
DEPARTMENT OF ELECTRONICS &
COMMUNICATION ENGINEERING

DIGITAL SIGNAL PROCESSING LAB MANUAL

IVYEAR I SEMESTER (ECE)

 GURUNANAK ENGINEERING COLLEGE
Ibrahimpatnam,R.R.District,Hyderabad-506501,A.P

DIGITAL SIGNAL PROCESSING LAB (IV-I SEM)
INDEX

1. Architecture of DSP chips-TMS 320C 6713 DSP Processor
2. Linear convolution
3. Circular convolution
4. FIR Filter (LP/HP) Using Windowing technique

a. Rectangular window
b. Triangular window
c. Kaiser window

5. IIR Filter(LP/HP) on DSP processors
6. N-point FFT algorithm
7. Power Spectral Density of a sinusoidal signals
8. FFT of 1-D signal plot
9. MATLAB program to generate sum of sinusoidal signals
10. MATLAB program to find frequency response of analog

 (LP/HP)

CHAPTER-I 1. INTRODUCTION TO DSP PROCESSORS

A signal can be defined as a function that conveys information, generally about
the state or behavior of a physical system. There are two basic types of signals viz Analog
(continuous time signals which are defined along a continuum of times) and Digital
(discrete-time).

Remarkably, under reasonable constraints, a continuous time signal can be
adequately represented by samples, obtaining discrete time signals. Thus digital signal
processing is an ideal choice for anyone who needs the performance advantage of digital
manipulation along with today’s analog reality.

Hence a processor which is designed to perform the special operations(digital
manipulations) on the digital signal within very less time can be called as a Digital signal
processor. The difference between a DSP processor, conventional microprocessor and a
microcontroller are listed below.

Microprocessor or General Purpose Processor such as Intel xx86 or Motorola 680xx
family
Contains - only CPU

 -No RAM
 -No ROM
 -No I/O ports
 -No Timer

Microcontroller such as 8051 family
Contains - CPU
 - RAM
 - ROM
 -I/O ports
 - Timer &
 - Interrupt circuitry
Some Micro Controllers also contain A/D, D/A and Flash Memory

DSP Processors such as Texas instruments and Analog Devices

Contains - CPU
 - RAM
 -ROM
 - I/O ports
 - Timer

Optimized for – fast arithmetic
- Extended precision
- Dual operand fetch
- Zero overhead loop
- Circular buffering

The basic features of a DSP Processor are
Feature Use

Fast-Multiply accumulate Most DSP algorithms, including
filtering, transforms, etc. are
multiplication- intensive

Multiple – access memory
architecture

Many data-intensive DSP operations
require reading a program instruction
and multiple data items during each
instruction cycle for best performance

Specialized addressing modes Efficient handling of data arrays and
first-in, first-out buffers in memory

Specialized program control Efficient control of loops for many
iterative DSP algorithms. Fast interrupt
handling for frequent I/O operations.

On-chip peripherals and I/O
interfaces

On-chip peripherals like A/D converters
allow for small low cost system designs.
Similarly I/O interfaces tailored for
common peripherals allow clean
interfaces to off-chip I/O devices.

2. ARCHITECTURE OF 6713 DSP PROCESSOR

This chapter provides an overview of the architectural structure of the TMS320C67xx
DSP, which comprises the central processing unit (CPU), memory, and on-chip
peripherals. The C67xE DSPs use an advanced modified Harvard architecture that
maximizes processing power with eight buses. Separate program and data spaces allow
simultaneous access to program instructions and data, providing a high degree of
parallelism. For example, three reads and one write can be performed in a single cycle.
Instructions with parallel store and application-specific instructions fully utilize this
architecture. In addition, data can be transferred between data and program spaces. Such
Parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations
that can all be performed in a single machine cycle. Also, the C67xx DSP includes the
control mechanisms to manage interrupts, repeated operations, and function calling.

Fig 2 – 1 BLOCK DIAGRAM OF TMS 320VC 6713

Bus Structure

The C67xx DSP architecture is built around eight major 16-bit buses (four program/data
buses and four address buses):
_ The program bus (PB) carries the instruction code and immediate operands from
program memory.
_ Three data buses (CB, DB, and EB) interconnect to various elements, such as the CPU,
data address generation logic, program address generation logic, on-chip peripherals, and
data memory.
_ The CB and DB carry the operands that are read from data memory.
_ The EB carries the data to be written to memory.
_ Four address buses (PAB, CAB, DAB, and EAB) carry the addresses needed for
instruction execution.

