis des-
gnates 0 hue, and the hue increases counterclockwise from there. The satura-
ion (distance from the vertical axis) is the length of the vector from the origin
o the point. Note that the origin is defined by the intersection of the color
lane with the vertical intensity axis. The important components of the HSI
color space are the vertical intensity axis, the length of the vector to a color
“point, and the angle this vector makes with the red axis. Therefore, it is not un-
‘usual to see the HSI plane defined is terms of the hexagon just discussed, a tri-
‘angle, or even a circle, as Figs. 6.7(c) and (d) show. The shape chosen is not
Important because any one of these shapes can be warped into one of the
‘other two by a geometric transformation. Figure 6.8 shows the HSI model
based on color triangles and also on circles.

'Converting Colors from RGB to HSI
In the following discussion we give the RGB to HSI conversion equations
-Without derivation. See the book Web site (the address is listed in Section 1.5)

for a detailed derivation of these equations. Given an image in RGB color for-
mat, the / component of each RGB pixel is obtained using the equation

=] ifB=G
360 -0 ifB>G

White White

Cyan

Blue Blue

6.2 '8 Converting to Other Color Spaces 209

a
bcd
FIGURE 6.7 Hue and
saturation in the HSI
color model. The dot
is an arbitrary color
point. The angle from
the red axis gives the
hue, and the length of
the vector is the
saturation. The
intensity of all colors
in any of these planes
is given by the
position of the plane
on the vertical
intensity axis.

210 Chapter 6 @ Color Image Processing

a
b

FIGURE 6.8 The
HSI color model
based on (a)
triangular and (b)
circular color
planes. The
triangles and
circles are
perpendicular to
the vertical
intensity axis.

Yellow
Red

Magenta

6.2 m Converting to Other Color Spaces

H(R-G)+ (R - B)]
[(R - G)* + (R — B)(G - B)]'*

1

8 = cos

The saturation component is given by

3

S=1"®+6+B

[min(R, G, B)]
inally, the intensity component is given by

1
I= E(R + G + B)

t is assumed that the RGB values have been normalized to the range [0, 1],
d that angle 6 is measured with respect to the red axis of the HSI space, as in-
icated in Fig. 6.7. Hue can be normalized to the range [0, 1] by dividing by 360°
1l values resulting from the equation for H. The other two HSI components al-
ready are in this range if the given RGB values are in the interval [0, 1].

‘Converting Colors from HSI to RGB

iven values of HSI in the interval [0, 1], we now find the corresponding RGB
values in the same range. The applicable equations depend on the values of H.
There are three sectors of interest, corresponding to the 120° intervals in the
eparation of primaries (see Fig. 6.7). We begin by multiplying H by 3607,
which returns the hue to its original range of [0°, 360°].

‘RG sector (0° = H < 120°): When H is in this sector, the RGB components
are given by the equations

B=1I(1-215)
Scos H
=1+ —
R L cos(60° — H)

and

G =3I - (R + B)

GB sector (120° = H < 240°): If the given value of H is in this sector, we
first subtract 120° from it:

H=H - 120°
Then the RGB components are
R=1I(1-5)
G=1 Scos H

+ —_—
cos(60° — H)

211

212 Chapter 6 ® Color Image Processing

and
B=3-(R+G)

BR sector (240° < H = 360°): Finally, if H is in this range, we subtract 24
from it:

H=H - 240°
Then the RGB components are
G=1I(1-29)

Scos H
B = I,:l " cos(60° — H):l

R=3I—- (G + B)

Use of these equations for image processing is discussed later in this chapter.

and

An M-function for Converting from RGB to HSI

The following function,

rgb2hsi hsi = rgb2hsi(rgb)

R e —

implements the equations just discussed for converting from RGB to HSL To .

simplify the notation, we use rgb and hsi to denote RGB and HSI images, re-
spectively. The documentation in the code details the use of this function.

function hsi = rgb2hsi(rgb)

%RCGB2HSI Converts an RGB image to HSI.

HSI = RGB2HSI(RGB) converts an RGB image to HSI. The input image
is assumed to be of size M-by-N-by-3, where the third dimension
accounts for three image planes: red, green, and blue, in that
order. If all RGB component images are equal, the HSI conversion
is undefined. The input image can be of class double (with values
in the range [0, 1]), uint8, or uint16.

The output image, HSI, is of class double, where:

o d° O° o o oF I O OF of o oP

hsi(:, 1, 1) = hue image normalized to the range [0, 1] by
dividing all angle values by 2*pi.

hsi(:, :, 2) = saturation image, in the range [0, 1].

hsi(:, :, 3) = intensity image, in the range [0, 1].

% Extract the individual component immages.
rgb = im2double(rgb);

ro=orgh(:, 1, 1);
g =rgb(:, :, 2);
b = rgb(:, :, 3);

% Implement the conversion equations.
num = 0.5*((r — g) + (r — b));

WO DR 1D T e e

do‘

= acos{num./(den + eps));

H/(2*pi);

= min(min(r‘, g)! b);
=pr+g+b;

den == 0) = eps;

1 — 3.* num./den;

H(S == 0) = 0;

I'=(r+g+b)/3;

sqrt((r — g)."2 + (r = b).*(g — b));

6.2 & Converting to Other Color Spaces

% Combine all three results into an hsi image.

hsi = Cat(ss H, S, I);

An M-function for Converting from HSI to RGB

The following function,

hsi(:, :, 1)

hsi(:, :, 3)

Implement the conversion equations.
zeros(size(hsi, 1), size(hsi, 2))
zeros(size(hsi, 1), size(hsi, 2))
zeros(size(hsi, 1), size(hsi, 2))

RG sector (0 <= H < 2*%pi/3).
= find((0 <= H) & (H < 2*pi/3));
B(idx) = I(idx) .* (1 — S(idx)):

n

-
Q
>

rgb = hsi2rgb(hsi)

H
b
H

hsi2rgb

213

P

implements the equations for converting from HSI to RGB. The documenta-
tion in the code details the use of this function.

RGB = HSI2RGB(HSI) converts an HSI image to RGB, where HSI
is assumed to be of class double with:
hue image, assumed to be in the range
[0, 1] by having been divided by 2*pi.
hsi(:, :, 2) = saturation image, in the range [0, 1].

= intensity image, in the range [0, 1].

The components of the output image are:

rgb(:, :, 1) = red.
rgb(:, :, 2) = green.
rgb(:, :, 3) = blue.
Extract the individual HSI component images.
= hsi(:, 1, 1) * 2 * pi;
= hsi(:, :, 2);
= hsi(:, :, 3);

214

EXAMPLE 6.2:
Converting from
RGB to HSIL.

abec
FIGURE 6.9 HSI component images of an image of an RGB color cube. (a) Hue, (b) saturation, and (¢}
intensity images.

Chapter 6 @ Color Image Processing

from 0° to 360° (i.e., from the lowest to highest possible values of hue). This
is precisely what Fig. 6.9(a) shows because the lowest value is represented as
plack and the highest value as white in the figure.

The saturation image in Fig. 6.9(b) shows progressively darker values to-
ward the white vertex of the RGB cube, indicating that colors become less and
less saturated as they approach white. Finally, every pixel in the intensity
image shown in Fig. 6.9(c) is the average of the RGB values at the corre-
sponding pixel in Fig. 6.2(b). Note that the background in this image is white
because the intensity of the background in the color image is white. It is black
in the other two images because the hue and saturation of white are zero. #

R(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx)) ./ ...
cos(pi/3 — H(idx)));
G(idx) = 3*I(idx) — (R(idx) + B(idx));

% BG sector (2*pi/3 <= H < 4*pi/3).
idx = find((2*pi/3 <= H) & (H < 4*pi/3));
X) = I{idx) .* (1 — S(idx));
X I(idx) .* (1 + S(idx) .* cos(H(idx) — 2*pi/3) ./
cos (pi — H(idx)));
B(idx) = 3*I(idx) — (R(idx) + G(idx));

% BR sector.

idx = find((4*pi/3 <= H) & (H <= 2*pi));

G(idx) = I(idx) .* (1 — S(idx));

B(idx) I(idx) .* (1 + S(idx) .* cos(H(idx) — 4*pi/3) ./ ...
cos(5*pi/3 — H(ddx)));

-
1}

The Basics of Color Image Processing

It

In this section we begin the study of processing techniques applicable to color
images. Although they are far from being exhaustive, the techniques devel-
oped in the sections that follow are illustrative of how color images are han-
dled for a variety of image-processing tasks. For the purposes of the following
discussion we subdivide color image processing into three principal areas:
(1) color transformations (also called color mappings}; (2) spatial processing of
individual color planes; and (3) color vector processing. The first category deals
with processing the pixels of each color plane based strictly on their values and
not on their spatial coordinates. This category is analogous to the material in
Section 3.2 dealing with intensity transformations. The second category deals
with spatial (neighborhood) filtering of individual color planes and is analo-
gous to the discussion in Sections 3.4 and 3.5 on spatial filtering.

" The third category deals with techniques based on processing all compo-
tients of a color image simultaneously. Because full-color images have at least
three components, color pixels really are vectors. For example, in the RGB sys-
tem, each color point can be interpreted as a vector extending from the origin
to that point in the RGB coordinate system (see Fig. 6.2).

Let ¢ represent an arbitrary vector in RGB color space:

R(idx) = 3*I(idx) — (G(idx) + B(idx)});
% Combine all three results into an RGB image. Clip to [0, 1] to "

% compensate for floating-point arithmetic rounding effects.
rgb = cat(3, R, G, B);

rgb = max(min(rgb, 1), 0); —"

1]

Figure 6.9 shows the hue, saturation, and intensity components of an
image of an RGB cube on a white background, similar to the image in:
Fig. 6.2(b). Figure 6.9(a) is the hue image. Its most distinguishing feature is.
the discontinuity in value along a 45° line in the front (red) plane of the.
cube. To understand the reason for this discontinuity, refer to Fig. 6.2(b),
draw a line from the red to the white vertices of the cube, and select a point ;
in the middle of this line. Starting at that point, draw a path to the right, fol- -
lowing the cube around until you return to the starting point. The major col-
ors encountered on this path are yellow, green, cyan, blue, magenta, and back
to red. According to Fig. 6.7, the value of hue along this path should increase

CR R
c=|¢cg|=|G
Cp B

This equation indicates that the components of ¢ are simply the RGB compo-
nents of a color image at a point. We take into account the fact that the color
components are a function of coordinates (x, y) by using the notation

cr(x, y) R(x,y)
c(x,y) = | cg(x,y) | = | G(x,¥)
CB(x’y) B(x’y)

For an image of size M X N, there are MN such vectors, ¢(x,y), for
*¥=0,1,2,....M —landy=10,1,2,...,N - L.

In some cases, equivalent results are obtained whether color images are
Processed one plane at a time or as vector quantities. However, as explained in

6.3 & The Basics of Color Image Processing

215

216

ab

FIGURE 6.10
Spatial masks for
gray-scale and
RGB color
images.

Chapter 6 @ Color Image Processing

uations given here are straightforward extensions of the intensity tFansforma-
on equation introduced in Section 3.2. As is true of the transformations in that
jon, all n pseudo- or full-color transformation functions {73, T,..., T,} are
independent of the spatial image coordinates (X, ¥). . .
Some of the gray-scale tramsformations introduced in (T,hapter 3, like
complement, which computes the negative of an image, are md.epeHQent of
the gray-level content of the image being transformed. Others, like hlstgq,
which depends on gray-level distribution, are adaptive, but the transfprmatlon
is fixed once the necessary parameters have been estimated. And still others,
ike imadjust, which requires the user to select appropriate curve shgpe para-
meters, are often best specified interactively. A similar situation exists when
working with pseudo- and full-color mappings-—particularly when human
viewing and interpretation (e.g., for color balancing) are involved. In sugh ap-
ylications, the selection of appropriate mapping functions is best accorpphshed
by directly manipulating graphical representations of candidate functions and
iewing their combined effect (in real time) on the images being proc.essed.

- Figure 6.11 illustrates a simple but powerful way to specify mapping fur}c-
ions graphically. Figure 6.11(a) shows a transformation that is fprmed .by lin-
arly interpolating three control points (the circled coordinates 1n.the.f1gure);
ig. 6.11(b) shows the transformation that results from a cubic spline interpo-
ation of the same three points; and Figs. 6.11(c) and (d) provide more complex
linear and cubic spline interpolations, respectively. Both types of interpolation
re supported in MATLAB. Linear interpolation is implemented by using

h

(x3y)

Spatial mask

(x.)
Spatial mask —/

Gray-scale image RGB color image J—‘

more detail in Section 6.6, this is not always the case. In order for independent
color component and vector-based processing to be equivalent, two conditions
have to be satisfied: First, the process has to be applicable to both vectors and
scalars. Second, the operation on each component of a vector must be inde-
pendent of the other components. As an illustration, Fig. 6.10 shows spatial
neighborhood processing of gray-scale and full-color images. Suppose that the
process is neighborhood averaging. In Fig. 6.10(a), averaging would be accom:
plished by summing the gray levels of all the pixels in the neighborhood and
dividing by the total number of pixels in the neighborhood. In Fig. 6.10(b) av-
eraging would be done by summing all the vectors in the neighborhood and di-
viding each component by the total number of vectors in the neighborhood.
But each component of the average vector is the sum of the pixels in the image
corresponding to that component, which is the same as the result that would -
be obtained if the averaging were done on the neighborhood of each compo-.
nent image individually, and then the color vector were formed. ’

z = interplq(x, y, xi)

hich returns a column vector containing the values of the linearly interpolat-
d 1-D function z at points xi. Column vectors x and y specify the horizontal
.and vertical coordinate pairs of the underlying control points. The elements of
X must increase monotonically. The length of z is equal to the length of xi.
Thus, for example,

Color Transformations

The techniques described in this section are based on processing the color
components of a color image or intensity component of a monochrome image ’
within the context of a single color model. For color images, we restrict atten-

>> 7z =

interp1q([0 255}', [0 255]', [0: 255]')

produces a 256-element one-to-one mapping connecting control points (0, 0)

6.4 @ Color Transformations

217

tion to transformations of the form and (255, 255)—thatis,z = [0 1 2 . 2557
s,-=T;-(ri), i=1,2,...,n . .
. T 1 T T T T T T T T T
where r; and s; are the color components of the input and output images, n is -. ! E ’: oo P A
the dimension of (or number of color components in) the color space of r;,and IR i /ol B YAY SRR pRy A BA RS 1o 05 F =N o e
the T; are refer‘red to as full-color transformation (qr mapping) functions. ‘ shoobo i Lo osbo-t i /. 05k--ibfiocaoo| osbo-io—ibaa.
If the input images are monochrome, then we write an equation of the form - : P A ! ! ! ! ! ! X | {
. | S S [P . [ER I N S . S R S Y S 0.25_.._.1.__4_ B o
BT i=12,00m 2 e R A e s Y
) ! | | | | | 1
where r denotes gray-level values, s; and T; are as above, and # is the number of Of5 0,175 1 0925 05 075 1 %6505 67

|
00 0.25 00 025 05 075 1

color components in s;. This equation describes the mapping of gray levels into
arbitrary colors, a process frequently referred to as a pseudocolor transforma-
tion or pseudocolor mapping. Note that the first equation can be used to process

. . . . b i ine i tion.
monochrome images in RGB space if we let ry =r; = r; = r. In either case, the () and (d) cubic spline interpolation

-FIGURE 6.11 Specifying mapping functions using control points: (a) and (¢) linear interpolation, and

218 Chapter 6 m Color Image Processing

ice

-

The development of
funcrion ice, given
in Appendix B, is a
comprehensive illus-
tration of how to de-
sign a graphical user
interface (GUI) in
MATLAB.

TABLE 6.4
Valid inputs for
function ice.

6.4 ® Color Transformations 219

In a similar manner, cubic spline interpolation is implemented using the
spline function,

so typing h at the prompt lists all the properties of the processed image (see
Sections 2.10.6 and 11.1.1 for an explanation of structures). To extract a partic-
ular property, we type h.PropertyName.

Letting T denote an RGB or monochrome image, the following are exam-
sles of the syntax of function ice:

z = spline(x, y, xi)

where variables z, x, y, and xi are as described in the previous paragraph for

interp1q. However, the xi must be distinct for use in function spline. More- 5 ice % Only the ice graphical

over, if y contains two more elements than X, its first and last entries are as- % interface is displayed
sumed to be the end slopes of the cubic spline. The function depicted in > g = ice('image’, f); % Shows and returns the r;1apped
Fig. 6.11(b), for example, was generated using zero-valued end slopes. ‘ % image g.

The specification of transformation functions can be made interactive by
graphically manipulating the control points that are input to functions
interpiq and spline and displaying in real time the results of the transfor-
mation functions on the images being processed. The ice (interactive color
editing) function does precisely this. Its syntax is

>_$ g = ice('image', f, 'wait', 'off'); % Shows g and returns
% the handle.
> ¢ = ice('image', f, 'space', 'hsi'); % Maps RGB image f in HSI space.

Note that when a color space other than RGB is specified, the input image
(whether monochrome or RGB) is transformed to the specified space before
ny mapping is performed. The mapped image is then converted to RGB for
output. The output of ice is always RGB; its input is always monochrome or
RGB.If we type g = ice('image’', f),animage and graphical user interface
GUI) like that shown in Fig. 6.12 appear on the MATLAB desktop. Initially,

g = ice('Property Name', 'Property Value', . . J)

where 'Property Name' and 'Property Value' must appear in pairs, and
the dots indicate repetitions of the pattern consisting of corresponding inpu
pairs. Table 6.4 lists the valid pairs for use in function ice. Some examples are’
given later in this section.
With reference to the 'wait’ parameter, when the 'on' option is selected : e e
either explicitly or by default, the output g is the processed image. In this case, G RAA/SPED
ice takes control of the process, including the cursor, so nothing can be typed.
on the command window until the function is closed, at which time the final
result is image g. When 'off' is selected, g is the handle' of the processed
image, and control is returned immediately to the command window; there-.
fore, new commands can be typed with the ice function still active. To obtain:
the properties of an image with handle g we use the get function i

TR A T TR Lo, A W AU Y ™
Y ICE intaractive Color Editar o L“LI\E-L:_E

Component: [RGB e}
1 T T T Qe

e 7™ Smogth

T Clamp Ends
I~ Show PDF
™ Show COF

h = get(g)

This function returns all properties and applicable current values of the graph-
ics object identified by the handle g. The properties are stored in structure h,

025 os 075 1

Property Name Property Value viop Bars

'image’ An RGB or monochrome input image, f, to be transformed by P Mapimage
interactively specified mappings.

'space’ The color space of the components to be modified. Possible

values are 'rgb’, 'cmy', 'hsi', ‘hsv', 'ntsc’ (or 'yiq‘),and
'yeber'. The defaultis 'rgb'.

'wait' If ‘on’ (the default), g is the mapped input image. If ‘off', @
is the handle of the mapped input image.

tWhenever MATLAB creates a graphics object, it assigns an identifier (called a handle) to the objects
used to access the object’s properties. Graphics handles are useful when modifying the appearance o
graphs or creating custom plotting commands by writing M-files that create and manipulate objects

directly. _IEERE 6.12 The typical opening windows of function ice. (Image courtesy of G. E. Medical Systems.)

220

TABLE 6.5
Manipulating
control points
with the mouse.

EXAMPLE 6.3

Inverse mappings:

monochrome
negatives and
color

complements.

TABLE 6.6
Function of the
checkboxes and
pushbuttons in
the ice GUL

Chapter 6 w1 Color Image Processing

Mouse Action’ Result

Move control point by pressing and dragging.
Add control point. The location of the control point
can be changed by dragging (while still pressing the.’
Shift Key).

Left Button + Control Key Delete control point.

Left Button
Left Button + Shift Key

nent: [RGB BRI E

T Smooth .
% I™-Clamp Ends -
24T Show POF)
L ShawcoF "

¥ For three button mice, the left, middle, and right buttons correspond to the move, add, and delete ope
ations in the table.

the transformation curve is a straight line with a control point at each end
Control points are manipulated with the mouse, as summarized in Table 65
Table 6.6 lists the function of the other GUI components. The following exa
ples show typical applications of function ice.

075
| P Mep Bars:
- M- Mep imsge: L

dividual R, G, and B maps are left in their 1: 1 default states (see the Compo-
nt entry in Table 6.6). For monochrome inputs, this guarantees monochrome
puts. Figure 6.13(b) shows the monochrome negative that results from the
erse mapping. Note that it is identical to Fig. 3.3(b), which was obtained
sing the imcomplement function. The pseudocolor bar in Fig. 6.13(a) is the
otographic negative” of the original gray-scale bar in Fig. 6.12.

Inverse or negative mapping functions also are useful in color processing.
can be seen in Figs. 6.14(a) and (b), the result of the mapping is reminiscent

& Figure 6.13(a) shows the ice interface after the default RGB curve o
Fig. 6.12 is modified to produce an inverse or negative mapping function. Tt
create the new mapping function, control point (0, 0) is moved (by clicking anc
dragging it to the upper-left corner) to (0, 1), and control point (1, 1) is move
similarly to coordinate (1, 0). Note how the coordinates of the cursor are d
played in red in the Input/Output boxes. Only the RGB map is modified; th

GUI Element Function onventional color film negatives. For instance, the red stick of chalk in the
Smooth Checked for cubic spline (smooth curve) interpolation. If tom row of Fig. 6.14(a) is transformed‘tcl) Cyan in Flg' 6.14(b)——the color
unchecked, piecewise linear interpolation is used. ’ omplement pf re;d. The complefnent of a primary color is the mixture of the
Clamp Ends Checked to force the starting and ending curve slopes in cubic ther two primaries (e.g., cyan is blue plus green). As in the gray-scale case,
spline interpolation to 0. Piecewise linear interpolation is not lor complements are useful for enhancing detail that is embedded in dark
affected. gions of color—particularly when the regions are dominant in size. Note that
Show PDF Display probability density function(s) [i.e., histogram(s)] of the Full-color Bar in Fig. 6.13(a) contains the complements of the hues in the
image components affected by the mapping function. ull-color Bar of Fig. 6.12.]
Show CDF Display cumulative distribution function(s) instead of PDFs. i
(Note: PDFs and CDFs cannot be displayed simultaneously.)
Map Image If checked, image mapping is enabled; otherwise it is not.
Map Bars If checked, pseudo- and full-color bar mapping is enabled;
otherwise the unmapped bars (a gray wedge and hue wedge,
respectively) are displayed.
Reset Initialize the currently displayed mapping function and uncheck
all curve parameters.
Reset All Initialize all mapping functions. i
Input/Output Shows the coordinates of a selected control point on the : s
transformation curve. Input refers to the horizontal axis, and i
Output to the vertical axis. _ A
Component Select a mapping function for interactive manipulation. In RGB é
space, possible selections include R, G, B, and RGB (which maps .
all three color components). In HSI space, the options are H, S, 1, H
and HSI, and so on. E

6.4 & Color Transformations

221

ab

FIGURE 6.13

(a) A negative
mapping function,
and (b) its effect
on the
monochrome
image of Fig. 6.12.

Default (i.e., 1:1)
mappings are not
shown in most
examples.

alb

FIGURE 6.14

(a) A full color
image, and (b) its
negative (color
complement).

222

EXAMPLE 6.4:
Monochrome and
color contrast
enhancement.

abc
de f

FIGURE 6.15 Using function ice for monochrome and full color contrast enhancement: (a) and (d) are the
input images, both of which have a “washed-out” appearance; (l?) and (e) show the processed resut
(c) and (f) are the ice displays. (Original monochrome image for this example courtesy of NASA.)

Chapter 6 8 Color Image Processing

® Consider next the use of function ice for monochrome and color contrast
manipulation. Figures 6.15(a) through (c) demonstrate the effectiveness o
ice in processing monochrome images. Figures 6.15(d) through (f) sho
similar effectiveness for color inputs. As in the previous example, mapping
functions that are not shown remain in their default or 1:1 state. In both pr.

cessing sequences, the Show PDF checkbox is enabled. Thus, the histggram of
the aerial photo in (a) is displayed under the gamma-shaped mapping func;
tion (see Section 3.2.1) in (c); and three histograms are provided in (f) fo
the color image in (d)—one for each of its three color components. Although
the S-shaped mapping function in (f) increases the contrast of the image in
(d) [compare it to (e)], it also has a slight effect on hue. The small change o
color is virtually imperceptible in (e), but is an obvious result of the ma
ping, as can be seen in the mapped full-color reference bar in (f). Recall fropn
the previous example that equal changes to the three components of !
RGB image can have a dramatic effect on color (see the color complement
mapping in Fig. 6.14).

i
e

The red, green, and blue components of the input images in Examples 6.3 and
are mapped identically—that is, using the same transformation function. To
void the specification of three identical functions, function ice provides an “all
omponents” function (the RGB curve when operating in the RGB color space)
t is used to map all input components. The remaining examples demonstrate
ransformations in which the three components are processed differently.

As noted earlier, when a monochrome image is represented in the RGB
olor space and the resulting components are mapped independently, the
ransformed result is a pseudocolor image in which input image gray levels
ave been replaced by arbitrary colors. Transformations that do this are useful
ecause the human eye can distinguish between millions of colors—but rela-
ely few shades of gray. Thus, pseudocolor mappings are used frequently to
ake small changes in gray level visible to the human eye or to highlight im-
tant gray-scale regions. In fact, the principal use of pseudocolor is human

jsualization—the interpretation of gray-scale events in an image or sequence
images via gray-to-color assignments.
Figure 6.16(a) is an X-ray image of a weld (the horizontal dark region) con-
aining several cracks and porosities (the bright white streaks running through
- middle of the image). A pseudocolor version of the image in shown in

6.4 ® Color Transformations

223

EXAMPLE 6.5:
Pseudocolor
mappings.

a'b

c.d

FIGURE 6.16

(a) X-ray of a
defective weld;
(b) a pseudo-
color version of
the weld; (¢) and
(d) mapping
functions for the
green and blue
components.
(Original image
courtesy of X-
TEK Systems,
Ltd.)

224 Chopter 6 ™ Color Image Processing

EXAMPLE 6.6:
Color balancing.

abec

FIGURE 6.17 Using function ice for color balancing: (a) an image heavy in magenta; (b) the correct®
image; and (c) the mapping function used to correct the imbalance.

ocess the input in a variety of color spaces, as detailed in Table 6.4. To inter-
‘ ctively modify the CMY components of RGB image f1, for example, the ap-
ropriate ice call is

Fig. 6.16(b); it was generated by mapping the green and blue components
the RGB-converted input using the mapping functions in Figs. 6.16(c) and (d
Note the dramatic visual difference that the pseudocolor mapping makes. The
GUI pseudocolor reference bar provides a convenient visual guide to the
composite mapping. As can be seen in Figs. 6.16(c) and (d), the interactively
specified mapping functions transform the black-to-white gray scale to hueg
between blue and red, with yellow reserved for white. The yellow, of course,
corresponds to weld cracks and porosities, which are the important features in age color. B

this example.

o]

= ice('image', f1, 'space', 'CMY');

Histogram equalization is a gray-level mapping process that seeks to pro-
ce monochrome images with uniform intensity histograms. As discussed in
“Section 3.3.2, the required mapping function is the cumulative distribution
ction (CDF) of the gray levels in the input image. Because color images
ve multiple components, the gray-scale technique must be modified to han-
10re than one component and associated histogram. As might be expect-
t is unwise to histogram equalize the components of a color image
ependently. The result usually is erroneous color. A more logical approach
o spread color intensities uniformly, leaving the colors themselves (ie., the
s) unchanged.
Figure 6.18(a) shows a color image of a caster stand containing cruets and
akers. The transformed image in Fig. 6.18(b), which was produced using the
S transformations in Figs. 6.18(c) and (d), is significantly brighter. Several of
e moldings and the grain of the wood table on which the caster is resting are
ow visible. The intensity component was mapped using the function in
. 6.18(c), which closely approximates the CDF of that component (also dis-
ayed in the figure). The hue mapping function in Fig. 6.18(d) was selected to
prove the overall color perception of the intensity-equalized result. Note
lat the histograms of the input and output image’s hue, saturation, and inten-
¥y.components are shown in Figs. 6.18(e) and (f), respectively. The hue com-
ponents are virtually identical (which is desirable), while the intensity and
turation components were altered. Finally note that, to process an RGB
age in the HSI color space, we included the input property name/value pair
Pace'/'hsi' in the call to ice. b

Figure 6.17 shows an application involving a full-color image, in which it ig
advantageous to map an image’s color components independently. Common|
called color balancing or color correction, this type of mapping has been
mainstay of high-end color reproduction systems but now can be performed
on most desktop computers. One important use is photo enhancement. Al
though color imbalances can be determined objectively by analyzing—with
color spectrometer—a known color in an image, accurate visual assessments
are possible when white areas, where the RGB or CMY components should be:
equal, are present. As can be seen in Fig. 6.17, skin tones also are excelle
samples for visual assessments because humans are highly perceptive of pro
er skin color.

Figure 6.17(a) shows a CMY scan of a mother and her child with an excess:
of magenta (keep in mind that only an RGB version of the image can be di
played by MATLAB). For simplicity and compatibility with MATLAB, fun
tion ice accepts only RGB (and monochrome) inputs as well—but ca

xgin . g L

o8 Lo .

‘The output images generated in the preceding examples in this section are of
¢ RGB and class uint8. For monochrome results, as in Example 6.3, all three
mponents of the RGB output are identical. A more compact representation
tan be obtained via the rgb2gray function of Table 6.3 or by using the command

f2(:, 1, 1);

Where £2 is an RGB image generated by ice and £3 is a standard MATLAB
onochrome image.

64 = Color Transformations 225

EXAMPLE 6.7:
Histogram based
mappings.

226 Chopter 6 ®

ab
cd
e f

FIGURE 6.18
Histogram
equalization
followed by
saturation
adjustment in the
HSI color space:
(a) input image;
(b) mapped
result;

(c) intensity
component
mapping function
and cumulative
distribution
function;

(d) saturation
component
mapping function;
(e) input image’s
component
histograms; and
(f) mapped
result’s
component
histograms.

Color Image Processing

m Spatial Filtering of Color Images

e material in Section 6.4 deals with color transformations performed on sin-
& image pixels of single color component planes. The next level of complexi-
nvolves performing spatial neighborhood processing, also on single image
anes. This breakdown is analogous to the discussion on intensity transforma-
ons in Section 3.2, and the discussion on spatial filtering in Sections 3.4 and
5; We introduce spatial filtering of color images by concentrating mostly on
(B images, but the basic concepts are applicable to other color models as
11. We illustrate spatial processing of color images by two examples of linear
tering: image smoothing and image sharpening.

5.1 Color Image Smoothing

h reference to Fig. 6.10(a) and the discussion in Sections 3.4 and 3.5,
100thing (spatial averaging) of a monochrome image can be accomplished
multiplying all pixel values by the corresponding coefficients in the spatial
ask (which are all 1s) and dividing by the total number of elements in the
k. The process of smoothing a full-color image using spatial masks is
own in Fig. 6.10(b). The process (in RGB space for example) is formulated
e same way as for gray-scale images, except that instead of single pixels we
w deal with vector values in the form shown in Section 6.3.

‘Let S,, denote the set of coordinates defining a neighborhood centered at
,y) in a color image. The average of the RGB vectors in this neighborhood is

1

0675 075

Wy == S el
K(S,I)ES_W

025} 025 . .
i iere K is the number of pixels in the neighborhood. It follows from the dis-
% as 1 ssion in Section 6.3 and the properties of vector addition that
ot ¥ Map Bevs — -
[+ ; Output: & Map Image 1
- e - © 2 R0
O i Gl Bl ™ R YT (Y o Colr i K (s, fcs,,
- : v _ 1
Componert F&————— Componont: [S(xy)=|g¢ X Gls1)
J\ . y (s,1)eS,,
1
u.75»J-- - B(S, t)
\ LK (s.1)es,, i

o3 e Tecognize each component of this vector as the result that we would obtain

Y performing neighborhood averaging on each individual component image,

o f-'j;ifx ’ ,» ng standard gray-scale neighborhood processing. Thus, we conclude that
RN oothing by neighborhood averaging can be carried out on an independent
ooem o 0s v mponent basis. The results would be the same as if neighborhood averaging

Ox o Mep e Resodt | were carried out directly in color vector space.

-As discussed in Section 3.5.1, IPT linear spatial filters for image smoothing
e generated with function fspecial, with one of three options: 'average’,
disk' and 'gaussian' (see Table 3.4). Once a filter has been generated, fil-
tering is performed by using function imfilter, introduced in Section 3.4.1.

6.5 m Spatial Filtering of Color Images

227

228 Chopter 6 ® Color Image Processing

EXAMPLE 6.8:
Color image
smoothing.

6.5 @ Spatial Filtering of Color Images 229

Conceptually, smoothing an RGB color image, fc, with a linear spatial filteg ab
comsists of the following steps: ' cd
1. Extract the three component images: :;?lgég.il;age;
(b) through
>> fR = fe(:, :, 1); G = fc(:, :, 2); fB = fc(:, 1, 3); (d) are the red,
green and blue
2. Filter each component image individually. For example, letting w represey component
a smoothing filter generated using fspecial, we smooth the red comp 1mages,
respectively.

nent image as follows:
>> fR_filtered = imfilter(fR, w);

and similarly for the other two component images.

3. Reconstruct the filtered RGB image:
>> fo_filtered = cat(3, fR_filtered, fG_filtered, f8_filtered);
However, we can perform linear filtering of RGB images in MATLAB usin
the same syntax employed for monochrome images, allowing us to combin

the preceding three steps into one:

>> fc_filtered = imfilter(fc, w);

| Figure 6.19(a) shows an RGB image of size 1197 X 1197 pixels and
Figs. 6.19(b) through (d) are its RGB component images, extracted using the.
procedure described in the previous paragraph. Figures 6.20(a) through (¢}
show the three HSI component images of Fig. 6.19(a), obtained using function
rgb2hsi.

Figure 6.21(a) shows the result of smoothing the image in Fig. 6.19(a) using
function imfilter with the 'replicate’ option and an 'average' filter of
size 25 X 25 pixels. The averaging filter was large enough to produce a signifi
cant degree of blurring. A filter of this size was selected to demonstrate the dif-
ference between smoothing in RGB space and attempting to achieve a similar
result using only the intensity component of the image after it had been con-
verted to the HSI color space. Figure 6.21(b) was obtained using the
commands:

>> h = rgh2hsi(fc);

> H=h, o, 1), 8=h(:, 1, 2); 1= h(:, :, 3);

>> w = fspecial('average', 25);

>> I_filtered = imfilter(I, w, 'replicate');

>> h = cat(3, H, §, I_filtered);

>> f = hsi2rgb(h);

>> f = min(f, 1); % RGB images must have values in the range [0, 1].

>> imshow(f) JCEURE 6.29 from left to right: hue, saturgt?on, and intensity components of Fig. 6.19(a).

230 Chapter 6 @ Color Image Processing

abc

FIGURE 6.21 (a) Smoothed RGB image obtained by smoothing the R, G, and B image planes separate}
(b) Result of smoothing only the intensity component of the HSI equivalent image. (c) Result of smoothin
all three HSI components equally.

Clearly, the two filtered results are quite different. For example, in addition
the image being less blurred, note the green border on the top part of th
flower in Fig. 6.21(b). The reason for this is simply that the hue and saturatio
components were not changed while the variability of values of the intensi
components was reduced significantly by the smoothing process. A logie
thing to try would be to smooth all three components using the same filte
However, this would change the relative relationship between values of
hue and saturation, thus producing nonsensical colors, as Fig. 6.21(c) shows.’

In general, as the size of the mask decreases, the differences obtained whe
filtering the RGB component images and the intensity component of the HS
equivalent image also decrease.

Figure 6.22(a) shows a slightly blurred version, fb, of the image in
g. 6.19(), obtained using a 5 X 5 averaging filter. To sharpen this image we
sed the Laplacian filter mask

> lapmask = [1 1 1; 1 -8 1; 1 1 1];

n, as in Example 3.9, the enhanced image was computed and displayed
sing the commands

> fen = imsubtract(fb, imfilter(fb, lapmask, 'replicate'));
> imshow(fen)

6.5.2 Color Image Sharpening .
here we combined the two required steps into a single command. As in the
revious section, RGB images were treated exactly as monochrome images
, with the same calling syntax) when using imfilter. Figure 6.22(b) shows
e result. Note the significant increase in sharpness of features such as the
ater droplets, the veins in the leaves, the yellow centers of the flowers, and
e green vegetation in the foreground. |

Sharpening an RGB color image with a linear spatial filter follows the sam
procedure outlined in the previous section, but using a sharpening filter in
stead. In this section we consider image sharpening using the Laplacian (se
Section 3.5.1). From vector analysis, we know that the Laplacian of a vector
defined as a vector whose components are equal to the Laplacian of the ind
vidual scalar components of the input vector. In the RGB color system, th
Laplacian of vector ¢ introduced in Section 6.3 is

V2R(x, . . .
Ve(x, y)] = VZG((i i)) m Working Directly in RGB Vector Space
V2B(x, y) As mentjoned in Section 6.3, there are cases in which processes based on indi-

Vidual color planes are not equivalent to working directly in RGB vector
sPaCe This is demonstrated in this section, where we illustrate vector process-
ing by considering two important applications in color image processing: color
edge detection and region segmentation.

which, as in the previous section, tells us that we can compute the Laplacian of
a full-color image by computing the Laplacian of each component image
separately.

6.6 ® Working Directly in RGB Vector Space 231

ab

FIGURE 6.22

(a) Blurred image.
(b) Image
enhanced using
the Laplacian,
followed by
contrast
enhancement
using function
ice.

EXAMPLE 6.9:
Color image
sharpening.

234 Chapter 6 @ Color Image Processing

colorgrad

g e s

EXAMPLE 6.10:
RGB edge
detection using
function
colorgrad.

direction of maximum rate of change of ¢(x, y) as a function (x, y) is give

by the angle
1 28xy
8(x, y) = —tan"I[:———'-—j]
(y) 2 (gxx - gyy)

and that the value of the rate of change (i.e., the magnitude of the gradient) iy
the directions given by the elements of 6(x, y) is given by

1 . 12
FG(X, y) = {5[(&“ + gyy) + (gxx - gyy) cos 26 + 2gxy sin 20]}

Note that 6(x, y) and Fy(x, y) are images of the same size as the input image
The elements of 6(x, y) are simply the angles at each point that the gradient i
calculated, and Fy(x, y) is the gradient image.
Because tan(a) = tan(a £), if 6, is a solution to the preceding tan™
equation, 50 is 6y + 7/2. Furthermore, Fy(x, y) = F3,,(x, y), so F needs to
be computed only for values of 8 in the half-open interval [0, 7). The fact tha
the tan™! equation provides two values 90° apart means that this equation as
sociates with each point (x, y) a pair of orthogonal directions. Along one o
those directions F is maximum, and it is minimum along the other, so the final
result is generated by selecting the maximum at each point. The derivation o
these results is rather lengthy, and we would gain little in terms of the funda-
mental objective of our current discussion by detailing it here. The interested
reader should consult the paper by Di Zenzo [1986] for details. The partial de-
rivatives required for implementing the preceding equations can be comput-
ed using, for example, the Sobel operators discussed earlier in this section.
The following function implements the color gradient for RGB images (see
Appendix C for the code):

b

[VG, A, PPG] = colorgrad(f, T) Letting f represent the RGB image in Fig. 6.24(d), the command
where f is an RGB image, T is an optional threshold in the range [0, 1] (the de-
fault is 0); VG is the RGB vector gradient Fy(x, y); A is the angle image 8(x, y),
in radians; and PPG is the gradient formed by summing the 2-D gradients of the
individual color planes (generated for comparison purposes). These latter gra-
dients are VR(x, y), VG(x, y), and VB(x, y), where the V operator is as de-
fined earlier in this section. All the derivatives required to implement the
preceding equations are implemented in function colorgrad using Sobel oper-
ators. The outputs VG and PPG are normalized to the range [0,1] by colorgrad
and they are thresholded so that VG(x, y) = 0 for values less than or equal to
Tand VG(x, y) = VG(x, y) otherwise. Similar comments apply to PPG.