The C67xx DSP can generate up to two data-memory addresses per cycle using the two
auxiliary register arithmetic units (ARAU0 and ARAU1). The PB can carry data operands
stored in program space (for instance, a coefficient table) to the multiplier and adder for
multiply/accumulate operations or to a destination in data space for data move
instructions (MVPD and READA). This capability, in conjunction with the feature of
dual-operand read, supports the execution of single-cycle, 3-operand instructions such as
the FIRS instruction. The C67xx DSP also has an on-chip bidirectional bus for accessing
on-chip peripherals. This bus is connected to DB and EB through the bus exchanger in
the CPU interface. Accesses that use this bus can require two or more cycles for reads
and writes, depending on the peripheral’s structure.

Central Processing Unit (CPU)

The CPU is common to all C67xE devices. The C67x CPU contains:

_ 40-bit arithmetic logic unit (ALU)
_ Two 40-bit accumulators
_ Barrel shifter
_ 17 × 17-bit multiplier
_ 40-bit adder
_ Compare, select, and store unit (CSSU)
_ Data address generation unit
_ Program address generation unit

Arithmetic Logic Unit (ALU)

The C67x DSP performs 2s-complement arithmetic with a 40-bit arithmetic logic unit
(ALU) and two 40-bit accumulators (accumulators A and B). The ALU can also perform
Boolean operations. The ALU uses these inputs:

_ 16-bit immediate value
_ 16-bit word from data memory
_ 16-bit value in the temporary register, T
_ Two 16-bit words from data memory

_ 32-bit word from data memory
_ 40-bit word from either accumulator

The ALU can also function as two 16-bit ALUs and perform two 16-bit operations
simultaneously.

 Fig 2 – 2 ALU UNIT
Accumulators

Accumulators A and B store the output from the ALU or the multiplier/adder block. They
can also provide a second input to the ALU; accumulator A can be an input to the
multiplier/adder. Each accumulator is divided into three parts:
_ Guard bits (bits 39–32)
_ High-order word (bits 31–16)
_ Low-order word (bits 15–0)
Instructions are provided for storing the guard bits, for storing the high- and the low-
order accumulator words in data memory, and for transferring 32-bit accumulator words
in or out of data memory. Also, either of the accumulators can be used as temporary
storage for the other.

Barrel Shifter

The C67x DSP barrel shifter has a 40-bit input connected to the accumulators or to data
memory (using CB or DB), and a 40-bit output connected to the ALU or to data memory
(using EB). The barrel shifter can produce a left shift of 0 to 31 bits and a right shift of 0
to 16 bits on the input data. The shift requirements are defined in the shift count field of
the instruction, the shift count field (ASM) of status register ST1, or in temporary register
T (when it is designated as a shift count register).The barrel shifter and the exponent
encoder normalize the values in an accumulator in a single cycle. The LSBs of the output
are filled with 0s, and the MSBs can be either zero filled or sign extended, depending on
the state of the sign-extension mode bit (SXM) in ST1. Additional shift capabilities
enable the processor to perform numerical scaling, bit extraction, extended arithmetic,
and overflow prevention operations.

Multiplier/Adder Unit

The multiplier/adder unit performs 17 _ 17-bit 2s-complement multiplication with a 40-
bit addition in a single instruction cycle. The multiplier/adder block consists of several
elements: a multiplier, an adder, signed/unsigned input control logic, fractional control
logic, a zero detector, a rounder (2s complement), overflow/saturation logic, and a 16-bit
temporary storage register (T). The multiplier has two inputs: one input is selected from
T, a data-memory operand, or accumulator A; the other is selected from program
memory, data memory, accumulator A, or an immediate value. The fast, on-chip
multiplier allows the C54x DSP to perform operations efficiently such as convolution,
correlation, and filtering. In addition, the multiplier and ALU together execute
multiply/accumulate (MAC) computations and ALU operations in parallel in a single
instruction cycle. This function is used in determining the Euclidian distance and in
implementing symmetrical and LMS filters, which are required for complex DSP
algorithms. See section 4.5, Multiplier/Adder Unit, on page 4-19, for more details about
the multiplier/adder unit.