~[VG, A, PPG] = colorgrad(f);

oduced the images VG and PPG shown in Figs. 6.24(e) and (f). The most im-
rtant difference between these two results is how much weaker the horizon-
edge in Fig. 6.24(f) is than the corresponding edge in Fig. 6.24(e). The
€ason is simple: The gradients of the red and green planes [Figs. 6.24(a) and
P | produce two vertical edges, while the gradient of the blue plane yields a
ngle horizontal edge. Adding these three gradients to form PPG produces a
rtical edge with twice the intensity as the horizontal edge.
On the other hand, when the gradient of the color image is computed directly
ector space [Fig. 6.24(e}], the ratio of the values of the vertical and horizontal
dges is /2 instead of 2. The reason again is simple: With reference to the color
e in Fig. 6.2(a) and the image in Fig. 6.24(d) we see that the vertical edge in the
’10r image is between a blue and white square and a black and yellow square.
me distance between these colors in the color cube is V2, but the distance be-
tween black and blue and yellow and white (the horizontal edge) is only 1. Thus
he ratio of the vertical to the horizontal differences is /2. If edge accuracy is an

Figures 6.24(a) through (c) show three simple monochrome images which,
when used as RGB planes, produced the color image in Fig. 6.24(d). The ob-
jectives of this example are (1) to illustrate the use of function colorgrad,and
(2) to show that computing the gradient of a color image by combining the
gradients of its individual color planes is quite different from computing the
gradient directly in RGB vector space using the method just explained.

6.6 m Working Directly in RGB Vector Space

235

:URE 6.24 (a) through (c) RGB component images (black is 0 and white is 255). (d) Corresponding color
age. (e) Gradient computed directly in RGB vector space. (f) Composite gradient obtained by
iputing the 2-D gradient of each RGB component image separately and adding the results.

236

‘b
¢

FIGURE 6.25

(a) RGB image.
(b) Gradient
computed in RGB
vector space.

(c) Gradient
computed as in
Fig. 6.24(f).

(d) Absolute
difference
between (b) and
(c), scaled to the
range [0, 1].

Chapter & @ Color Image Processing

6.2 Image Segmentation in RGB Vector Space

Segmentation is a process that partitions an image into regions. Although seg-
mentation is the topic of Chapter 10, we consider color region segmentation
riefly here for the sake of continuity. The reader will have no difficulty fol-
owing the discussion.

Color region segmentation using RGB color vectors is straightforward. Sup-
pose that the objective is to segment objects of a specified color range in an
GB image. Given a set of sample color points representative of a color (or
ange of colors) of interest, we obtain an estimate of the “average” or “mean”
‘olor that we wish to segment. Let this average color be denoted by the RGB
olumn vector m. The objective of segmentation is to classify each RGB pixel in
an image as having a color in the specified range or not. To perform this com-
jarison, we need a measure of similarity. One of the simplest measures is the
tuclidean distance. Let z denote an arbitrary point in RGB space. We say that z
imilar to m if the distance between them is less than a specified threshold, T.
'The Euclidean distance between z and m is given by

issue, and especially when a threshold is used, then the difference between the,
two approaches can be significant. For example, if we had used a threshold of ,
the horizontal line in Fig. 6.24(f) would have disappeared.

In practice, when interest is mostly on edge detection with no regard for a
curacy, the two approaches just discussed generally yield comparable result
For example, Figs. 6.25(b) and (c) are analogous to Figs. 6.24(e) and (f). The
were obtained by applying function colorgrad to the image in Fig, 6.25(a
Figure 6.25(d) is the difference of the two gradient images, scaled to the rang
[0, 1]. The maximum absolute difference between the two images is 0.2, whic
translates to 51 gray levels on the familiar 8-bit range [0, 255]. However, thes
two gradient images are quite close in visual appearance, with Fig. 6.25(b
being slightly brighter in some places (for reasons similar to those explained;
the previous paragraph). Thus, for this type of analysis, the simpler approac]
of computing the gradient of each individual component generally is accep
able. In other circumstances (as in the inspection of color differences in auto
mated machine inspection of painted products), the more accurate vecto
approach may be necessary.

D(z,m) = |z — m|
= [(z - m)T(z - m)]"?
= [(zr = mp)* + (26 — mg)* + (z5 — mp)?]"”

there I
¢ RGB components of vectors m and z. The locus of points such that
z,m) = T is a solid sphere of radius 7, as illustrated in Fig. 6.26(a). By def-
nition, points contained within, or on the surface of, the sphere satisfy the
pecified color criterion; points outside the sphere do not. Coding these two
ets of points in the image with, say, black and white, produces a binary, seg-
iented image.

A useful generalization of the preceding equation is a distance measure of
e form

D(z,m) = [(z - m)"C™(z — m)]"”

6.6 ® Working Directly in RGB Vector Space

237

Following conven-
tion, we use a super-
script, T, to indicate
vector or matrix
transposition and a
normal, inline, T to
denote a threshold
value. Care should
be exercised not to
confuse these unre-
lated uses of the
same variable.

a b

FIGURE 6.26 Two
approaches for
enclosing data in
RGB vector space
for the purpose of
segmentation.

238 Chopter 6 ® Color Image Processing

See Section 12.2 for
a detailed discussion
on efficient imple-
mentations for com-
puting the Euclidean
and Mahalanobis
distances.

colorseg
SR ————

EXAMPLE 6.11:
RGB color image
segmentation.

ab

FIGURE 6.27

(a) Pseudocolor
of the surface of
Jupiter’s Moon Io.
{(b) Region of
interest extracted
interactively using
function roipoly.
(Original image
courtesy of
NASA.)

6.6 @ Working Directly in RGB Vector Space

. . . . = ipoly(f); % Select region interactively.
where C is the covariance matrix' of the samples representative of the coJ _ ir:l‘;lﬁggig](.yzr;lask s g1 y
we wish to segment. This distance is commonly referred to as the Makalang = immultiply (ma;k , f Z :, ’ | 2;);

distance. The locus of points such that D(z, m) =< T describes a solid 3-D e[j;
tical body [see Fig. 6.26(b)] with the important property that its principal ax,
are oriented in the direction of maximum data spread. When C = I, the ide
tity matrix, the Mahalanobis distance reduces to the Euclidean distance, Se
mentation is as described in the preceding paragraph, except that the data ar
now enclosed by an ellipsoid instead of a sphere.

Segmentation in the manner just described is implemented by functi
colorseg (see Appendix C for the code), which has the syntax

= immultiply(mask, f(:, :, 3));
cat(3, red, green, blue);
igure, imshow(g)

ere mask is a binary image (the same size as f) with Os in the background
s in the region selected interactively.

Next, we compute the mean vector and covariance matrix of the points in

RO, but first the coordinates of the points in the ROI must be extracted.

[M, N, K] = size(g);

I'= reshape(g, M * N, 3); % reshape is discussed in Sec. 8.2.2.
1dx = find(mask);

I = double(I(idx, 1:3));

[C, m] = covmatrix(I); % See Sec. 11.5 for details on covmatrix.

S = colorseg(method, f, T, parameters)

where method is either 'euclidean' or 'mahalanobis’, f is the RGB ima
to be segmented, and T is the threshold described above. The input paramete
are either mif 'euclidean’ is chosen, or m and C if 'mahalanobis’ is chose
Parameter m is the vector, m, described above, in either a row or column fo:
mat, and C is the 3 X 3 covariance matrix, C. The output, S, is a two-lew
image (of the same size as the original) containing Os in the points failing th
threshold test, and 1s in the locations that passed the test. The 1s indicate th
regions segmented from f based on color content.

e second statement rearranges the color pixels in g as rows of I, and the
d statement finds the row indices of the color pixels that are not black.
iese are the non-background pixels of the masked image in Fig. 6.27(b).
:The final preliminary computation is to determine a value for T. A good
arting point is to let 7 be a multiple of the standard deviation of one of the
lor components. The main diagonal of C contains the variances of the RGB
components, so all we have to do is extract these elements and compute their
square roots:

B Figure 6.27(a) shows a pseudocolor image of a region on the surface of th
Jupiter Moon Io. In this image, the reddish colors depict materials newly ejec
ed from an active volcano, and the surrounding yellow materials are older sul
fur deposits. This example illustrates segmentation of the reddish region usin,
both options in function colorseg. ~d = diag(C);
First we obtain samples representing the range of colors to be segmented d = sqrt(d)’
One simple way to obtain such a region of interest (ROI) is to use functio 22.0643 24.2442 16.1806 d = diag(C)
roipoly described in Section 5.2.4, which produces a binary mask of a regio
selected interactively. Thus, letting f denote the color image in Fig. 6.27(a), th
region in Fig. 6.27(b) was obtained using the commands

The first element of sd is the standard deviation of the red component of the i ¢
olor pixels in the ROI, and similarly for the other two components.
We now proceed to segment the image using values of T equal to multiples
f25, which is an approximation to the largest standard deviation: 7 = 25, 50,
5,100. For the 'euclidean’ option with T = 25, we use

> E25 = colorseg('euclidean', f, 25, m);

1gure 6.28(a) shows the result, and Figs. 6.28(b) through (d) show the seg-
entation results with T" = 50, 75, 100, Similarly, Figs. 6.29(a) through (d)
how the results obtained using the 'mahalanobis' option with the same se-
uence of threshold values.

~Meaningful results [depending on what we consider as red in Fig. 6.27(a)]
ere obtained with the 'euclidean’ option when T = 25 and 50, but
75 and 100 produced significant oversegmentation. On the other hand,

the results with the 'mahalanobis' option make a more sensible transition

*Computation of the covariance matrix of a set of vector samples is discussed in Section 11.5.

239

returns in vector d
the main diagonal of

240

ab
cd

FIGURE 6.28

(a) through

(d) Segmentation
of Fig. 6.27(a)
using option
'euclidean' in
function
colorseg with
T = 25,50,75,
and 100,
respectively.

ab
¢d

FIGURE 6.29
(a) through

(d) Segmentation
of Fig. 6.27(a)
using option
‘'mahalanobis’
in function
colorseg with
T = 25,50,75,
and 100,
respectively.
Compare with
Fig. 6.28.

Chapter 6 @ Color Image Processing

increasing values of T.The reason is that the 3-D color data spread in the
Ol is fitted much better in this case with an ellipsoid than with a sphere.
pte that in both methods increasing T allowed weaker shades of red to be
uded in the segmented regions, as expected. H

mmary

e material in this chapter is an introduction to basic topics in the application and use
olor in image processing, and on the implementation of these concepts using
ATLAB, IPT, and the new functions developed in the preceding sections. The area of
lor models is broad enough so that entire books have been written on just this topic.
¢ models discussed here were selected for their usefulness in image processing, and
o0 because they provide a good foundation for further study in this area.

‘The material on pseudocolor and full-color processing on individual color planes
ovides a tie to the image processing techniques developed in the previous chapters
monochrome images. The material on color vector space is a departure from the
thods discussed in those chapters, and highlights some important differences be-
en gray-scale and full-color image processing, The techniques for color-vector pro-
sing discussed in the previous section are representative of vector-based processes
t include median and other order filters, adaptive and morphological filters, image
toration, image compression, and many others.

® Summary 241

1.1 # Background 243

.f(’r’ y) = 2 T(”’ v"")hll. U..,»('r’ y)

[/ .

Guv,... and A, , in these equations are called forward and inverse trans-
ation kernels, respectively. They determine the nature, computational
p>lexity, and ultimate usefulness of the transform pair. Transform coeffi-
s T(u, v,...) can be viewed as the expansion coefficients of a series ex-
ision of f with respect to {h, , . }. That is, the inverse transformation
mel defines a set of expansion functions for the series expansion of f.
e discrete Fourie; transform (DFT) of Chapter 4 fits this series expan-
nformulation well.” In this case
hll. U(x’ y) = g:l ‘N('¥7 y) = —l_ejzﬂ(‘l.\-/M+UY/N)

V MN
ere j = \/:I, * is the complex conjugate operator, « = 0,1,..., M — 1,
v =20,1,..., N — 1. Transform domain variables v and u represent hori-
tal and vertical frequency, respectively. The kernels are separable since

Puo(%, y) = hu(x)ho(¥)

Preview

When digital images are to be viewed or processed at multiple resolutions, the
discrete wavelet transform (DWT) is the mathematical tool of choice. In add
tion to being an efficient, highly intuitive framework for the representatio
and storage of multiresolution images, the DWT provides powerful insight int
an image’s spatial and frequency characteristics. The Fourier transform, on th
other hand, reveals only an image’s frequency attributes.

In this chapter, we explore both the computation and use of the discret
wavelet transform. We introduce the Wavelet Toolbox, a collection 0
MathWorks’ functions designed for wavelet analysis but not included i
MATLAB’s Image Processing Toolbox (IPT), and develop a compatible set 0
routines that allow basic wavelet-based processing using IPT alone; that i
without the Wavelet Toolbox. These custom functions, in combination with IPT,
provide the tools needed to implement all the concepts discussed in Chapter’
of Digital Image Processing by Gonzalez and Woods [2002]. They are applied i
much the same way—and provide a similar range of capabilities—as IPT func
tions fft2 and 1fft2 in Chapter 4.

L |
h“(x) = \/Meﬂmz.r/M and hu(y) — \/lﬁeﬂm:y/N

d orthonormal since

1 r=s
(rs hs) = 8y 0 otherwise
here () is the inner product operator. The separability of the kernels simpli-
the computation of the 2-D transform by allowing row-column or column-
W passes of a 1-D transform to be used; orthonormality causes the forward
d inverse kernels to be the complex conjugates of one another (they would
identical if the functions were real).
Unlike the discrete Fourier transform, which can be completely defined by
two straightforward equations that revolve around a single pair of transforma-
n kernels (given previously), the term discrete wavelet transform refers to a
class of transformations that differ not only in the transformation kernels em-
loyed (and thus the expansion functions used), but also in the fundamental
Jfature of those functions (e.g., whether they constitute an orthonormal or
orthogonal basis) and in the way in which they are applied (e.g., how many
f._ferem resolutions are computed). Since the DWT encompasses a variety of
Ique but related transformations, we cannot write a single equation that

Background

Consider an image f(x, y) of size M X N whose forward, discrete transform:
T(u,v,...),can be expressed in terms of the general relation

T(u,v,...) = > (X ¥)8uv. (%)
Xy

where x and y are spatial variables and u, v, ... are transform domain varl
ables. Given T(u, v,...), f(x, y) can be obtained using the generalized invers
discrete transform

I‘e”he DFl" formglation of Chapter4.a I/MN term is placed in the inverse transform equation. Equiv-
bntly, It can be incorporated into the forward transform only, or split. as we do here, between the
™Ward and inverse transtormations as I/VMN.

242

244 Chopter 7 @ Wavelets

a'b

FIGURE 7.1

(a) The familiar
Fourier expansion
functions are
sinusoids of
varying frequency
and infinite
duration.

(b) DWT
expansion
functions are
“small waves” of
finite duration

7.2 @ The Fast Wavelet Transform 245

¢ is orthogonal to its integer translates.

e set of functions that can be represented as a series expansion of ¢; , at
ow scales or resolutions (i.e.,small j) is contained within those that can be
represented at higher scales.

The only function that can be represented at every scale is f(x) = 0.

Any function can be represented with arbitrary precision as j — co.

n these conditions are met, there is a companion wavelet i; , that, together
its integer translates and binary scalings, spans—that is, can represent—the
ence between any two sets of ¢; , -representable functions at adjacent scales.

erty 3: Orthogonality. The expansion functions [i.e.,{¢; ((x)}] form an

and varying
frequency.

'I:mormal or biorthogonal basis for the set of 1-D measurable, square-
rable functions. To be called a basis, there must be a unique set of expan-
coefficients for every representable function. As was noted in the
ductory remarks on Fourier kernels, g, , .. = A, ,, . for real, orthonor-
ernels. For the biorthogonal case,

-

completely describes them all. Instead, we characterize each DWT by a tra
form kernel pair or set of parameters that defines the pair. The vari
transforms are related by the fact that their expansion functions are “smal
waves” (hence the name wavelers) of varying frequency and limited durati
[see Fig. 7.1(b)]. In the remainder of the chapter, we introduce a number
these “small wave” kernels. Each possesses the following general properti

1 r=ys
0 otherwise

<hr’ gs) = 8"5 = {

\g’is called the dual of h. For a biorthogonal wavelet transform with scaling
| wavelet functions ¢; (x) and ; x(x), the duals are denoted @; 4(x) and

‘ x), respectively.
Property 1: Separability, Scalability, and Translatability. The kernels can

represented as three separable 2-D wavelets
Yz, y) = $(x)e()
W (% y) = o(x)d(y)
¥P(x,9) = W (x)g(y)

where ¢ (x, y),¢"(x, y), and ¢P(x, y) are called horizontal, vertical, a
diagonal wavelets, respectively, and one separable 2-D scaling function

1 2 The Fast Wavelet Transform

Important consequence of the above properties is that both ¢(x) and y(x)
'be expressed as linear combinations of double-resolution copies of them-
es. That is, via the series expansions

o(x) = S hy(n)V2e(2x — n)
o(x,y) = e(x)e(y) J(x) = S hy(m)V3e(2x —)

Each of these 2-D functions is the product of two 1-D real, square-integrable
scaling and wavelet functions

¢j,k(x) = 2(2Vx ~ k)
Wy u(x) = 2Py(2x — k)
Translation k determines the position of these 1-D functions along the x-axis
scale j determines their width—how broad or narrow they are along x—a d
2/2 controls their height or amplitude. Note that the associated expansioll

functions are binary scalings and integer translates of mother wavelt
¥(x) = g o(x) and scaling function ¢(x) = @q o(x).

re h, and h,—the expansion coefficients—are called scaling and wavelet
ectors, respectively. They are the filter coefficients of the fast wavelet trans-
m (FWT), an iterative computational approach to the DWT shown in
1g.7.2. The W,(j, m,n) and {W}(j, m,n)fori = H,V, D} outputs in this
re are the DWT coefficients at scale j. Blocks containing time-reversed
ing and wavelet vectors—the h,(—n) and hy(—m)—are lowpass and
ghpass decomposition filters, respectively. Finally, blocks containing a 2 and a
Wn arrow represent downsampling—extracting every other point from a se-
lence of points. Mathematically, the series of filtering and downsampling

) erati H(j m,n)in Fig. 7.2 is, for example,
Property 2: Multiresolution Compatibility. The 1-D scaling function just intro; rerations used to compute Wy'(f, m,) in Fig ! p

duced satisfies the following requirements of multiresolution analysis: f(j, m,n) = hy(—m) * [h(—n) * W(j + 1,m, 1) n=2k, k=0)l m=2k, k=0

246

FIGURE 7.2 The
2-D fast wavelet
transform (FWT)
filter bank. Each
pass generates one
DWT scale. In the
first iteration,
W,(j +1,m.n)=
(e y).

wfilters

The “»i on the icon
is used to denote a
MATLAB Wavelet
Toolbox function, as
opposed to a
MATLAB or Image
Processing Toolbox
function.

Chopter 7 1 Wavelets

WP . .
w(mn Wavelet wfamily wname
Haar "haar' ‘haar'
Columns ‘o ; Vdpt ! . . 1 |)
(along) WY, m.n Da'ubechles db‘ db? y db? y ey 045
Rows Cotflets 'coif! 'coif1’', 'coif2',.., 'coif5'
Wi + 1om, nje— Symlets ‘sym' 'sym2', 'sym3', ..., 'sym45’
Discrete Meyer 'dmey "dmey '
WH(j.m,n . . . ;
Yy Biorthogonal ‘bior' 'bior1.1’, 'bior1.3', 'biort.5', 'bior2.2",
‘bior2.4', 'bior2.6', 'bior2.8', 'bior3.1",
Colomns ‘ 'bior3.3", 'biord.5', 'bior3.7", 'bior3.g",
Wo(j.) ‘bior4.4’, 'bior5.5', 'bior6.8’
Rows [' nh g Ve ; ;
Reverse rbio rbiof.1’, 'rbio1.3’, 'rbio1.5', 'rbioc2.2",
Biorthogonal 'rbic2.4', 'rbio2.6', 'rbio2.8', ‘'rbio3.1',
where * denotes convolution. Evaluating convolutions at nonnegative, eve 'rbiod.3', 'rbio8.5", 'rbio3.7", 'rbio3.9’,
indices is equivalent to filtering and downsampling by 2. rbio4.4','rbio5.5', 'rbio6.8"

Each pass through the filter bank in Fig. 7.2 decomposes the input into fou
lower resolution (or lower scale) components. The W, coefficients are create
via two lowpass (i.e., i -based) filters and are thus called approximation coef-
ficients; {Wi,fori = H,V, D} are horizontal, vertical, and diagonal detail co
efficients, respectively. Since f(x, y) is the highest resolution representation o
the image being transformed, it serves as the W,(j + 1, m, n) input for the
firstiteration. Note that the operations in Fig. 7.2 use neither wavelets nor scal
ing functions—only their associated wavelet and scaling vectors. In addition,
three transform domain variables are involved—scale j and horizontal and
vertical translation, n and m. These variables correspond to i, v, ... in the firs
two equations of Section 7.1.

ith type setto 'd', 'r', '1',0r 'h' to obtain a pair of decomposition, re-
onstruction, lowpass, or highpass filters, respectively. If this syntax is em-
loyed, a decomposition or lowpass filter is returned in F1, and its companion
placed in F2.

Table 7.1 lists the FWT filters included in the Wavelet Toolbox. Their
roperties—and other useful information on the associated scaling and
avelet functions—is available in the literature on digital filtering and mul-
tiresolution analysis. Some of the more important properties are provided by
¢ Wavelet Toolbox’s waveinfo and wavefun functions. To print a written
.description of wavelet family wfamily (see Table 7.1) on MATLAB’s
Command Window, for example, enter

/.41 FWTs Using the Wavelet Toolbox

In this section, we use MATLAB’s Wavelet Toolbox to compute the FWT of a
simple 4 X 4 test image. In the next section, we will develop custom functions
to do this without the Wavelet Toolbox (i.e., with IPT alone). The material here
lays the groundwork for their development.

The Wavelet Toolbox provides decomposition filters for a wide variety of
fast wavelet transforms. The filters associated with a specific transform are ac-
cessed via the function wfilters, which has the following general syntax:

waveinfo(wfamily)

atthe MATLAB prompt. To obtain a digital approximation of an orthonormal
transform’s scaling and/or wavelet functions, type

[phi, psi, xval] = wavefun(wname, iter)

[Lo_D, Hi_D, Lo_R, Hi_R] = wfilters(wname) i
which returns approximation vectors, phi and psi, and evaluation vector
*val. Positive integer iter determines the accuracy of the approximations by
controlling the number of iterations used in their computation. For biorthogo-

nal transforms, the appropriate syntax is

Here, input parameter wname determines the returned filter coefficients in ac-
cordance with Table 7.1; outputs Lo_D, Hi_D, Lo_R, and Hi_R are row vectors
that return the lowpass decomposition, highpass decomposition, lowpass re-
construction, and highpass reconstruction filters, respectively. (Reconstruction
filters are discussed in Section 7.4.) Frequently coupled filter pairs can alter-
nately be retrieved using

[phil1, psii, phi2, psi2, xval] = wavefun(wname, iter)

Where phit1 and psii are decomposition functions and phi2 and psi2 are

[F1, F2] = wfilters(wname, type) feconstruction functions.

7.2 & The Fast Wavelet Transform 247

TABLE 7.1
Wavelet Toolbox
FWT filters and
filter family
Names.

R

3% waveinfo

wavefun

248 Chopter 7 B Wavelets 7.2 @ The Fast Wavelet Transform 249

EXAMPLE 7.1: The oldest and simplest wavelet transform is based on the Haar scaling apd Haar scaling function Haar wavelet function FIGURE 7.3 The
ng:ﬁ;ﬁl;erg, wavelet functions. The decomposition and reconstruction filters for a Hy, S T L5 T Haar scaling and
, an . ; 1
W ave]%t functions. based transform are of length 2 and can be obtained as follows: : 1 | W%_i_'elet fun_(;thns.
>> [Lo_D, Hi_D, Lo_R, Hi_R] = wfilters('haar')
LoD = 4 osp .
0.7071 0.7071
HiD= e |] o e
-0.7071 0.7071
Lo R =
- 4 -osp .
0.7071 0.7071
Hi_ R = _ 1k
0.7071 -0.7071)
. . . L -15 L
Thelr.key properties (as reported by the waveinfo function) and plots of 0.5 1 0 05 1
associated scaling and wavelet functions can be obtained using
>> waveinfo('haar'); " subplot(122); plot(xval, psi, 'k', xval, xaxis, '--k');

axis([0 1 -1.5 1.5]); axis square;

HAARINFO Informati
ion on Haar wavelet. title('Haar Wavelet Function');

Haar Wavelet
Figure 7.3 shows the display generated by the final six commands. Functions
tle, axis, and plot were described in Chapters 2 and 3; function subplot
s used to subdivide the figure window into an array of axes or subplots. It has
he following generic syntax:

General characteristics: Compactly supported
wavelet, the oldest and the simplest wavelet.

scaling function phi = 1 on [0 1] and O otherwise.

wavelet function psi =1 on [0 0.5], = =1 on [0.5 1] and

otherwise.

Family Haar H = subplot(m, n, p) or H = subplot(mnp)

Short name haar i

Examples haar is the same as dbi Wher.e m and n are the number of rows and columns. in the subplot array, re-
Orthogonal yes pectively. Both m and n must be greater than 1. Optional output variable H is
Biorthogonal yes he-handle of the subplot (i.e., axes) selected by p, with incremental values of p
Compact support yes beginning at 1) selecting axes along the top row of the figure window, then the
DWT possible econd row, and so on. With or without H, the pth axes is made the current plot.
CwT possible Thus, the subplot(122) function in the commands given previously selects
Support width 1 the plot in row 1 and column 2 of a 1 X 2 subplot array as the current plot; the
Filters length 2 ubsequent axis and title functions then apply only to it.

Regularity haar is not continuous The Haar scaling and wavelet functions shown in Figure 7.3 are discontinu-
Symmetry yes us and compactly supported, which means they are 0 outside a finite interval
Number of vanishing alled the support. Note that the support is 1. In addition, the waveinfo data
moments for psi 1 eveals that the Haar expansion functions are orthogonal, so that the forward

Reference: I. Daubechies, nd inverse transformation kernels are identical. E

Ten lectures on wavelets,
CBMS, SIAM, 61, 1994, 194-202.

>> [phi, psi, xval] = wavefun('haar', 10);

>> xaxis = zeros(size(xval));

>> subplot(121); plot(xval, phi, 'k', xval, xaxis, '--k');
>> axis([0 1 —1.5 1.5]); axis square;

>> title('Haar Scaling Function');

Given a set of decomposition filters, whether user provided or generated by
he wfilters function, the simplest way of computing the associated wavelet
ansform is through the Wavelet Toolbox’s wavedec?2 function. It is invoked
ing

[C, S] = wavedec2(X, N, Lo_D, Hi_D) W vavedeca

250 Chapter 7 s Wavelets

where X is a 2-D image or matrix, N is the number of scales to be compy
(i.e., the number of passes through the FWT filter bank in Fig. 7.2), and |
and Hi_D are decomposition filters. The slightly more efficient syntax

[C, 8] = wavedec2(X, N, wname)

in which wname assumes a value from Table 7.1, can also be used. Output d
structure [C, S] is composed of row vector C (class double), which conta
the computed wavelet transform coefficients, and bookkeeping matrix § (a
class double), which defines the arrangement of the coefficients in C. The reij
tionship between C and § is introduced in the next example and described
detail in Section 7.3.

B Consider the following single-scale wavelet transform with respect to H
wavelets:

EXAMPLE 7.2:
A simple FWT
using Haar filters.

>> f = magic(4)

f =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> [c1, s1] = wavedec2(f, 1, 'haar')
cl =
Columns 1 through 9
17.0000 17.0000 17.0000 17.0000
—1.0000 —1.0000 1.0000 4.0000
Columns 10 through 16
—4.,0000 —4.0000 4,0000 10.0000
—6.0000 -10.0000
sl =
2 2
2 2
4 4

Here, a 4 X 4 magic square f is transformed into a 1 X 16 wavelet decompo-
sition vector ¢1 and 3 X 2 bookkeeping matrix s1. The entire transformation
is performed with a single execution (with f used as the input) of the opera-
tions depicted in Fig. 7.2. Four 2 X 2 outputs—a downsampled approximation:
and three directional (horizontal, vertical, and diagonal) detail matrices—are

generated. Function wavedec2 concatenates these 2 X 2 matrices columnwise:
in Tow vector ¢1 beginning with the approximation coefficients and continuing;
with the horizontal, vertical, and diagonal details. That is, ¢1(1) through:

c1(4) are approximation coefficients W, (1, 0, 0), W,(1, 1, 0), W,(1,0,1), and

W, (1,1, 1) from Fig. 7.2 with the scale of f assumed arbitrarily to be 2; ¢1(5)-
through ¢1(8) are W[/(1,0,0), W/(1.1,0), W (1,0,1), and Wi, 1, 1)

approximation.]

1.2 3 The Fast Wavelet Transform 251

so on. It we were to extract the horizontal detail coefficient matrix from
orct, for example, we would get

1 -1

kkeeping matrix s1 provides the sizes of the matrices that have been con-
enated a column at a time into row vector ¢c1—plus the size of the original
age T [in vector s1(end, :)]. Vectors s1(1, :) and s1(2, :) contain the
es of the computed approximation matrix and three detail coefficient matri-
- respectively. The first element of each vector is the number of rows in the
erenced detail or approximation matrix; the second element is the number

columns.
When the single-scale transform described above is extended to two scales,

c2, s2] = wavedec2(f, 2, 'haar')

:-Columns 1 through 9

34.0000 0 0 0.0000 1.0000
-1.0000 —-1.0000 1.0000 4.0000

Columns 10 through 16
—4.0000 —4.,0000 4.0000 10.0000 6.0000
—6.0000 —-10.0000

1 1

1 1

2 2

4 4

ote that c2(5:16) = ¢1(5:16). Elements ¢1(1:4), which were the approxi-
ation coefficients of the single-scale transform, have been fed into the filter
nk of Fig. 7.2 to produce four 1 X 1 outputs: W,(0,0,0), W (0,0,0),
.}f(O, 0,0), and Wlf,)(O, 0,0). These outputs are concatenated columnwise
hough they are 1 X 1 matrices here) in the same order that was used in the
eceding single-scale transform and substituted for the approximation coeffi-
nts from which they were derived. Bookkeeping matrix s2 is then updated
reflect the fact that the single 2 X 2 approximation matrix in ¢1 has been

Ieplaced by four 1 X 1 detail and approximation matrices in c2. Thus,
$2(end, :) is once again the size of the original image, s2(3, :) is the size of
the three detail coefficient matrices at scale 1,s2(2, :) is the size of the three
detail coefficient matrices at scale 0, and s2(1, :}) is the size of the final

15

. To conclude this section, we note that because the FWT is based on digital
filtering techniques and thus convolution, border distortions can arise. To min-
Mmize these distortions, the border must be treated differently from the other

254 Chapter 7 @ Wavelets

t = (0:7);
hd = 1d; hd(end:=1:1) = cos(pi * t) .* 1d;
1r = 1d; lr{end:—1:1) = 1d;
hr = cos(pi * t) .* 1d;
case 'sym4'

1d = [-7.576571478927333e-002 —2.9635527645998516-002 cos
4.976186676320155e-001 8.037387518059161e-001 ...
2.978577956052774e—001 —9.9219543576847226—002 . ..
—1.260396726203783e-002 3.222310060404270e-0021 ;

t = (0:7);
hd = 1d; hd(end;-1:1) = cos(pi * t) .* 1d;
lr = 1d; 1lr(end:~1:1) = ld;

hr = cos(pi * t) .* 1d;

case 'bior6.8'

1d = [0 1.908831736481291e-003 —1.914286129088767e~003 ...

~1.699063986760234e—002 1.193456527972926e-002 ...
4.973290349094079e-002 ~7.726317316720414e—002 . ..
—9.405920349573646e-002 4.207962846098268e—001 . ..
8.259229974584023e—001 4.207962846098268e—001 ...
-9.4059203495736466—002 ~7.726317316720414e~002 ...
4.973290349094079e-002 1.1934565279729268—002 . ..
—1.699063986760234e-002 —1.914286129088767e-003 ...
1.908831736481291e—003] ;

hd = [0 0 0 1.442628250562444e-002 —1.446750489679015e-002 ...

=7.872200106262882e~002 4.0367979030339926—002 ...
4.178491091502746e~001 —7.589077294536542e—001 ...
4.178491091502746e~001 4.036757903033992e~002 ...
~7.872200106262882e—-002 —1.4467504896790156-002 .
1.442628250562444e-002 0 0 0 0l;
t = (0:17);
Ir = cos(pi * (t + 1)) .* hd;
hr = cos(pi * t) .* 1ld;
case 'jpeg9.7'
1d = [0 0.02674875741080976 —0.01686411844287495 ...
~0.07822326652898785 0.2668641184428723 ...
0.6029490182363579 0.2668641184428723 ...
-0.07822326652898785 —0.01686411844287495 ...
0.02674875741080976] ;
hd = [0 -0.09127176311424948 0.05754352622849957 ...
0.5812717631142470 -1.115087052456994 . ..
0.5912717631142470 0.05754352622849957 ...
—0.09127176311424948 0 015
t = (0:9);
Ir = cos(pi * (t + 1)) .* hd;
hr = cos(pi * t) .* 1ld;

otherwise

error('Unrecognizable wavelet name (WNAME) . ');
end

+ the requested filters.

[

ote that for each orthonormal filter in wavefilter (i.e., 'haar', 'db4',and
4'), the reconstruction filters are time-reversed versions of the decomposi-
filters and the highpass decomposition filter is a modulated version of its
ass counterpart. Only the lowpass decomposition filter coefficients need to
xplicitly enumerated in the code. The remaining filter coefficients can be
puted from them. In wavefilter, time reversal is carried out by reordering
vector elements from last to first with statements like 1r(end: ~1:1) = 1d.
odulation is accomplished by multiplying the components of a known filter by
pi*t), which alternates between 1 and —1 as t increases from 0 in integer
ps. For each biorthogonal filter in wavefilter (i.e, 'bior6.8' and
peg9.7'), both the lowpass and highpass decomposition filters are specified;
econstruction filters are computed as modulations of them. Finally, we note
hat the filters generated by wavefilter are of even length. Moreover, zero
ding is used to ensure that the lengths of the decomposition and reconstruc-
n filters of each wavelet are identical.

Given a pair of wavefilter generated decomposition filters, it is easy to
te a general-purpose routine for the computation of the related fast
velet transform. The goal is to devise an efficient algorithm based on the fil-
ering and downsampling operations in Fig. 7.2. To maintain compatibility with
he existing Wavelet Toolbox, we employ the same decomposition structure
ie, [C, S] where C is a decomposition vector and § is a bookkeeping matrix).
The following routine, which we call wavefast, uses symmetric image exten-
0n to reduce the border distortion associated with the computed FWT:

unction [c, s] = wavefast(x, n, varargin)

AVEFAST Perform multi-level 2-dimensional fast wavelet transform.
[C, L] = WAVEFAST(X, N, LP, HP) performs a 2D N-level FWT of
image (or matrix) X with respect to decomposition filters LP and
Hp,

[C, L] = WAVEFAST(X, N, WNAME) performs the same operation but
fetches filters LP and HP for wavelet WNAME using WAVEFILTER.

Scale parameter N must be less than or equal to log2 of the
maximum image dimension, Filters LP and HP must be even. To

7.2 ® The Fast Wavelet Transform 255

256

rem (X, Y) returns
the remainder of the
division of X by Y.

Chapter 7 @ Wavelets

reduce border distortion, X is symmetrically extended. That is,
if X = [¢1 ¢c2 ¢3 ... cn] (in 1D), then its symmetric extension
would be {... c3 c2 ¢l c1c2¢3 ... cncnen-1cen-2...].

OUTPUTS:
Matrix C is a coefficient decomposition vector:

C =1 a(n) h{n) v(n) d(n) h(n-1) < v(1) d(1)-]
where a, h, v, and d are columnwise vectors containing

matrices, respectively. C has 3n + 1 sections where n is the
number of wavelet decompositions.

Matrix S is an (n+2) x 2 bookkeeping matrix:
.y sd(1, 1); sx)

S = [sa(n, :); sd(n, :); sd(n=1,); ..

where sa and sd are approximation and detail size entries.

O 0f o° o o o OF o° OF Of oF OF O° OF O° of O° O O° of of

See also WAVEBACK and WAVEFILTER.

o°

Check the input arguments for reasonableness.
error(nargchk(3, 4, nargin));

if nargin ==
if ischar(varargin{1})

[1p, hp] = wavefilter(varargin{i}, 'd');
else
error('Missing wavelet name,');
end
else
1p = varargin{i}; hp = varargin{2};
end
fl = length(lp); sx = size(x);

if (ndims(x) ~-= 2) | (min(sx) < 2) | ~isreal(x) | ~isnumeric(x)
error('X must be a real, numeric matrix.');
end

if (ndims(1lp) ~-= 2) | ~isreal(lp) | ~isnumeric(lp) ...
| (ndims(hp) -= 2) | ~isreal(hp) | ~isnumeric(hp)
| (f1 -= length(hp)) | rem(fl, 2) ~= 0
error(['LP and HP must be even and equal length real, '
'numeric filter vectors.']);
end

if ~-isreal(n) | -isnumeric(n) | (n < 1) | (n > log2(max(sx)})
error(['N must be a real scalar between 1 and '
'log2(max(size((X}))."']);
end

approximation, horizontal, vertical, and diagonal coefficient

t the starting output data structures and initial approximation.
L; § = 8X; app = double(x);

“'each decomposition .

= 1in

Extend the approximation symmetrically.
pp, keep] = symextend(app, fl);

% Convolve rows with HP and downsample. Then convolve columns
with HP and LP to get the diagonal and vertical coefficients.
rows = symconv(app, hp, 'row’', 1, keep);
efs = symconv(rows, hp, 'col', fl, keep);
¢ = [coefs(:)' c]; s = [size(coefs); s];
oefs = symconv(rows, 1p, 'col', fl, keep);
= [coefs(:)' c];

.Convolve rows with LP and downsample. Then convolve columns
. with HP and LP to get the horizontal and next approximation
- coefficients.

= symconv(app, lp, 'row', fl, keep);

oefs = symconv(rows, hp, 'col', fl, keep):

= [coefs(:)"' c];

pp = symconv(rows, lp, 'col', fl, keep);

pend final approximation structures.
[app(:)" c]; s = [size(app); s];

ction [y, keep] = symextend(x, f1)
Compute the number of coefficients to keep after convolution
d downsampling. Then extend x in both dimensions.

p = floor(({fl + size(x) — 1) / 2);

ction y = symconv(x, h, type, fl, keep)
onvolve the rows or columns of x with h, downsample,
nd extract the center section since symmetrically extended.

stremp(type, 'row')

Yy = conv2(x, h);

Y =y(:, 1:2:end);

y=y(i, f1 / 2 + 1:f1 / 2 + keep(2));

= conv2(x, h');
y(1:2:end, :);
y(fL / 2+ 1:f1 / 2 + keep(1), :);

1.2 ® The Fast Wavelet Transform

257

C=conv2 (A, B)
performs the 2-D
convolution of ma-
trices A and B.