Fig 2 – 3 MULTIPLIER/ADDER UNIT

 Fig 2 – 3 MULTIPLIER/ADDER UNIT

These are the some of the important parts of the processor and you are instructed to go
through the detailed architecture once which helps you in developing the optimized code
for the required application.

DSP PROGRAMS IN C & MATLAB

1. Linear Convolution

AIM:
To verify Linear Convolution.

EQUIPMENTS:

Operating System – Windows XP
Constructor - Simulator
Software - CCStudio 3 & MATLAB 7.5

THEORY:

Convolution is a formal mathematical operation, just as multiplication, addition, and integration.
Addition takes two numbers and produces a third number, while convolution takes two signals
and produces a third signal. Convolution is used in the mathematics of many fields, such as
probability and statistics. In linear systems, convolution is used to describe the relationship
between three signals of interest: the input signal, the impulse response, and the output signal.

In this equation, x1(k), x2(n-k) and y(n) represent the input to and output from the system at time
n. Here we could see that one of the input is shifted in time by a value every time it is multiplied
with the other input signal. Linear Convolution is quite often used as a method of implementing
filters of various types.

PROGRAM:
// Linear convolution program in c language using CCStudio

#include<stdio.h>
int x[15],h[15],y[15];
main()
{
int i,j,m,n;

printf("\n enter value for m");
scanf("%d",&m);
printf("\n enter value for n");
scanf("%d",&n);

printf("Enter values for i/p x(n):\n");
for(i=0;i<m;i++)
scanf("%d",&x[i]);
printf("Enter Values for i/p h(n) \n");
for(i=0;i<n; i++)
scanf("%d",&h[i]);

// padding of zeros
for(i=m;i<=m+n-1;i++)
x[i]=0;
for(i=n;i<=m+n-1;i++)
h[i]=0;
/* convolution operation */
for(i=0;i<m+n-1;i++)
{
y[i]=0;
for(j=0;j<=i;j++)
{
y[i]=y[i]+(x[j]*h[i-j]);
}
}
//displaying the o/p
for(i=0;i<m+n-1;i++)
printf("\n The Value of output y[%d]=%d",i,y[i]);
}

Result:

 enter value for m4

 enter value for n4
Enter values for i/p
1 2 3 4
Enter Values for n
1 2 3 4

 The Value of output y[0]=1
 The Value of output y[1]=4
 The Value of output y[2]=10
 The Value of output y[3]=20
 The Value of output y[4]=25
 The Value of output y[5]=24
 The Value of output y[6]=16

% MATLAB program for linear convolution

%linear convolution program

clc;
clear all;
close all;
disp('linear convolution program');

x=input('enter i/p x(n):');
m=length(x);
h=input('enter i/p h(n):');
n=length(h);

x=[x,zeros(1,n)];
subplot(2,2,1), stem(x);
title('i/p sequence x(n)is:');
xlabel('---->n');
ylabel('---->x(n)');grid;

h=[h,zeros(1,m)];
subplot(2,2,2), stem(h);
title('i/p sequence h(n)is:');
xlabel('---->n');
ylabel('---->h(n)');grid;

disp('convolution of x(n) & h(n) is y(n):');

y=zeros(1,m+n-1);

for i=1:m+n-1
 y(i)=0;
 for j=1:m+n-1
 if(j<i+1)
 y(i)=y(i)+x(j)*h(i-j+1);
 end
 end
end
y
subplot(2,2,[3,4]),stem(y);
title('convolution of x(n) & h(n) is :');
xlabel('---->n');
ylabel('---->y(n)');grid;

Result :

2. Circular Convolution
AIM
To verify Circular Convolution.

EQUIPMENTS:

Operating System – Windows XP
Constructor - Simulator
Software - CCStudio 3 & MATLAB 7.5

THEORY

Circular convolution is another way of finding the convolution sum of two input signals. It
resembles the linear convolution, except that the sample values of one of the input signals is
folded and right shifted before the convolution sum is found. Also note that circular convolution
could also be found by taking the DFT of the two input signals and finding the product of the two
frequency domain signals. The Inverse DFT of the product would give the output of the signal in
the time domain which is the circular convolution output. The two input signals could have been
of varying sample lengths. But we take the DFT of higher point, which ever signals levels to. For
eg. If one of the signal is of length 256 and the other spans 51 samples, then we could only take
256 point DFT. So the output of IDFT would be containing 256 samples instead of 306 samples,
which follows N1+N2 – 1 where N1 & N2 are the lengths 256 and 51 respectively of the two
inputs. Thus the output which should have been 306 samples long is fitted into 256 samples. The
256 points end up being a distorted version of the correct signal. This process is called circular
convolution.