258 Chapter 7 2 Wavelets

EXAMPLE 7.3:
Comparing the
execution times of
wavefast and
wavedec2.

As can be seen in the main routine, only one for loop, which cycles thrg
the decomposition levels (or scales) that are generated, is used to orchesty
the entire forward transform computation. For each execution of the loop
current approximation image, app, which is initially set to x, is symmetri¢
extended by internal function symextend. This function calls padarray, w
was introduced in Section 3.4.2, to extend app in two dimensions by mirro;
flecting f1 — 1 of its elements (the length of the decomposition filter minu
across its border.

Function symextend returns an extended matrix of approximation co
cients and the number of pixels that should be extracted from the cente
any subsequently convolved and downsampled results. The rows of the
tended approximation are next convolved with highpass decomposition f;
hp and downsampled via symconv. This function is described in the follo
paragraph. Convolved output, rows, is then submitted to symconv to convol
and downsample its columns with filters hp and 1p—generating the diag
and vertical detail coefficients of the top two branches of Fig. 7.2. These res
are inserted into decomposmon vector ¢ (working from the last element
ward the first) and the process is repeated in accordance with Fig. 7.2 to gg
erate the horizontal detail and approximation coefficients (the bottom.
branches of the figure).

Function symconv uses the conv2 function to do the bulk of the transf pare the results.
computation work. It convolves filter h with the rows or columns of x (d = t2 / (reftime + eps);
pending on type), discards the even indexed rows or columns (i.e., downs diff = abs(max(cl — c2});
ples by 2), and extracts the center keep elements of each row or colum :
Invoking conv2 with matrix. x and row filter vector h initiates a row-by-rg
convolution; using column filter vector h' results in a columnwise convolut10

= £0C;

B The following test routine uses functions tic and toc to compare the ex = imread('Vase', 'tif');
cution times of the Wavelet Toolbox function wavedec2 and custom functiof

wavefast:

function [ratio, maxdiff] = fwtcompare(f, n, wname)

xdifference =
%FWTCOMPARE Compare wavedec2 and wavefast. q

3.2969e~012

% [RATIO, MAXDIFF] = FWTCOMPARE(F, N, WNAME) compares the operatio
% of toolbox function WAVEDEC2 and custom function WAVEFAST.

% INPUTS:

% F Image to be transformed.

% N Number of scales to compute.

% WNAME Wavelet to use.

% QUTPUTS:

% RATIO Execution time ratio (custom/toolbox)

% MAXDIFF Maximum coefficient difference.

% Get transform and computation time for wavedec2.
tic;

[c1, s1] = wavedec2(f, n, wname);

reftime = toc;

s2] = wavefast(f, n, wname);

7.3 @ Working with Wavelet Decomposition Structures 259

FIGURE 7.4
A 512 X 512
image of a vase.

ot transform and computation time for wavefast.

the 512 X 512 image of Fig. 7.4 and a five-scale wavelet transform with
spect to 4th order Daubechies’ wavelets, fwtcompare yields

[ratio, maxdifference] = fwtcompare(f, 5, 'db4’)

m Working with Wavelet Decomposition Structures

e wavelet transformation functions of the previous two sections produce
ndisplayable data structures of the form {¢, S}, where c is a transform coef-
liclent vector and S is a bookkeeping matrix that defines the arrangement of
efficients in c. To process images, we must be able to examine and/or modify
¢:In this section, we formally define {c, S}, examine some of the Wavelet Tool-
X functions for manipulating it, and develop a set of custom functions that
an be used without the Wavelet Toolbox. These functions are then used to
build 5 general purpose routine for displaying c.

260 Chapter 7 ® Wavelets

EXAMPLE 7.4:
Wavelet Toolbox
functions for
manipulating
transform
decomposition
vector c.

The representation scheme introduced in Example 7.2 integrates the qg,
cients of a multiscale two-dimensional wavelet transform into a sing]
dimensional vector

c=[Ay()" Hy()" - HG) V() DY - Vi) Dy
where Ay is the approximation coefficient matrix of the Nth decomp
level and H;, V,;, and D; for i = 1,2,... N are the horizontal, vertical, ap
agonal transform coefficient matrices for level i. Here, H;(:)’, for examp]

the row vector formed by concatenating the transposed columns of matrix
That is, if

64

D,

@ KN = -

pprox = appcoef2(ci, si, 'haar’)

3 =2
H; = [1 6} = detcoef2('h', ci, s1, 2)
then
3 -0.2842
1 0
H{:) = -2 and H()' =031 -2 6] wthcoef2('h', c¢1, s1, 2);
6 = detcoef2('h', newct, si1, 2)

Because the equation for ¢ assumes N decompositions (or passes through t§
filter bank in Fig. 7.2), ¢ contains 3N + 1 sections—one approximation an
groups of horizontal, vertical, and diagonal details. Note that the highest s
coefficients are computed when i = 1; the lowest scale coefficients are ass
ated with i = N. Thus, the coefficients of ¢ are ordered from low to high sc

Matrix § of the decomposition structure is an (N + 2) X 2 bookkeepid
array of the form

¢, a three-level decomposition with respect to Haar wavelets is performed
an 8 X 8 magic square using the wavedec2 function. The resulting coeffi-
t vector, ¢1, is of size 1 X 64. Since s1 is 5 X 2, we know that the coeffi-
ts of ¢1 span (N —2) = (5 — 2) = 3 decomposition levels. Thus, it
catenates the elements needed to populate 3N + 1 = 3(3) + 1 = 10 ap-
ximation and detail coefficient submatrices. Based on s1, these submatri-
nclude (a) a1 X 1 approximation matrix and three 1 X 1 detail matrices
ecomposition level 3 [see s1(1, :) and s1(2, :)], (b) three 2 X 2 detail
atrices for level 2 [see s1(3, :)],and (c) three 4 X 4 detail matrices for level
see s1(4, :)]. The fifth row of s1 contains the size of the original image f.
atrix approx = 260 is extracted from c1 using toolbox function appcoef2,

ich has the following syntax:

S=[SaN; SdN; SdN——l; Sd,'; Sdl; Sf]

where say, sd;, and sfare 1 X 2 vectors containing the horizontal and vert
dimensions of Nth-level approximation A y, ith-level details (H;,V,, and
fori = 1,2,... N),and original image F, respectively. The information in S
be used to locate the individual approximation and detail coefficients i
Note that the semicolons in the preceding equation indicate that the element
of § are organized as a column vector.
a = appcoef2(c, s, wname)
® The Wavelet Toolbox provides a variety of functions for locating, extract
ing, reformatting, and/or manipulating the approximation and horizontal, ve ;
tical, and diagonal coefficients of ¢ as a function of decomposition level. W
introduce them here to illustrate the concepts just discussed and to prepar
the way for the alternative functions that will be developed in the next secti
Consider, for example, the following sequence of commands:

re, wname is a wavelet name from Table 7.1 and a is the returned approxi-
Mation matrix. The horizontal detail coefficients at Jevel 2 are retrieved using
ck"ﬁcoefz, a function of similar syntax

d = detcoef2(o, c, s, n)

>> f = magic(8);
>> [c1, s1] = wavedec2(f, 3, 'haar');
>> size(c1)

Which o is setto 'h', 'v', or 'd"' for the horizontal, vertical, and diagonal
Getails and n is the desired decomposition level. In this example, 2 X 2 matrix

7.3 ® Working with Wavelet Decomposition Structures 261

. ¥ @ l”vé'bpcoefz

%j qétcoefz

262 Chapter 7 # Wavelets

wthcoef2

wavework

R ———

7.3 @ Working with Wavelet Decomposition Structures

horizdet2 is returned. The coefficients corresponding to horizdet2in ¢

i N is a decomposition level (Ignored if TYPE = 'a').
then zeroed using wthcoef2, a wavelet thresholding function of the form

X is a two-dimensional coefficient matrix for pasting.

n¢ = wihcoef2(type, ¢, s, n, t, sorh) See also WAVECUT, WAVECOPY, and WAVEPASTE.
r(nargchk(4, 6, nargin));

ndims{c) -= 2) | (size{c, 1) ~= 1)
pror('C must be a row vector.');

where typeissetto 'a' to threshold approximation coefficients and *h*
' to threshold horizontal, vertical, or diagonal details, respectively, I
n is a vector of decomposition levels to be thresholded based on the cg
sponding thresholds in vector t, while sorhissetto 's' or 'h" for soft or
thresholding, respectively. If t is omitted, all coefficients meeting the typ
n specifications are zeroed. Output nc is the modified (i.e., thresholded
composition vector. All three of the preceding Wavelet Toolbox functions
other syntaxes that can be examined using the MATLAB help command.

Q
1
o

dims(s) -= 2) | ~isreal(s) | ~isnumeric(s) | (size(s, 2) ~= 2}
pror('S must be a real, numeric two-column array.');

nts = prod(s, 2); % Coefficient matrix elements.

ength{c) < elements(end)) |
. -(elements(1) + 3 * sum(elements(2:end — 1)) >= elements(end))
kror(['[C §] must form a standard wavelet decomposition '

‘structure.']);

7.3.1 Editing Wavelet Decomposition Coefficients
without the Wavelet Toolbox

Without the Wavelet Toolbox, bookkeeping matrix S is the key to acce
the individual approximation and detajl coefficients of multiscale vector
this section, we use S to build a set of general-purpose routines for the m
ulation of ¢. Function wavework is the foundation of the routines develop,
which are based on the familiar cut-copy-paste metaphor of modern word ;
cessing applications.

rcmp (Lower (opcode(1:3)), 'pas') & nargin < 6
ror('Not enough input arguments.');

rgin < 5
i H fault level is 1.
function [varargout] = wavework(opcode, type, ¢, s, n, x) % De

SWAVEWORK is used to edit wavelet decomposition structures. size(s, 1) - 2; % Maximum levels in [C, S].

% [VARARGOUT] = WAVEWORK(OPCODE, TYPE, ¢, S, N, X) gets the
% coefficients specified by TYPE and N for access or modification (lower(type(t)) == ‘a');

% based on OPCODE. ~aflag & (n > nmax)

% error('N exceeds the decompositions in [C, S].');

% INPUTS: i

z% OPCODE Operation to perform teh lower (type(1)) % Make pointers into C.
% ‘copy’ [varargout] =Y = requested (via TYPE and N) = 1

% coefficient matrix ; stop = elements(1); ntst = nmax;

% ‘out’ [varargout] = [NC, Y] = New decomposition vector o

% (with requested coefficient matrix zeroed) AND éwitch,type,

5% requested coefficient matrix ‘h', offset = 0; % Offset to details.

% ‘paste’ [varargout] = [NC] = new decomposition vector with V' offset = 1;

% coefficient matrix replaced by X . d': offset = 2;

%

% TYPE Coefficient category = size(s, 1) — n; % Index to detail info.
% e e e L R R PP R P TR = elements(1) + 3 * sum(elements(2:nmax — n + 1)) + ...
N a Approximation coefficients offset * elements(nindex) + 1;

% 'h Horlgontal details start + elements(nindex) - 1;

% ! Vertical details = n:

% g Diagonal details ’

. ' in with "a", “h", "v", or "d*.'
% [C, SI is a wavelet toolbox decomposition structure. ("TYPE must begin with “a’, "h", !);

263

264 Chapter 7 m Wavelets

wavecut

L

7.3 ® Working with Wavelet Decomposition Structures

and N) have been zeroed. The coefficients that were zeroed are

switch lower(opcode) % Do requested action. '
returned in Y.

case {'copy', 'cut'}
y = repmat (0, s(nindex, :));

y(:) = c(start:stop); nc = c; N
if stremp(lower(opcode(1:3)), 'cut') Coefficient category
nc{start:stop) = 0; varargout = {nc, y}; S R TP P T TP PR
else Approximation coefficients
varargout = {y}; Horigontal de#ails
end Vertical details
case 'paste' Diagonal details

if prod(size(x)) -= elements(end — ntst)
error('X is not sized for the requested paste.');
else

[C, §] is a wavelet data structure.
N specifies a decomposition level (ignored if TYPE = 'a'y.

nc = c¢; nc(start:stop) = x(:); varargout = {nc};
end ge also WAVEWORK, WAVECOPY, and WAVEPASTE.
otherwise ; .
r(nargchk(3, 4, nargin)
error('Unrecognized OPCODE.'); gar(‘ging: ‘(1 s & nargin));
end c, y] = wavework('cut', type, c, S, n);

4

As wavework checks 1ts input arguments for reasonableness,‘ the numb [nc, y] = wavework('cut’, type, ¢, s);
elements in each coefficient submatrix of ¢ is computed via elemen

prod(s, 2). Recall from Section 3.4.2 that MATLAR function Y = pro

— -]

VEPASTE Puts coefficients in a wavelet decomposition structure.
= WAVEPASTE(TYPE, C, S, N, X) returns the new decomposition
tructure after pasting X into it based on TYPE and N.

SWAVECUT Zeroes coefficients in a wavelet decomposition structure
% [NC, Y] = WAVECUT(TYPE, C, S, N) returns a new decomposition
% vector whose detail or approximation coefficients (based on TY

[$]

265

) DIM) computes the products of the elements of X along dimension DIM. The ction y = wavecopy(type, c, s, n) wavecopy
switch statement then begins the computation of a pair of pointers to th VECOPY Fetches coefficients of a wavelet decomposition structure, — s
efficients associated with input parameters type and n. For the approximal ¥ = WAVECOPY(TYPE, C, S, N) returns a coefficient array based on
case (i.e., case 'a'), the computation is trivial since the coefficients are aly :TYPE and N.
at the start of ¢ (so pointer start is 1); the ending index, pointer stop, i
number of elements in the approximation matrix, which is elements (1).

a detail coefficient submatrix is requested, however, start is computed Coefficient category
summing the number of elements at all decomposition levels above n : ey el
adding offset * elements(nindex); where offset is 0,1, or 2 for the h ’ ,a, Appr.‘ox1mat10n cgeff1c1ents
zontal, vertical, or diagonal coefficients, respectively, and nindex is a poin| . C, ngiiggfajegzliti;ls
to the row of s that corresponds to input parameter n. g Diagonal details
The second switch statement in function wavework performs the o :
tion requested by opcode. For the 'cut' and ‘copy ' cases, the coefficients (C, 8] is a wavelet data structure.
¢ between start and stop are copied into y, which has been preallocated 2 N specifies a decomposition level {ignored if TYPE = 'a'),
two-dimensional matrix whose size is determined by s.This is done using, :
repmat (0, s(nindex, :)),in which MATLAB’s “replicate matrix” functi also WAVEWORK, WAVECUT, and WAVEPASTE.
B=repmat(A, M, N), is used to create a large matrix B composed of M x N t (nargchk(3, 4, nargin)):
copies of A. For the 'paste’ case, the elements of x are copied into nc,a € rgin ==
of input ¢, between start and stop. For both the 'cut' and 'paste’ ope wavework('copy', type, ¢, s, n);
tions, a new decomposition vector nc is returned.
The ﬁﬂlo“dngthreefuncﬁons——wavecut,wavecopy,and wavepaste wavework('copy', type, ¢, s);
wavework to manipulate ¢ using a more intuitive syntax: e SIS
function [nc, y] = wavecut(type, ¢, S, n) Ction nc = wavepaste(type, ¢, s, n, x) s 2vEPASTE

266 Chopter 7 s Wavelets

EXAMPLE 7.5:
Manipulating ¢
with wavecut and
wavecopy.

[C, S] is a wavelet data structure.

level N.

W P G0 P P IP IO SO GO OGP O O GO P P

See also WAVEWORK, WAVECUT, and WAVECOPY.

error(nargchk(5, 5, nargin))
nc = wavework('paste', type, ¢, s, n, x);

INPUTS:
TYPE Coefficient category
‘a’ Approximation coefficients
‘h! Horizontal details
v Vertical details
'd! Diagonal details

N specifies a decomposition level (Ignored if TYPE = 'a')
X is a two-dimensional approximation or detail coefficient:
matrix whose dimensions are appropriate for decomposition XAMPLES :

an be arranged as a 2 X 2 array of submatrices that replace the two-
hsional input from which they are derived. Function wave2gray performs
ubimage compositing—and both scales the coefficients to better reveal
ifferences and inserts borders to delineate the approximation and vari-
orizontal, vertical, and diagonal detail matrices.

tion w = wave2gray(c, s, scale, border)

GRAY Display wavelet decomposition coefficients.

;= WAVE2GRAY (C, S, SCALE, BORDER) displays and returns a
yavelet coefficient image.

wave2gray(c, s); Display w/defaults.
foo = wave2gray(c, s); Display and return.
foo = wave2gray(c, s, 4); Magnify the details.
foo = wave2gray(c, s, —4); Magnify absolute values.
foo = wave2gray(c, s, 1, 'append'); Keep border values.

. % NPUTS/OUTPUTS:

% Functions wavecopy and wavecut can be used to reproduce the Way [C, S] is a wavelet decomposition vector and bookkeeping
Toolbox based results of Example 7.4: matrix
>> f = magic(8); CALE Detail coefficient scaling
>> [c1, s1] = wavedec2(f, 3, ‘'haar'); R e eiecamcaceemeaeamaanaaaaaeeiecaaaaeaaonn-
>> approx = wavecopy(‘'a', ¢1, s1) or 1 Maximum range (default)
approx = PR P Magnify default by the scale factor

260.0000 1, —2... Magnify absolute values by abs(scale)
>> horizdet2 = wavecopy('h', ct1, si1, 2) s
horizdet? = ORDER Border between wavelet decompositions

_— il e ettt
1.0e-013 absorb' Border replaces image (default)
0 -0.2842 append’ Border increases width of image
0 0

>> [newct, horizdet2] = wavecut('h', c1, s1, 2); Mage Wi -----o- seeoss ceccorseseecos cecooonsiienoooes
>> newhorizdet2 = wavecopy('h', newci, s1, 2) I | I l
newhorizdet2 = | a(n) | h(n) | |

0 0 I l l |

0) I ------ . I h(n—1) I

. . . h(n-2

Note that all extracted matrices are identical to those of the pre } vim ’ dn) : I (n-2)
example. L ugges b
) I I |
#.2.¢ Displaying Wavelet Decomposition Coefficients | vn=1) | d(n-1) |
As was indicated at the start of Section 7.3, the coefficients that are pa] _____________ e L
into one-dimensional wavelet decomposition vector ¢ are, in reality, the ¢ [|
cients of the two-dimensional output arrays from the filter bank in Fig. 7.2 | v(n-2)] d(n-2)

each iteration of the filter bank, four quarter-size coefficient arrays (negle
any expansion that may result from the convolution process) are prod

7.3 & Working with Wavelet Decomposition Structures

267

wave2gray

T S

268

Chapter 7 % Wavelets

o o0 of

Here, n denotes the decomposition step scale and a, h, v, d
approximation, horizontal, vertical, and diagonal detail
coefficients, respectively.

% Check input arguments for reasonableness.
error{nargchk{(2, 4, nargin));

if (ndims(c) ~= 2) | (size(c, 1) -= 1)

error('C must be a row vector.'}); end

if (ndims(s) -= 2) | ~isreal(s) | ~isnumeric(s) | (size(s, 2) ~= 2)

error('S must be a real, numeric two-column array.'); end

elements = prod(s, 2);

if

(length(c) < elements(end)) | ...

~(elements(1) + 3 * sum{elements(2:end - 1)) >= elements(end))

error(['{C 8] must be a standard wavelet '
'decomposition structure.']);

end

if (nargin > 2) & (~isreal(scale) | ~-isnumeric(scale))

error('SCALE must be a real, numeric scalar.');

end

if {(nargin > 3) & (~ischar(border))

error('BORDER must be character string.');

end

if nargin =

=2
scale = 1; % Default scale.

end

if nargin < 4

border = 'absorb'; % Default border.

end

% Scale coefficients and determine pad fill.
absflag = scale < 0;

scale = abs(scale);

if scale == 0

scale = 1;

end

[ed, w] = wavecut('a', ¢, s);
cdx = max({abs{cd(:))

w = mat2gray(w);
) / scale;

if absflag

cd = mat2gray(abs(cd), [0, cdx]); fill = 0;

else

end

cd = mat2gray(cd, [-cdx, cdx]); fill = 0.5;

% Build gray image one decomposition at a time.
for i = size(s, 1) — 2:-1:1

ws = size(w);

h = wavecopy('h', cd, s, i);

pad = ws — size(h); frontporch = round(pad / 2);
h = padarray(h, frontporch, fill, ‘'pre');

h = padarray(h, pad ~ frontporch, fill, ‘post');

= wavecopy('v', cd, s, i);
d = ws — size(v); frontporch = round(pad / 2);
= padarray(v, frontporch, fill, ‘pre');
padarray(v, pad — frontporch, Till, 'post'});
wavecopy('d', cd, s, i);
= ws — size(d); frontporch = round(pad / 2);
= padarray(d, frontporch, fill, 'pre');
d = padarray(d, pad - frontporch, fill, 'post');
% Add 1 pixel white border.
switch lower(border)
:case 'append’
w = padarray(w, [1 1], 1, 'post');
padarray(h, [1 0], 1, 'post');

b

= padarray(v, [0 1], 1, 'post');
case 'absorb'
w(:, end) = 1; w(end, :) = 1;
h(end, :) = 1; v(:, end) = 1;
otherwise

error('Unrecognized BORDER parameter.');
end

w = [wh; vdl];

'nargout ==

imshow(w); % Display result.

pended to two-dimensional matrix w.

7.3 @ Working with Wavelet Decomposition Structures

% Concatenate coefs.

Pe—

e “help text” or header section of wave2gray details the structure of gen-
ated output image w. The subimage in the upper left corner of w, for instance,
the approximation array that results from the final decomposition step. It is
rounded—in a clockwise manner—by the horizontal, diagonal, and vertical
tail coefficients that were generated during the same decomposition. The re-
ling 2 X 2 array of subimages is then surrounded (again in a clockwise
anner) by the detail coefficients of the previous decomposition step; and
e pattern continues until all of the scales of decomposition vector ¢ are

he compositing just described takes place within the only for loop in
ve2gray. After checking the inputs for consistency, wavecut is called to re-
Ve the approximation coefficients from decomposition vector c. These coeffi-

tnts are then scaled for later display using mat2g ray. Modified decomposition

tor ¢d (i.e., ¢ without the approximation coefficients) is then similarly scaled.
I positive values of input scale, the detail coefficients are scaled so that a co-

ent value of 0 appears as middle gray; all necessary padding is performed
tha fi11 value of 0.5 (mid-gray). If scale is negative, the absolute values of
-detail coefficients are displayed with a value of 0 corresponding to black and
Pad i1l value is set to 0. After the approximation and detail coefficients
€ been scaled for display, the first iteration of the for loop extracts the last
Omposition step’s detail coefficients from cd and appends them to w (after
ding to make the dimensions of the four subimages match and insertion of a

269

270

EXAMPLE 7.6:
Transform
coefficient display
using wave2gray.

a
bc
FIGURE 7.5
Displaying a two-
scale wavelet
transform of the
image in Fig. 7.4:
(a) Automatic
scaling;
(b) additional
scaling by 8; and
(c) absolute

values scaled by 8.

Chupter 7 2 Wavelets

dding along the borders of the level 1 coefficient subimages; it was insert-
to reconcile dimensional variations between transform coefficient subim-
s. Figure 7.5{c) shows the effect of taking the absolute values of the
ails. Here, all padding is done in black. i

one-pixel white border) via the w = [w h; v d] statement. This process is then r
peated for each scale in ¢. Note the use of wavecopy to extract the various dety
coefficients needed to form w.

The following sequence of commands computes the two-scale DWT of thy
image in Fig. 7.4 with respect to fourth-order Daubechies’ wavelets and di
plays the resulting coefficients: :

The Inverse Fast Wavelet Transform

ike its forward counterpart, the inverse fast wavelet transform can be com-
nted iteratively using digital filters. Figure 7.6 shows the required synthesis or

>> f = imread{'vase.tif'};

>> [¢, s] = wavefast(f, 2, 'db4'); onstruction filter bank, which reverses the process of the analysis or decom-
>> wave2gray(c, s); asition filter bank of Fig. 7.2. At each iteration, four scale j approximation
>> figure; wave2gray(c, s, 8); detail subimages are upsampled (by inserting zeroes between every
>> figure; wave2gray(c, s, —8); ment) and convolved with two one-dimension filters—one operating on the

bimages’ columns and the other on its rows. Addition of the results yields
scale j + 1 approximation, and the process is repeated until the original
ge is reconstructed. The filters used in the convolutions are a function of
e wavelets employed in the forward transform. Recall that they can be ob-
ed from the wfilters and wavefilter functions of Section 7.2 with input
ameter type setto ‘r' for “reconstruction.”

When using the Wavelet Toolbox, function waverec2 is employed to compute
e inverse FWT of wavelet decomposition structure [C, S]. It is invoked using

The images generated by ‘the final three command lines are shown
Figs. 7.5(a) through (c), respectively. Without additional scaling, the deta
coefficient differences in Fig. 7.5(a) are barely visible. In Fig. 7.5(b), the di
ferences are accentuated by multiplying them by 8. Note the mid-gr

g = waverec2(C, S, wname)

here g is the resulting reconstructed two-dimensional image (of class double).
required reconstruction filters can be alternately supplied via syntax

g = waverec2(C, S, Lo_R, Hi_R)
following custom routine, which we call waveback, can be used when the
avelet Toolbox is unavailable. It is the final function needed to complete our

elet-based package for processing images in conjunction with IPT (and
out the Wavelet Toolbox).

(f,m,n)

Rows
(along m)

Columns
(along n)

G m,n)

(j,m., n)

Rows

7.4 % The Inverse Fast Wavelet Transform

271

¢ waverec2

FIGURE 7.6 The
2-D FWT ! filter
bank. The boxes
with the up
arrows represent
upsampling by
inserting zeroes
between every
element.

272

waveback

Chapter 7 ® Wavelets

7.4 ® The Inverse Fast Wavelet Transform

function [varargout] = waveback(c, s, varargin) . error('Wrong number of output arguments.');
%WAVEBACK Performs a multi-level two-dimensional inverse FWT.
[VARARGOUT] = WAVEBACK(C, S, VARARGIN) computes a 2D N-level
partial or complete wavelet reconstruction of decomposition

structure [C, S].

ischar{wname)
[1p, hp} = wavefilter(wname, 'r');
n = varargin{2}; nchk = 1;
glse
1p = varargin{1}; hp = varargin{2};
filterchk = 1; n = nmax;
if nargout ~-= 1 :

error(‘Wrong number of output arguments.');
end

SYNTAX:
Y = WAVEBACK(C, S, 'WNAME');
Y = WAVEBACK(C, S, LR, HR):

Output inverse FWT matrix v
using lowpass and highpass :
reconstruction filters (LR ang
HR} or filters obtained by
calling WAVEFILTER with 'WNAME

Output new wavelet
decomposition structy
[NC, NS] after N step
reconstruction. ‘

NG, NS]
[NC, NS]

WAVEBACK(C, S, 'WNAME', N);

WAVEBACK(C, S, LR, HR, N); hp = varargin{2}; filterchk = 1;

nchk = 1;

p = varargin{1};
= varargin{3};
rwise

('Improper number of input arguments.');

1l

O 0% o° P OF I Of S O° OF OF O OP O of of of

See also WAVEFAST and WAVEFILTER.

% Check the input and output arguments for reasonableness.
error(nargchk(3, 5, nargin));
error(nargchk(1, 2, nargout));

length(lp);
ilterchk % Check filters.
(ndims{1lp) ~= 2) | -isreal(lp) | ~isnumeric(lp) ...
| (ndims(hp) ~= 2) | ~isreal(hp) | ~isnumeric(hp)
| (f1 ~= length(hp)) | rem(fl, 2) ~=0
error(['LP and HP must be even and equal length real, '
‘numeric filter vectors.']);

if (ndims(c) ~= 2) | (size(e, 1) ~= 1)
error('C must be a row vector.');
end

if (ndims(s) ~= 2) | ~isreal(s) | ~isnumeric(s) | (size(s, 2) ~= 2}
error('S must be a real, numeric two-column array.');

end

nchk & (~isnumeric(n) | ~isreal(n)) % Check scale N.

elements = prod(s, 2); error('N must be a real numeric.');

if (length(c) < elements(end)) |

~(elements(1) + 3 * sum(elements(2:end — 1)) >= elements(end))

error(['[C 8] must be a standard wavelet '
‘decomposition structure.']);

n > nmax) | (n < 1)

‘error(‘Invalid number (N) of reconstructions requested.');
end (n ~= nmax) & (nargout ~= 2)
% Maximum levels in {C, S]. error('Not enough output arguments.');
nmax = size(s, 1) - 2;

% Get third input parameter and init check flags.

nnmax = nmax; % Init decomposition.

wname = varargin{1}; filterchk = 0; nchk = 0; =1
switch nargin % Compute a new approximation.
case 3 & = symconvup(wavecopy('a’', nc, ns), 1p, 1p, I, ns(3, 1)) + ...
if ischar(wname) symconvup(wavecopy('h', nc, ns, nnmax),
[1p, hp] = wavefilter(wname, 'r'); n = nmax; hp, 1p, f1, ns(3, 1)) + ...
else symconvup (wavecopy('v', nc, ns, nnmax),
error('Undefined filter.'); 1p, hp, f1, ns(3, :)) + ..
end symconvup (wavecopy('d', nc, ns, nnmax),

if nargout ~= 1 hp, hp, fl, ns(3,

)

273

274

Chapter 7 # Wavelets

% Update decomposition. ‘ - .
s Up P The following test routine compares the execution times of Wavelet Tool-

nc = nc(4 * prod(ns(1, :)) + 1:end); nc = [a(:)' ncl; \ N
ns = ns(3:end, 1); ns = [ns(1, 1) nsl; x function waver‘ec? and custom function waveback using a simple modifi-
nnmax = size(ns, 1) — 2; ion of the test function in Example 7.3:

end

ction [ratio, maxdiff] = ifwtcompare(f, n, wname)

% For Complete FECOnStFUCthnS, reformat OUtpUt as 2-D. FWTCOMPARE Compare waverec2 and waveback.

if gaigzzF ' = repnat(0, ns(1,); he(:) = a RATIO! MAXDIFF] = IFWTCOMPARE(F, N, WNAME) compares the
o y ’ s) . s peration of Wavelet Toolbox function WAVEREC2 and custom function
varargout{1} = nc;
if nargout ==

varargout{2} = ns; Image to transform and inverse transform.
end Number of scales to compute.
e Wavelet to use.

function z = symconvup(x, f1, f2, fln, keep)

~ waverec2(ct, s1, wname);

1

% Upsample rows and convolve columns with f1; upsample columns and | : : .
% convolve rows with f2; then extract center assuming symmetrical ﬁzigaﬁéonezéﬂztgzt}o (Cuzﬁgﬁ/toolbox).
% extension. g image difference.
y = zeros([2 1] .* size(x)); y(1:2:end, 1) = X; 2g§§2the transform and get output and computation time for
y = conv2(y, f1'); -
: s1] = wi :
z = zeros([1 2] .* size(y)); z(:, 1:2:end) = y;] = wavedec2(f, n, wname)
z = conv2(z, f2);
z

Z(fln — 1:f1n + keep(1) — 2, fln — 1:fln + keep(2) - 2);

The main routine of function waveback is a simple for loop that iter
through the requested number of decomposition levels (i.e., scales) in the
sired reconstruction. As can be seen, each loop calls internal func
symconvup four times and sums the returned matrices. Decomposition ve
nc, which is initially set to ¢, is iteratively updated by replacing the four co
cient matrices passed to symconvup by the newly created approximatio
Bookkeeping matrix ns is then modified accordingly—there is now one
scale in decomposition structure [nc, ns]. This sequence of operation
slightly different than the ones outlined in Fig. 7.6, in which the top two inpy
are combined to yield

[W,l/,)(j, m,)12 * hy(m) + WY (j. m, n) > h‘P(m)]Tz" * hy(n)

where 12" and 12" denote upsampling along m and n, respectively. Func
waveback uses the equivalent computation

[W2(, m.)1 s hy(m) N 5 hy(n) + (W), m, n) 12" ho(m) 117" # o

Function symconvup performs the convolutions and upsampling require
compute the contribution of one input of Fig. 7.6 to output W,(j + 1, m, n)in
cordance with the proceding equation. Input x is first upsampled in the row d
tion to yield y, which is convolved columnwise with filter £1. The resulting ou
which replaces y, is then upsampled in the column direction and convolved ro¥;
row with 2 to produce z. Finally, the center keep elements of z (the final con¥
lution) are returned as input x's contribution to the new approximation.

ompare the results.
= t2 / (reftime + eps);
diff = abs(max(max(gl ~ g2)));

?i‘ﬁvc? scale transform of the 512 X 512 image in Fig. 7.4 with respect to 4th-order
bechies’ wavelets, we get

imread('vase', 'tif');
ratio, maxdifference] = ifwtcompare(f, 5, 'db4’)

te that the inverse transformation times of the two functions are equivalent
»the ratio is 1) and that the largest output difference is 3.6948 X 107" For
Practical purposes, they generate identical results in identical times. H

7.4 @ The Inverse Fast Wavelet Transform 275

EXAMPLE 7.7:
Comparing the
execution times of
waveback and
waverec2.

276 Chapter 7 & Wavelets 1.5 m Wavelets in Image Processing 277

Wavelets in Image Processing

As in the Fourier domain (see Section 4.3.2), the basic approach to wavye]

based image processing is to Wavelets in edge

""""" 3 detection:
(a) A simple test

1. Compute the two-dimensional wavelet transform of an image.
image; (b) its

2. Alter the transform coefficients.

3. Compute the inverse transform. wavelet
transform; (c) the
Because scale in the wavelet domain is analogous to frequency in the Foy transform
domain, most of the Fourier-based filtering techniques of Chapter 4 hav mOd}ﬁedﬁ?y
equivalent “wavelet domain” counterpart. In this section, we use the preceg; D% i;rporglxgi ;‘1 ation
three-st'ep procedu_re to give sgveral examples qf the use of wavelet§ inij Hn HM [”, B : coefficients; and
processing. Attention is restricted to the routines developed earlier in ”;, (d) the edge
azaddddad : : image resulting

chapter; the Wavelet Toolbox is not needed to implement the examples
here—nor the examples in Chapter 7 of Digital Image Processing (Gonz
and Woods [2002]).

from computing
the absolute value
of the inverse

transform.

EXAMPLE 7.8: B Consider the 500 X 500 test image in Fig. 7.7(a). This image was use o
Wavelet Chapter 4 to illustrate smoothing and sharpening with Fourier transfornici i I SRR
directionality and prere we yse it to demonstrate the directional sensitivity of the 2-D wa
edge detection. . . .

transform and its usefulness in edge detection:

>> f = imread('A.tif');

>> imshow(f);

>> [¢, s] = wavefast(f, 1, 'symd'); e (GAL B

>> figure; wave2gray(c, s, —6); ' H”,l”l ;

>> [nc, y] = wavecut('a', ¢, s); TE T

>> figure; wave2gray(nc, s, —6); : A A a

>> edges = abs(waveback(nc, s, 'sym4'));

>> figure; imshow(mat2gray(edges));

. .) : symlets is shown in Fig. 7.8(b), where it is clear that a four-sc -
The horizontal, vertical, and diagonal directionality of the single-s OZ has been performe dg To s(trz: amline the smoothing proc;ss :iz Sricglr:y

wavelet transform of Fig. 7.7(a) with respect to 'sym4' wavelets is clearly- llowing utility function: ’

ible in Fig. 7.7(b). Note, for example, that the horizontal edges of the orig

image are present in the horizontal detail coefficients of the upper-right qu ion [nc, g8] = wavezero 1

rant of Fig. 7.7(b). The vertical edges of the image can be similarly identifie inVEZERO Zer"ogs wavelet trargg %ors*n,'l dét\z’avgimzc))efficients p—EZOT0

the vertical detail coefficients of the lower-left quadrant. To combine this
formation into a single edge image, we simply zero the approximation co
cients of the generated transform, compute its inverse, and take the absol
value. The modified transform and resulting edge image are shown
Figs.7.7(c) and (d), respectively. A similar procedure can be used to isolate:
vertical or horizontal edges alone.

NC, G8] = WAVEZERO(C, S, L, WNAME) zeroes the level L detail
oefficients in wavelet decomposition structure [C, S] and
omputes the resulting inverse transform with respect to WNAME
avelets,

foo] = wavecut('h', ¢, s, 1);
foo] = wavecut('v’, nc, s, 1);
» f00] = wavecut('d', nc, s, 1);
Waveback(nc, s, wname);
im2uint8(mat2gray(i))
re; imshow(gs); e

i

EXAMPLE 7.9: B Wavelets, like their Fourier counterparts, are effective instruments;
Wavelet-based smoothing or blurring images. Consider again the test image of Fig. 7.7

g’r’%%srsrri‘r‘l‘;’thing which is repeated in Fig. 7.8(a). Its wavelet transform with respect to fou

7.5 # Wavelets in Image Processing 279

278 Chapter 7 @ Wavelets .
sing wavezero, a series of increasingly smoothed versions of Fig. 7.8(a)

c chl e generated with the following sequence of commands:

¢

e f

FIGURE 7.8 imread('A. tif');

Wavelet-based
image smoothing:

(a) A test image; = wavezero(c, s, 1, 'sym4');
(b) its wavelet g8] = wavezero(c, s, 2, 'sym4');
transform; (c) the g8] = wavezero(c, s, 3, 'sym4');
inverse transform QB] = Wavezero(c’ s, 4, 'Sym4');

after zeroing the
first-level detail
coefficients; and
(d) through

(f) similar results
after zeroing the
second-, third-,
and fourth-level
details.

c, 8] = wavefast(f, 4,
ave2gray(c, s, 20);

‘sym4');

d by zeroing only the first-level detail coefficients of the original image’s
et transform (and computing the modified tranform’s inverse). Additional

g the second level detail coefficients as well. The coefficient zeroing
ss continues in Fig. 7.8(e), where the third level of details is zeroed, and

in the wavelet domain and frequency in the Fourier domain.]

or a specific image. Here, we deviate from the three-step procedure de-
d at the beginning of this section and consider an application without a
r domain counterpart. Each image in the database is stored as a multi-
> wavelet decomposition. This structure is well suited to progressive recon-
tion applications, particularly when the 1-D decomposition vector used to

the transform’s coefficients assumes the general format of Section 7.3.
he four-scale transform of this example, the decomposition vector is

EVIONES : TOREEEE Vi) D, (:)’]

e A, is the approximation coefficient matrix of the fourth decomposition
cland H;, V;,and D; fori = 1,2, 3, 4 are the horizontal, vertical, and diag-
‘transform coefficient matrices for level i, If we transmit this vector in a
o-right manner, a remote display device can gradually build higher reso-
0 approximations of the final high-resolution image (based on the user’s
) as the data arrives at the viewing station. For instance, when the A, co-
ents have been received, a low-resolution version of the image can be
(e available for viewing [Fig. 7.9(b)]. When H,, V,, and D, have been re-
tlVed, a higher-resolution approximation [Fig. 7.9(c)] can be constructed, and

H;,(:)’ D,(:)’ Vi)

nsider next the transmission and reconstruction of the four-scale wavelet EXAMPLE 7.10:
orm in Fig. 7.9(a) within the context of browsing a remote image data- Progressive
reconstruction..