PROGRAM:

/* program to implement circular convolution */

#include<stdio.h>
 int m,n,x[30],h[30],y[30],i,j, k,x2[30],a[30];
void main()
{
 printf(" Enter the length of the first sequence\n");
 scanf("%d",&m);
 printf(" Enter the length of the second sequence\n");
 scanf("%d",&n);
 printf(" Enter the first sequence\n");
 for(i=0;i<m;i++)
 scanf("%d",&x[i]);
 printf(" Enter the second sequence\n");
 for(j=0;j<n;j++)
 scanf("%d",&h[j]);

if(m-n!=0) /*If length of both sequences are not equal*/
 {

 if(m>n) /* Pad the smaller sequence with zero*/
 {
 for(i=n;i<m;i++)
 h[i]=0;
 n=m;
 }
 for(i=m;i<n;i++)
 x[i]=0;
 m=n;

 }
 y[0]=0;
 a[0]=h[0];
 for(j=1;j<n;j++) /*folding h(n) to h(-n)*/
 a[j]=h[n-j];

 /*Circular convolution*/
 for(i=0;i<n;i++)
 y[0]+=x[i]*a[i];
 for(k=1;k<n;k++)
 {
 y[k]=0;
 /*circular shift*/
 for(j=1;j<n;j++)

 x2[j]=a[j-1];

 x2[0]=a[n-1];
 for(i=0;i<n;i++)
 {

 a[i]=x2[i];
 y[k]+=x[i]*x2[i];

 }
 }

 /*displaying the result*/
 printf(" The circular convolution is\n");
 for(i=0;i<n;i++)
 printf("%d \t",y[i]);
 }

OUTPUT:-

 Enter the length of the first sequence
4
 Enter the length of the second sequence
3
 Enter the first sequence
1 2 3 4
 Enter the second sequence
1 2 3
 The circular convolution is
18 16 10 16

Model Graph:-

%circular convolution program

clc;
clear all;
close all;
disp('circular convolution program');

x=input('enter i/p x(n):');
m=length(x);
h=input('enter i/p sequence h(n)');
n=length(h);

subplot(2,2,1), stem(x);
title('i/p sequencce x(n)is:');
xlabel('---->n');
ylabel('---->x(n)');grid;

subplot(2,2,2), stem(h);
title('i/p sequencce h(n)is:');
xlabel('---->n');
ylabel('---->h(n)');grid;

disp('circular convolution of x(n) & h(n) is y(n):');
if(m-n~=0)
 if(m>n)
 h=[h,zeros(1,m-n)];
 n=m;
 end
 x=[x,zeros(1,n-m)];
 m=n;
end

y=zeros(1,n);
y(1)=0;
a(1)=h(1);

for j=2:n
 a(j)=h(n-j+2);
end

%ciruclar conv
for i=1:n
 y(1)=y(1)+x(i)*a(i);
 end

for k=2:n
 y(k)=0;
 % circular shift
 for j=2:n
 x2(j)=a(j-1);

 end
 x2(1)=a(n);

 for i=1:n
 if(i<n+1)
 a(i)=x2(i);
 y(k)=y(k)+x(i)*a(i);
 end
 end
end
y
subplot(2,2,[3,4]),stem(y);
title('convolution of x(n) & h(n) is:');
xlabel('---->n');
ylabel('---->y(n)');grid;

Result :

3. FIR filters
AIM
To verify FIR filters.

EQUIPMENTS:

Operating System – Windows XP
Constructor - Simulator
Software - CCStudio 3 & MATLAB 7.5

THEORY:

A Finite Impulse Response (FIR) filter is a discrete linear time-invariant system
whose output is based on the weighted summation of a finite number of past inputs.
An FIR transversal filter structure can be obtained directly from the equation for
discrete-time convolution.