280

Chopter 7 m Wavelets

et

FIGURE 7.9 Progressive reconstruction: (a) A four-scale wavelet transform; (b) the fourth
level approximation image from the upper-
porating the fourth-level details;
incorporating higher-level details.

so on. Figures 7.9(d) through (f) provide three additional reconstructions o
increasing resolution. This progressive reconstruction process is easily simulat

(d) through (f) further resolution improvement

f = wavecopy('a', ¢, S); % Approximation 1
figure; imshow(mat2gray (f));

[c, s] = waveback(c, s, ‘jpeg9.7', 1); % Approximation 2
f = wavecopy('a', ¢, §);

figure; imshow(mat2gray(f));

[c, s8] = waveback(c, s, 'jpeg9.7', 1); % Approximation 3
= wavecopy('a', ¢, s);

figure; imshow(mat2gray(f));

[c, s] = waveback(c, s, 'jpeg9.7', 1); % Approximation 4
= wavecopy('a', ¢, s);

figure; imshow(mat2gray(f));

[c, s] = waveback(c, s, 'jpeg9.7', 1); % Final image

= wavecopy('a', ¢, s);

igure; imshow(mat2gray(f));

ote that the final four approximations use waveback to perform single level
constructions. =

e material in this chapter introduces the wavelet transform and its use in image pro-
ing. Like the Fourier transform, wavelet transforms can be used in tasks ranging
m edge detection to image smoothing, both of which are considered in the material
at is covered. Because they provide significant insight into both an image’s spatial and
eguency characteristics, wavelets can also be used in applications in which Fourier
thods are not well suited, like progressive image reconstruction (see Example 7.10).
use the Image Processing Toolbox does not include routines for computing or using
let transforms, a significant portion of this chapter is devoted to the development
set of functions that extend the Image Processing Toolbox to wavelet-based imag-
The functions developed were designed to be fully compatible with MATLAB’s
Wavelet Toolbox, which is introduced in this chapter but is not a part of the Image

essing Toolbox. In the next chapter, wavelets will be used for image compression, an
4 in which they have received considerable attention in the literature.

left corner; (c) a refined approximation incor

ed using the following MATLAB command sequence: 2

>> f = imread('Strawberries.tif'); % Generate transform
>> [c, s] = wavefast(f, 4, 'jpeg9.7');
>> wave2gray(c, s, 8);

® Summary 281

282

ograms as though they were conventional M-files or built-in functions,
emonstrates that MATLAB can be an effective tool for prototyping image
ompresswn systems and algorithms.

m Background

s can be seen in Fig. 8.1, image compression systems are composed of two
stinct structural blocks: an encoder and a decoder. Image f(x, y) is fed into
e encoder, which creates a set of symbols from the input data and uses them
represent the image. If we let n; and n, denote the number of information
rrying units (usually bits) in the original and encoded images, respectively,
¢ compression that is achieved can be quantified numerically via the
mpression ratio
ny

Cg= nz
compression ratio like 10 (or 10:1) indicates that the original image has
information carrying units (e.g., bits) for every 1 unit in the compressed
ta set. In MATLAB, the ratio of the number of bits used in the represen-
tion of two image files and/or variables can be computed with the follow-
ing M-function:

Preview

Image compression addresses the problem of reducing the amount of data
quired to represent a digital image. Compression is achieved by the removal o
one or more of three basic data redundancies: (1) coding redundancy, whichis
present when less than optimal (i.e., the smallest length) code words are used
(2) interpixel redundancy, which results from correlations between the pix
of an image; and/or (3) psychovisual redundancy, which is due to data that is
ignored by the human visual system (i.e., visually nonessential information). I
this chapter, we examine each of these redundancies, describe a few of the ror(nargchk(2, 2, nargin)); % Check input arguments
many techniques that can be used to exploit them, and examine two importan bytes(f1) / bytes(f2); % Compute the ratio
compression standards-—JPEG and JPEG 2000. These standards unify theRee s
concepts introduced earlier in the chapter by combining techniques that cok function b = bytes(f)
lectively attack all three data redundancies. Return the number of bytes in 1nput f. If f is a string, _assume
Because the Image Processing Toolbox does not include functions for
image compression, a major goal of this chapter is to provide practical ways o
exploring compression techniques within the context of MATLAB. For in:
stance, we develop a MATLAB callable C function that illustrates how to mas
nipulate variable-length data representations at the bit level. This is important
because variable-length coding is a mainstay of image compression, but
MATLAB is best at processing matrices of uniform (i.e., fixed length) data:
During the development of the function, we assume that the reader has a
working knowledge of the C language and focus our discussion on how to
make MATLARB interact with programs (both C and Fortran) external to the
MATLAB environment. This is an important skill when there is a need to in-
terface M-functions to preexisting C or Fortran programs, and when vector-
ized M-functions still need to be speeded up (e.g., when a for loop can not be
adequately vectorized). In the end, the range of compression functions devel*
oped in this chapter, together with MATLAB?s ability to treat C and Fortran

nction cr = imratio(f1, f2)

$IMRATIO Computes the ratio of the bytes in two images/variables.

CR = IMRATIO(Ft1, F2) returns the ratio of the number of bytes in
variables/files F1 and F2. If F1 and F2 are an original and
compressed image, respectively, CR is the compression ratio.

o———— Mapper > Quantizer [>

Compressed
image

i
|

Symbol Inverse A
71 decoder ™ mapper | ! fley)
|
I

Decoder

8.1 @ Background 283

imratio
SRR

FIGURE 8.1

A general image
compression
system block
diagram.

284 Chapter 8 ® Image Compression 8.1 ® Background 285

if ischar(f)

info = dir(f); b = info.bytes;
elseif isstruct(f)

s MATLAB's whos function reports an extra 124 bytes of memory

% per structure field because of the way MATLAB stores

% structures in memory. Don't count this extra memory; instea

% add up the memory associated with each field.

b = 0;

fields = fieldnames(f);

for k = 1:length(fields)

b="Db+ bytes(f. (fields{k}));

ploy the dynamic structure fieldname syntax to set and/or get the contents
tructure field F, respectively.

o view and/or use a compressed (i.e., encoded) image, it must be fed into a
oder (see Fig. 8.1), where a reconstructed output image, f(x, y), is generated.
eneral, f (x, y) may or may not be an exact representation of flx, y). Ifitis,
system is called error free, information preserving, or lossless; if not, some
] of distortion is present in the reconstructed image. In the latter case, which
alled lossy compression, we can define the error e(x, y) between f(x, y) and
), for any value of x and y as

end e(x,y) = f(x,y) = f(x,7)
else ‘ . .

info = whos('f'); b = info.bytes; at the total error between the two images is
end M-1 N-1

2 z[f(x’.)’) _f(x’y)]
x=0 y=0

For example, the compression of the JPEG encoded image in Fig. 2.4(c) A
Chapter 2 can be computed via ‘ d'the rms (root-mean-square) error e.; between f(x, y) and f(x, y) is the
are root of the squared error averaged over the M X N array, or

>>pr o= imratio(imread('bubbles25.jpg'), ‘bubbles25.jpg") [1 M-UN-1 |
Tms =

2}1/2
N S 2 Fy) = fw)]

r =
x=0 y=0

35.1612
he following M-function computes e and displays (if e # 0) both e(x, y)
d its histogram. Since e(x, y) can contain both positive and negative values,
st rather than imhist (which handles only image data) is used to generate
he histogram.

Note that in function imratio, internal function b = bytes(f) is design
to return the number of bytes in (1) a file, (2) a structure variable, and/or 3)
nonstructure variable. If f is a nonstructure variable, function whos, intr

>
o
=
a
<}
o
-
<
%2]
I3
a8
=
o
=1
8]
)
&»
o
w
1]
(o8
-
o
o]
]
L
=
@
m-
N
4]
5
g
=
o
w
=
—4
—
w
st
£
o
=
5
kg
.
=
=]
g

dir performs a similar service. In the syntax employed, dir returns a structur ction rmse = compare(f1, f2, scale) w—lT8

(see Section 2.10.6 for more on structures) with fields name, date, bytes, an CONPARE Computes and displays the error between two matrices.
i RMSE = COMPARE(F1, F2, SCALE)} returns the root-mean-square error

between inputs F1 and F2, displays a histogram of the difference,
and displays a scaled difference image. When SCALE is omitted, a
scale factor of 1 is used.

tively. Finally, if f is a structure, bytes calls itself recursively to sum the num
ber of bytes allocated to each field of the structure. This eliminates th
overhead associated with the structure variable itself (124 bytes per field), re
turning only the number of bytes needed for the data in the fields. Functio
fieldnames is used to retrieve a list of the fields in f, and the statements

Check input arguments and set defaults.
rror(nargchk(2, 3, nargin));

nargin < 3

“scale = 1;

d

Compute the root-mean-square error.
= double(f1) — double(f2);

y N] = size(e);

e = sqrt(sum(e(:) .~ 2) / (m * n));

Qutput error image & histogram if an error (i.e., rmse -= 0).
1f rmse

% Form error histogram,

emax = max(abs(e(:)));

{h, x] = hist(e(:), emax);

names = for k = 1:length(fields)
fieldnames(s) re- b =b + bytes(f. (fields{k}));
turns a cell array of

Strings containing

the structure field perform the recursions. Note the use of dynamic structure fieldnames in the re
names associated cursive calls to bytes. If S is a structure and F is a string variable containing

with structure s. .
field name, the statements

S.(F) = foo;
field = S.(F);

286

Chapter 8 @ Image Compression

if length(h) >= 1 -
figure; bar(x, h, 'k');) Code 1 “li(ry) Code 2 L(ny)
% Scale the error image symmetrically and display 0.1875 00 2 011 3
emax = emax / scale; 0.5000 01 2 1 1
e = matZQray(e, [-emax, emax]); 0.1250 10 2 010 3
figure; imshow(e); 0.1875 11 2 00 2

end

end

t'is, Lavg = m when m is substituted for /(r,). Then the constant m may be

en outside the summation, leaving only the sum of the p,(r,) for
S = L, which, of course, equals 1. As is iltustrated in Table 8.1, coding re-
indancy is almost always present when the gray levels of an image are
d using a natural binary code. In the table, both a fixed and variable-
th encoding of a four-level image whose gray-level distribution is shown
lumn 2 is given. The 2-bit binary encoding (Code 1) in column 3 has an
age length of 2 bits. The average number of bits required by Code 2 (in
mn 5) is

Finally, we note that the encoder of Fig. 8.1 is responsible for reducing ¢
c.oding, interpixel, and/or psychovisual redundancies of the input image. In t}
first stage of the encoding process, the mapper transforms the input image iy
a (usually nonvisual) format designed to reduce interpixel redundancies, Th
§econd stage, or quantizer block, reduces the accuracy of the mapper’s outp
In accordance with a predefined fidelity criterion—attempting to eliminat
only psychovisually redundant data. This operation is irreversible and must}
omitted when error-free compression is desired. In the third and final stag
the process, a symbol coder creates a code (that reduces coding redundangy,
for the quantizer output and maps the output in accordance with the code,

The decoder in Fig. 8.1 contains only two components: a symbol decods
and an inverse mapper. These blocks perform, in reverse order, the inverse op
érations of the encoder’s symbol coder and mapper blocks. Because quantiza
tion is irreversible, an inverse quantization block is not included.

4
Lavg = ,Z IZ(k)pr(rk)

1
3(0.1875) + 1(0.5) + 3(0.125) + 2(0.1875) = 1.8125

d the resulting compression ratio is C, = 2/1.8125 =~ 1.103. The underlying
for the compression achieved by Code 2 is that its code words are of
ng length, allowing the shortest code words to be assigned to the gray lev-
that occur most frequently in the image.

The question that naturally arises is: How few bits actually are needed to
resent the gray levels of an image? That is, is there a minimum amount of
a that is sufficient to describe completely an image without loss of informa-
n? Information theory provides the mathematical framework to answer this
and related questions. Its fundamental premise is that the generation of infor-
tion can be modeled as a probabilistic process that can be measured in a
nanner that agrees with intuition. In accordance with this supposition, a ran-
m event £ with probability P(E) is said to contain

7l Coding Redundancy

L.e't Fhe discrete random variable 7, for k = 1,2, ... » L with associated pro
bilities p,(r;) represent the gray levels of an L-gray-level image. As in
Chapter 3, r; corresponds to gray level 0 (since MATLAB array indices can
be 0) and

n
pr(re) =— k=12..L

where ny is the number of times that the kth gray level appears in the image
and n is the total number of pixels in the image. If the number of bits used to
represent each value of 7, is /(r;), then the average number of bits required to
represent each pixel is

1
I(E) = log PE) ~ log P(E)
nits of information. If P(E) = 1 (that is, the event always occurs), [(E) = 0
nd no information is attributed to it. That is, because no uncertainty is associ-
ted with the event, no information would be transferred by communicating
at the event has occurred. Given a source of random events from the dis-
ete set of possible events {a;,a,,...,a,;} with associated probabilities

L
Lavg = kzll(rk).pr(rk)

That is, the average length of the code words assigned to the various gray-level
values is found by summing the product of the number of bits used to repre:
sent each gray level and the probability that the gray level occurs. Thus the
total number of bits required to code an M X N image is MNL,,.

When the gray levels of an image are represented using a natural m-bit bi-
nary code, the right-hand side of the preceding equation reduces to m bits.

€ entropy of the source, is

J
H = —2 P(a;) log P(a;)
=

8.2 w Coding Redundancy 287

TABLE 8.1
Illustration of
coding redundancy:
Loy, = 2 for

Code 1; L,y = 1.81
for Code 2.

288 Chapter 8 @ Image Compression 8.2 ® Coding Redundancy 289

If an image is interpreted as a sample of a “gray-level source” that emitted 23 119 168 168
we can model that source’s symbol probabilities using the gray-leve] | 19 119107 119
togram of the observed image and generate an estimate, called the firsz.op] 07 107 119 119
estimate, H, of the source’s entropy: hist(f(:), 8);

~ L p / sum(p)

H = =3 p(r)log p,(re)
= .0.1875 0.5 0.125 0 0 0 0O 0.1875
Such an estimate is computed by the following M-function and, under th, '
sumption that each gray level is coded independently, is a lower boun
the compression that can be achieved through the removal of coding re
dancy alone.

ventropy (f)

+1.7806

e 2 of Table 8.1, with L,,, =~ 1.81, approaches this first-order entropy esti-
and is a minimal length binary code for image f. Note that gray level 107
rresponds to ry and corresponding binary codeword 011, in Table 8.1, 119
sponds to », and code 1,, and 123 and 168 correspond to 010, and 00,,

entropy function h = entropy(x, n)
%ENTROPY Computes a first-order estimate of the entropy of a matr
% H = ENTROPY(X, N) returns the first-order estimate of matrix

of

% with N symbols (N = 256 if omitted) in bits/symbol. The estim

% assumes a statistically independent source characterized by th pectively. B
% relative frequency of occurrence of the elements in X,

error(nargchk(1, 2, nargin)); % Check input arguments .1 Huffman Codes

if nargin < 2 ‘) :

n = 256; % Default for n. en coding the gray levels of an image or the output of a gray-level mapping
end operation (pixel differences, run-lengths, and so on), Huffman codes contain
X = double(x); % Make input double smallest possible numl?er of code symbo%s (e.g., bits) per source symbol
xh = hist(x(:), n); % Compute N-bin histogram g., gray-level .value) subject to the constraint that the source symbols are
xh = xh / sum(xh(:)); % Compute probabilities ed one at a time.

. L) The first step in Huffman’s approach is to create a series of source reduc-
ake mask to eliminate 0's since log2(0) = —inf. ns by ordering the probabilities of the symbols under consideration and

o
=

1 = find(xh);

h = —sum(xh(i) .* log2(xh(i))); % Compute entropy

bining the lowest probability symbols into a single symbol that replaces
hem in the next source reduction. Figure 8.2(a) illustrates the process for the
y-level distribution in Table 8.1. At the far left, the initial set of source sym-

Note the use of the MATLAB find function, which is employed to determi and their probabilities are ordered from top to bottom in terms of de-
the indices of the nonzero elements of histogram xh. The statement £ ind (x) 18 easing probability values. To form the first source reduction, the bottom two
equivalent to find(x ~= 0). Function entropy uses find to create a vecto robabilities, 0.125 and 0.1875, are combined to form a “compound symbol”
h probability 0.3125. This compound symbol and its associated probability
e placed in the first source reduction column so that the probabilities of the
duced source are also ordered from the most to the least probable. This
ocess is then repeated until a reduced source with two symbols (at the far

If this were not done, the 1og2 function would force output htoNaN (0 * —inf
Is not a number) when any symbol probability was 0.

The second step in Huffman’s procedure is to code each reduced source,
arting with the smallest source and working back to the original source. The
nimal length binary code for a two-symbol source, of course, consists of the
Symbols 0 and 1. As Fig. 8.2(b) shows, these symbols are assigned to the two
Symbols on the right (the assignment is arbitrary; reversing the order of the 0

EXAMPLE 8.1: # Consider a simple 4 X 4 image whose histogram (see p in the following
Computing first- code) models the symbol probabilities in Table 8.1. The following command:
Zsrgifa?;’;r"py line sequence generates one such image and computes a first-order estimate of
1ts entropy.

and 1 would work just as well). As the reduced source symbol with probability
S was generated by combining two symbols in the reduced source to its left,
the 0 used to code it is now assigned to borh of these symbols, and a 0 and 1
are arbitrarily appended to each to distinguish them from each other. This

>> f = [119 123 168 119; 123 119 168 168];
>> f [f; 119 119 107 119; 107 107 119 119]
f =

119 123 168 119

290 Chopter 8 @ Image Compression

@

b

FIGURE 8.2
Huffman (a)
source reduction
and (b) code
assignment

procedures.

huffman
R

8.2 % Coding Redundancy

onding index of P.
Original Source Source Reduction Drres‘) g
Symbol Probability 1 2 ased on huffman5 by Sean Danaher, University of Northumbria,
gwcastle UK. Available at the MATLAB Central File Exchange:
% 05 0.5 0.5 ategory General DSP in Signal Processing and Communications.
o 8’1:;2 gigj_J o ¢k the input arguments for reasonableness.
o ' ' (nargchk(1, 1, nargin)); . . .
- 0125 dims(p) ~= 2) | (min(size(p)) > 1) | ~isreal(p) | ~isnumeric(p)
por('P must be a real numeric vector.');
Original Source Source Reduction obal variable surviving all recursions of function 'makecode’
al CODE
Symbol Probability Code 1 2 cell(length(p), 1); % Init the global cell array
a 0.5 1 0.5 1 05 1 gth(p) > 1 % When more than one symbol .
a4 0.1875 00 — 0.3125 01 05 0 p / sum{p); % Normalize the input probabllltlgs
a 0.1875 011 «—- 0.1875 OOT reduce(p); % Do Huffman source symbol reductions
as 0.125 010 ~— iakecode(s, [1); % Recursively generate the code

ODE = {'1'}; % Else, trivial one symbol case!

operation is then repeated for each reduced source until the original sour
reached. The final code appears at the far left (column 3) in Fig. 8.2(b).
The Huffman code in Fig. 8.2(b) (and Table 8.1) is an instantaneous uniqu
ly decodable block code. It is a block code because each source symb
mapped into a fixed sequence of code symbols. It is instantaneous becau
each code word in a string of code symbols can be decoded without refer
ing succeeding symbols. That is, in any given Huffman code, no code word is
prefix of any other code word. And it is uniquely decodable because a strin
code symbols can be decoded in only one way. Thus, any string of Huffmane
coded symbols can be decoded by examining the individual symbols of
string in a left-to-right manner. For the 4 X 4 image in Example 8.1, a top-i
bottom left-to-right encoding based on the Huffman code in Fig. 8.2(b) yiel
the 29-bit string 10101011010110110000011110011. Because we are using
instantaneous uniquely decodable block code, there is no need to insert deli 1
iters between the encoded pixels. A left-to-right scan of the resulting string I
veals that the first valid code word is 1, which is the code for symbol a; or gra
level 119. The next valid code word is 010, which corresponds to gray level 12
Continuing in this manner, we eventually obtain a completely decoded imag|
that is equivalent to f in the example. :
The source reduction and code assignment procedures just described ar
implemented by the following M-function, which we call huffman: R %
lUnction makecode(sc, codeword)
can the nodes of a Huffman source reduction tree recursively to
enerate the indicated variable length code words.

‘tion s = reduce(p);
eate a Huffman source reduction tree in a MATLAB cell structure

performing source symbol reductions until there are only two
duced symbols remaining

cell(length(p), 1);

nerate a starting tree with symbol nodes 1, 2, 3, ... o
ference the symbol probabilities.

i = 1:length(p)

{i} = i;

Sort the symbol probabilities
Merge the 2 lowest probabilities
and prune the lowest one

Reorder tree for new probabilities
and merge & prune its nodes
to match the probabilities

$ = s(i); '
{s{1}, s{2}};

15

=
n
d® o° o P o o°

1]

function CODE = huffman(p)

%HUFFMAN Builds a variable-length Huffman code for a symbol source.
% CODE = HUFEMAN(P) returns a Huffman code as binary strings in
% cell array CODE for input symbol probability vector P. Each word
% 1in CODE corresponds to a symbol whose probability is at the

-Global variable surviving all recursive calls
lobal CODE

291

292 Chopter 8 m Image Compression

An equivalent ex-
pression is X =
cell([m, n]). For
other forms, type
>>helpcell.

if isa(sc, 'cell') % For cell array nodes, ty matrix. That is, X{1} refers to. the contents of Fhe first elemgnt (an
makecode(sc{1}, [codeword 0]); % add a 0 if the 1st elemep y) of X; X(1) refers to the element itself (rather than its content). Since cell
makecode(sc{2}, [codeword 1]); % or a1 if the 2nd ys can be nested within other cell arrays, the syntax X{1} {2} refers to the
else % For leaf (numeric) nodes, ient of the second element of the cell array that is in the first element of

CODE{sc} = char('0' + codeword); % create a char code String:

end fter CODE is initialized and the input probability vector is normalized

he p=p / sum(p) statement], the Huffman code for nor.mfillized proba-
y.vector p is created in two steps. The first step, which is initiated by Fhe
Eeduce(p) statement of the main routine, is to call internal function
uce, whose job is to perform the source reductions illustrated_ in
8.2(a). In reduce, the elements of an initially empty source reduction

The following command line sequence uses huffman to generate the cod
Fig. 8.2:

>> p = [0.1875 0.5 0.125 0.1875];

>> ¢ = huffman(p) {[.array s, which is sized to match CODE, are initialized to their indices.
c = atis,s{1} =1,s{2} =2, and so on. The cell equivalent of a binary tree for
‘011’ s source reductions is then created in the while numel(s) > 2 loop. In
5 ch iteration of the loop, vector p is sorted in ascending order of probabil-
1010 . This is done by the sort function, whose general syntax is
' 00 1

_ [y, 1] = sort(x)
Note that the output is a variable-length character array in which each row
string of Os and 1s—the binary code of the correspondingly indexed symbolf
p. For example, '010" (at array index 3) is the code for the gray level
probability 0.125. ‘
In the opening lines of huffman, input argument p (the input symbol pr
ability vector of the symbols to be encoded) is checked for reasonableness
global variable CODE is initialized as a MATLAB cell array (defined
Section 2.10.6) with length(p) rows and a single column, All MATLAB gl
al variables must be declared in the functions that reference them usin
statement of the form '

e output y is the sorted elements of x and index vector i is such that
- (1). When p has been sorted, the lowest two probabilities are merged by
i:ing their composite probability in p(2),and p(1) is pruned. The source re-
ction cell array is then reordered to match p based on index vector i using s
{(1). Finally, s{2} is replaced with a two-element cell array containing the
rged probability indices via s{2} = {s{1}, s{2}} (an example of content
exing), and cell indexing is employed to prune the first of the two merged
ments, s(1),via s(1) = [].The process is repeated until only two elements
ain in s.
Figure 8.3 shows the final output of the process for the symbol probabilities

global X Y Z able 8.1 and Fig. 8.2(a). Figures 8.3(b) and (c) were generated by inserting

This statement makes variables X, Y, and Z available to the function in which

celldisp(s);
they are declared. When several functions declare the same global variabl cellplot(s);
they share a single copy of that variable. In huffman, the main routine and i
ternal function makecode share global variable CODE. Note that it is customary
to capitalize the names of global variables. Nonglobal variables are local vari EB&" - Root - -——._______ 1.0
ables and are available only to the functions in which they are defined (not
other functions or the base workspace); they are typically denoted in lowerca 1} —4
In huffman, CODE is initialized using the ce1l function, whose syntax is S B Gy 7, -————— N e 0;5 st
: s{1}{2}{1} =3
X = cell(m, n) ~-0.1875 - ==~ 03125 E s{1}{2}{2} =1
It creates an m X n array of empty matrices that can be referenced by cell ' } s{2} =2
by content. Parentheses, “()7, are used for cell indexing; curly braces, «{}”, ar | 0.125 0.1875 '
used for content indexing. Thus, X(1) = [] indexes and removes element. a' af a: a'
I 3 1 2

from the cell array, while X{1} =[] sets the first cell array element to th

8.2 ® Coding Redundancy 293

a. bi¢:

FIGURE 8.3
Source reductions
of Fig. 8.2(a) using
function huffman:
(a) binary tree
equivalent;

(b) display
generated by
cellplot(s);

(c) celldisp(s)
output.

294

Chopter 8 @ Image Compression

8.2 # Coding Redundancy 295

between the last two statements of the huffman main routine. MATLAR fu D:a“ Origin sc codeword IC'IZIZEEaz.SiZ .
tion celldisp prints a cell array’s contents recursively; function cellplq : i ocess fogr the
produces a graphical depiction of a cell array as nested boxes. Note the one 1 main routine {1x2 cell} 0 Eource reduction
one correspopdence betwee.n tbe cell array elements in Fig. 8.3(1?) and » makecode Ei} (1x2 cell) 0 cell array in
source reduction tree nodes in Fig. 8.3(a): (1) each two-way branch in the 3 makecode 4 00 Fig. 8.3.
(which represents a source reduction) corresponds to a two-element cell array 4 makecode (3] 1] 01
in s; and (2) each two-element cell array contains the indices of the symbg 5 makecode 3 010
that were merged in the corresponding source reduction. For example, t; 6 makecode 1 011
merging of symbols a3 and a; at the bottom of the tree produces the twg 7 makecode 2 1
element cell array s{1}{2}, where s{1}{2}{1} =3 and s{1}{2}{2} = 1 ('
indices of symbol a3 and a,, respectively). The root of the tree is the top-le i
two-element cell array s. ytime that sc is not a cell array, as in rows 3, 5, 6, and 7 of the table, addi-
The final step of the code generation process (i.¢., the assignment of co nal recursions are unnecessary; a code string is created from codeword and
based on source reduction cell array s) is triggered by the final statement g signed to the source symbol whose index was passed as sc.
huffman—the makecode(s, []) call. This call initiates a recursive code g .
signment process based on the procedure in Fig. 8.2(b). Although recursio .2 Huffman Encoding
generally provides no savings in storage (since a stack of values be ffman code generation is not (in and of itself) compression. To realize the
processed must be maintained somewhere) or increase in speed, it has the ad mpression that is built into a Huffman code, the symbols for which the code
vantage that the code is more compact and often easier to understand. parti¢ s created, whether they are gray levels, run lengths, or the output qf some
ularly when dealing with recursively defined data structures like trees. An er gray-level mapping operation, must be transformed or mapped (i.e., en-
MATLARB function can be used recursively; that is, it can call itself either di ded) in accordance with the generated code.
rectly or indirectly. When recursion is used, each function call generates a fres
set of local variables, independent of all previous sets. : B Consider the simple 16-byte 4 X 4 image: EXAMPLE 8.2:

Variable-length

code mappings in

Internal function makecode accepts two inputs: codeword, an array of
f2 = uint8({2 34 2; 3244; 2212;1122}) MATLAB.

and 1s, and sc, a source reduction cell array element. When sc is itself a ce
array, it contains the two source symbols (or composite symbols) that wer

joined during the source reduction process. Since they must be individuall 5 3 4 P
coded, a pair of recursive calls (to makecode) is issued for the elements—alon 3 2 4 4
with two appropriately updated code words (a 0 and 1 are appended to inpu 2 2 1 2
codeword). When sc does not contain a cell array, it is the index of an origina 1 1 2 2
source symbol and is assigned a binary string created from input codeword > whos('f2')
using CODE{sc} = char('0' + codeword). As was noted in Section 2.10.5 © Name Size Bytes Class
MATLAB function char converts an array containing positive integers tha .
f2 4x4 16 uint8 array

represent character codes into a MATLAB character array (the first 127 codes
are ASCII). Thus, for example, char('0' + [0 1 0]) produces the character
string ' 010", since adding a 0 to the ASCII code for a 0 yields an ASCII '0’
while adding a 1 to an ASCII '0' yields the ASCII code for a 1, namely '1'.

Table 8.2 details the sequence of makecode calls that results for the source
reduction cell array in Fig. 8.3. Seven calls are required to encode the four
symbols of the source. The first call (row 1 of Table 8.2) is made from the main
routine of huffman and launches the encoding process with inputs codeword
and sc set to the empty matrix and cell array s, respectively. In accordance
with standard MATLAB notation, {1x2 cell} denotes a cell array with one

rand total is 16 elements using 16 bytes

ach pixel in f2 is an 8-bit byte; 16 bytes are used to represent the entire
mage. Because the gray levels of 2 are not equiprobable, a variable-length
ode (as was indicated in the last section) will reduce the amount of memory
equired to represent the image. Function huffman computes one such code:

> ¢ = huffman(hist(double(f2(:)), 4))

row and two columns. Since sc is almost always a cell array on the first call 011!

(the exception is a single symbol source), two recursive calls (see rows 2 and 7 1

of the table) are issued. The first of these calls initiates two more calls (rows 3 010
i 00 1

and 4) and the second of these initiates two additional calls (rows 5 and 6).

296

Chapter 8 = Image Compression

cell array h1f2 is transformed into a 3 X 16 character array, h22. Each

im’m of h2f2 corresponds to a pixel of f2 in a top-to-bottom left-to-right
., columnwise) scan. Note that blanks are inserted to size the array proper-
d, since two bytes are required for each '0' or '1' of a code worfi,.the
4l memory used by h2f2 is 96 bytes—still six times greater th:an the original
bytes needed for 2. We can eliminate the inserted blanks using

Since Huffman codes are based on the relative frequency of occurrence of tk
source symbols being coded (not the symbols themselves), ¢ is identica] tot
code that was constructed for the image in Example 8.1. In fact, image 2 i
be obtained from f in Example 8.1 by mapping gray levels 107, 119, 123,
168 to 1,2, 3, and 4, respectively. For either image, p = [0.1875 0.5 0.
0.1875].

2f2 = h2f2(:);

2f2(h2f2 == ' ') = [];
whos ('h2f2"')

- Name Size Bytes Class

. h2f2 29x1 58 char array

lookup operation:

>> hif2 = ¢c(f2(:))"’
h1f2 =
Columns 1 through 9

' nd total is 29 elements using 58 bytes
e ‘010" 1! ‘011 ‘010’ 1! 1! 011! '00 .

Columns 10 through 16 the required memory is still greater than £2’s original 16 bytes.
‘00’ HUR RS B '00' ‘1! 1! To compress 2, code ¢ must be applied at the bit level, with several encod-
ixels packed into a single byte:
>> whos('h1f2") pixels p gle by
Name Size Bytes Class
h3f2 = mat2huff(f2)
h1f2 1x16 1530 cell array

Grand total is 45 elements using 1530 bytes size: [4 4]

min: 32769
hist: [3 8 2 3]
code: [43867 1944]

>-whos('h3f2')
Name Size Bytes Class

h3f2 1x1 518 struct array
and total is 13 elements using 518 bytes

Here, f2 (a two-dimensional array of class UINTS) is transformed into
1 X 16 cell array, h1f2 (the transpose compacts the display). The elements
h1f2are strings of varying length and correspond to the pixels of £2 in a top-t
bottom left-to-right (i.e., columnwise) scan. As can be seen, the encoded imag
uses 1530 bytes of storage—almost 100 times the memory required by f2!
The use of a cell array for h1f2 is logical because it is one of two standar
MATLAB data structures (see Section 2.10.6) for dealing with arrays of di

strings and the price paid for transparently handling it via the cell array is th fhough function mat2huff returns a structure, h3f2, requiring 518 bytes of
emory, most of it is associated with either (1) structure variable overhead
{recall from the Section 8.1 discussion of imratio that MATLARB uses 124
bytes of overhead per structure field) or (2) mat2huff generated information
to facilitate future decoding. Neglecting this overhead, which is negligible
When considering practical (i.e., normal size) images, mat2huff compresses 2
by a factor of 4:1. The 16 8-bit pixels of 2 are compressed into two 16-bit
words—the elements in field code of h3f2:

>> h2f2 = char(h1f2)’

h2f2 =
1010011000011011
111 1001 o

010 1 1 >> hcode = h3f2.code;
>> whos('h2f2"') >_> whos ('hcodei }
Name Size Bytes Class Name Size Bytes Class
h2f2 3x16 96 char array hcode 1x2 4 uint16 array

Grand total is 48 elements using 96 bytes rand total is 2 elements using 4 bytes

8.2 ® Coding Redundancy

297

298 Chapter 8 # Image Compression 8.2 % Coding Redundancy 299

>> dec2bin(double(hcode)) tore the size of input x.

4 decabin ans = ize = uint32(size(x));
) 1010101101011011 ind the range of x values and store its minimum value biased
Converts a decimal 0000011110011000 y +32768 as a UINT16.

integer to a binary
string. For more in- . . o
formation, type Note that dec2bin has been employed to display the individual bits’

>>helpdecabin. n3f2. code. Neglecting the terminating modulo-16 pad bits (i.e., the final thr,
Os), the 32-bit encoding is equivalent to the previously generated (g
Section 8.2.1) 29-bit instantaneous uniquely decodable block cod
10101011010110110000011110011.

round(double(x));

min = min(x(:));

max(x(:));

double{int16(xmin));

uint16(pmin + 32768); y.min = pmin;

ompute the input histogram between xmin and xmax with unit
idth bins, scale to UINT16, and store.

x(1)'

histc(x, xmin:xmax);

ax(h) > 65535 -
= 65535 * h / max(h); This function is simi-

]

As was noted in the preceding example, function mat2huff embeds the
formation needed to decode an encoded input array (e.g., its original dimer
sions and symbol probabilities) in a single MATLAB structure variable, Th

information in this structure is documented in the help text section . lar to hist. For
mat2huff itself: uint16(h); y.hist = h; more details, tvpe

>>help histc.
Code the input matrix and store the result.

p = huffman(double(h)); Make Huffman code map

map(x(:)} — xmin + 1); Map image

char(hx)'; Convert to char array

mat2huff function y = mat2huff(x)
S %MAT2HUFF Huffman encodes a matrix.
Y = MAT2HUFF (X) Huffman encodes matrix X using symbol
probabilities in unit-width histogram bins between X's minimum
and maximum values. The encoded data is returned as a structure

d® of o°

Y: == ' ') =[] % Remove blanks
Y.code The Huffman-encoded values of X, stored in ize = ceil(length(hx) / 16); % Compute encoded size
a uint16 vector. The other fields of Y contain = repmat('0', 1, ysize * 16); % Pre-allocate modulg-16 vec;or
additional decoding information, including: 1:1length(hx)) = hx; . % Make hx modulo-16 in lengt
Y.min The minimum value of X plus 32768 = reshape(hx16, 16, ysize); % Reshape tg 16-char§cter‘ wor‘d§
Y.size The size of X = hxi6' - '0'; % Convert binary string to decimal
Y.hist The histogram of X pow2(15:~1:0}); . .
= yinti16(sum(hx16 .* twos(ones(ysize, 1), :), 2))'; B—

If X is logical, uint8, uint16, uint32, ints, int16, or double,
with integer values, it can be input directly to MAT2HUFF. The

ini X ote that the statement y = mat2huff (x) Huffman encodes input matrix x
minimum value of X must be representable as an intig. Y

using unit-width histogram bins between the minimum and maximum values
‘of x. When the encoded data in y.code is later decoded, the Huffman code
c eded to decode it must be re-created from y.min, the minimum value of x,
dy.hist, the histogram of x. Rather than preserving the Huffman code i't~
If, mat2huff keeps the probability information needed to regenerate it.
ith this, and the original dimensions of matrix x, which is stored in y.size,
nction huff2mat of Section 8.2.3 (the next section) can decode y.code to

reconstruct x. .
The steps involved in the generation of y . code are summarized as follows:

If X is double with non-integer values---for example, an image
with values between 0 and 1---first scale X to an appropriate
integer range before the call. For example, use Y =

MAT2HUFF (255*X) for 256 gray level encoding.

NOTE: The number of Huffman code words is round(max(X{:))} -
round(min{X(:))) + 1. You may need to scale input X to generate
codes of reasonable length. The maximum row or column dimension
of X is 65535.

3 37 3° oF O P I OF O° O° Of G AP OF 90 O° Of O Of o° d°® &° 9° of o°

. Compute the histogram, h, of input x between the minimum and maxi-
mum values of x using unit-width bins and scale it to fit in a UINT16

vector.
2. Use huffman to create a Huffman code, called map, based on the scaled

histogram, h.

% See also HUFF2MAT.

if ndims(x) ~= 2 | -isreal(x) | (~isnumeric(x) & ~islogical(x))
error('X must be a 2-D real numeric or logical matrix.');
end

300 Chapter 8 @ Image Compression

EXAMPLE 8.3:
Encoding with
mat2huff,

ab

FIGURE 8.4 A
512 X 512 8-bit
monochrome
image of a woman
and a close-up of
her right eye.

3. Map input x using map (this creates a cell array) and convert it to a chag
acter array, hx, removing the blanks that are inserted like in h2f2
Example 8.2. ¢

4. Construct a version of vector hx that arranges its characters intg {
character segments. This is done by creating a modulo-16 character vect
that will hold it (hx16 in the code), copying the elements of hx into it ang
reshaping it into a 16 row by ysize array, where ysize = ceil (length’(:
/ 16). Recall from Section 4.2 that the ceil function rounds a number ¢
ward positive infinity. The generalized MATLAB function

removing the coding redundancy associated with its conventional 8-bit bi-
y encoding, the image has been compressed to about 80% of its original
¢ (even with the inclusion of the decoding overhead information).

Since the output of mat2huff is a structure, we write it to disk using the

ve function:

-save SqueezeTracy c;

‘cr2 = imratio('Tracy.tif', 'SqueezeTracy.mat')
2 =
1.2365
y = reshape(x, m, n)
The save function, like the Save Workspace As and Save Selection As menu
mmands in Section 1.7.4, appends a .mat extension to the file that is creat-
The resulting file—in this case, SqueezeTracy.mat, is called a MATfile. Tt
binary data file containing workspace variable names and values. Here, it
tains the single workspace variable c. Finally, we note that the small differ-
nce in compression ratios cri and cr2 computed previously is due to
IATLAB data file overhead. =

2.3 Huffman Decoding

luffman encoded images are of little use unless they can be decoded to re-
cate the original images from which they were derived. For output y =
at2huff(x) of the previous section, the decoder must first compute the
uffman code used to encode x (based on its histogram and related informa-
on in y) and then inverse map the encoded data (also extracted from y) tore-
uild x. As can be seen in the following listing of function x = huff2mat(y),
is process can be broken into five basic steps:

returns an m by n matrix whose elements are taken column wise from
An error is returned if x does not have m*n elements, :
5. Convert the 16-character elements of hx16 to 16-bit binary numbers (jie,
unit16’s). Three statements are substituted for the more compact y.
uint16(bin2dec(hx16")). They are the core of bin2dec, which returns thy
decimal equivalent of a binary string (e.g.,bin2dec (' 101") returns 5) but ar
faster because of decreased generality. MATLAB function pow2(y) is usedt
return an array whose elements are 2 raised to the y power. That is, twos:
pow2(15: —1: 0) creates the array [32768 16384 8192 ... 847 1]

sequence:

>> f = imread('Tracy.tif');
>> ¢ = mat2huff(f);
»> crl = imratio(f, c)

cri

. Extract dimensions m and n, and minimum value xmin (of eventual out-
put x) from input structure y.

Re-create the Huffman code that was