10)()()(
1

0

−<<−= ∑
−

=

Nnknhkxny
N

k

(1)

In this equation, x(k) and y(n) represent the input to and output from the filter at time
n. h(n-k) is the transversal filter coefficients at time n. These coefficients are
generated by using FDS (Filter Design Software or Digital filter design package).

FIR – filter is a finite impulse response filter. Order of the filter should be specified.
Infinite response is truncated to get finite impulse response. placing a window of
finite length does this. Types of windows available are Rectangular, Barlett,
Hamming, Hanning, Blackmann window etc. This FIR filter is an all zero filter.

PROGRAM:

#include<stdio.h>
#include<math.h>
#define pi 3.1415
int n,N,c;
float wr[64],wt[64];
void main()
{
printf("\n enter no. of samples,N= :");
scanf("%d",&N);

printf("\n enter choice of window function\n 1.rect \n 2. triang \n c= :");
scanf("%d",&c);
printf("\n elements of window function are:");
switch(c)
{
case 1:
for(n=0;n<=N-1;n++)
{
wr[n]=1;
printf(" \n wr[%d]=%f",n,wr[n]);
}
break;
case 2:
for(n=0;n<=N-1;n++)
{
wt[n]=1-(2*(float)n/(N-1));
printf("\n wt[%d]=%f",n,wt[n]);
}
break;

}
}

RESULT:

PROGRAM:
%fir filt design window techniques
clc;
clear all;
close all;

rp=input('enter passband ripple');
rs=input('enter the stopband ripple');
fp=input('enter passband freq');
fs=input('enter stopband freq');
f=input('enter sampling freq ');
wp=2*fp/f;
ws=2*fs/f;
num=-20*log10(sqrt(rp*rs))-13;
dem=14.6*(fs-fp)/f;
n=ceil(num/dem);
n1=n+1;
if(rem(n,2)~=0)
 n1=n;
 n=n-1;
end
c=input('enter your choice of window function 1. rectangular 2. triangular 3.kaiser: \n ');
if(c==1)
 y=rectwin(n1);
 disp('Rectangular window filter response');
end
if (c==2)
 y=triang(n1);
 disp('Triangular window filter response');
end
 if(c==3)
 y=kaiser(n1);
 disp('kaiser window filter response');
 end

%LPF
b=fir1(n,wp,y);
[h,o]=freqz(b,1,256);
m=20*log10(abs(h));
subplot(2,2,1);plot(o/pi,m);
title('LPF');
ylabel('Gain in dB-->');
xlabel('(a) Normalized frequency-->');
%HPF
b=fir1(n,wp,'high',y);
[h,o]=freqz(b,1,256);
m=20*log10(abs(h));
subplot(2,2,2);plot(o/pi,m);
title('HPF');
ylabel('Gain in dB-->');
xlabel('(b) Normalized frequency-->');

%BPF
wn=[wp ws];
b=fir1(n,wn,y);
[h,o]=freqz(b,1,256);
m=20*log10(abs(h));
subplot(2,2,3);plot(o/pi,m);
title('BPF');
ylabel('Gain in dB-->');
xlabel('(c) Normalized frequency-->');
%BSF
b=fir1(n,wn,'stop',y);
[h,o]=freqz(b,1,256);
m=20*log10(abs(h));
subplot(2,2,4);plot(o/pi,m);
title('BSF');
ylabel('Gain in dB-->');
xlabel('(d) Normalized frequency-->');

RESULT:

4. IIR filters
AIM
To design and implement IIR (LPF/HPF)filters.

EQUIPMENTS:

Operating System – Windows XP
Constructor - Simulator
Software - CCStudio 3 & MATLAB 7.5

THEORY:

The IIR filter can realize both the poles and zeroes of a system because it has a
rational transfer function, described by polynomials in z in both the numerator and
the denominator:

∑

∑

=

−

=

−

N

k

k
k

M

k

k
k

Za

zb
zH

1

0)((2)

The difference equation for such a system is described by the following:

∑∑
==

−+−=
N

k
k

M

k
k knyaknxbny

10

)()()((3)

M and N are order of the two polynomials
bk and ak are the filter coefficients. These filter coefficients are generated using FDS
(Filter Design software or Digital Filter design package).

IIR filters can be expanded as infinite impulse response filters. In designing IIR
filters, cutoff frequencies of the filters should be mentioned. The order of the filter
can be estimated using butter worth polynomial. That’s why the filters are named as
butter worth filters. Filter coefficients can be found and the response can be plotted.

PROGRAM:

//iirfilters
#include<stdio.h>
#include<math.h>
int i,w,wc,c,N;
float H[100];
float mul(float, int);
void main()
{
printf("\n enter order of filter ");
scanf("%d",&N);
printf("\n enter the cutoff freq ");
scanf("%d",&wc);
printf("\n enter the choice for IIR filter 1. LPF 2.HPF ");
scanf("%d",&c);
switch(c)
{
case 1:
for(w=0;w<100;w++)
{
H[w]=1/sqrt(1+mul((w/(float)wc),2*N));
printf("H[%d]=%f\n",w,H[w]);
}
break;
 case 2:
 for(w=0;w<=100;w++)
{
H[w]=1/sqrt(1+mul((float)wc/w,2*N));
printf("H[%d]=%f\n",w,H[w]);
}
break;
}
}
float mul(float a,int x)
{
for(i=0;i<x-1;i++)
a*=a;
return(a);
}

RESULT :

PROGRAM :
% IIR filters LPF & HPF
clc;
clear all;
close all;

disp('enter the IIR filter design specifications');
rp=input('enter the passband ripple');
rs=input('enter the stopband ripple');
wp=input('enter the passband freq');
ws=input('enter the stopband freq');
fs=input('enter the sampling freq');
w1=2*wp/fs;w2=2*ws/fs;
[n,wn]=buttord(w1,w2,rp,rs,'s');
c=input('enter choice of filter 1. LPF 2. HPF \n ');
if(c==1)
 disp('Frequency response of IIR LPF is:');
[b,a]=butter(n,wn,'low','s');
end
if(c==2)
 disp('Frequency response of IIR HPF is:');
[b,a]=butter(n,wn,'high','s');
end
w=0:.01:pi;
[h,om]=freqs(b,a,w);
m=20*log10(abs(h));
an=angle(h);
figure,subplot(2,1,1);plot(om/pi,m);
title('magnitude response of IIR filter is:');
xlabel('(a) Normalized freq. -->');
ylabel('Gain in dB-->');
subplot(2,1,2);plot(om/pi,an);
title('phase response of IIR filter is:');
xlabel('(b) Normalized freq. -->');
ylabel('Phase in radians-->');

RESULT :

5. Fast Fourier Transform

AIM:
To verify Fast Fourier Transform.

EQUIPMENTS:

Operating System – Windows XP
Constructor - Simulator
Software - CCStudio 3 & MATLAB 7.5

THEORY:

The Fast Fourier Transform is useful to map the time-domain sequence into a
continuous function of a frequency variable. The FFT of a sequence {x(n)} of length
N is given by a complex-valued sequence X(k).

 10;)()(
0

2
−<<= ∑

=

−
NkenxkX

M

k

n

nk
j π

The above equation is the mathematical representation of the DFT. As the number of
computations involved in transforming a N point time domain signal into its
corresponding frequency domain signal was found to be N2 complex multiplications,
an alternative algorithm involving lesser number of computations is opted.

When the sequence x(n) is divided into 2 sequences and the DFT performed
separately, the resulting number of computations would be N2/2

(i.e.)

kn
N

N

n

N

n

nk
N WnxWnxkx)12(

12

0

12

0

2)12()2()(

2 2

+
−

=

−

=

++= ∑ ∑ (6)

Consider x(2n) be the even sample sequences and x(2n+1) be the odd sample
sequence derived form x(n).

∑
−

=

12

0

2

2

)2(

N

n

nk
NWnx

 would result in (7)

(N/2)2multiplication’s ∑
−

=

++
12

0

)12(

2

)12(

N

n

kn
NWnx (8)

an other (N/2)2 multiplication's finally resulting in (N/2)2 + (N/2)2

= nsComputatio
NNN

244

222

=+

Further solving Eg. (2)

k

N

nk
N

N

n

N

n

nk
N WWnxWnxkx)2(

12

0

12

0

2)12()2()(

2

++= ∑ ∑
−

=

−

=

(9)

)2(
12

0

12

0

2)12()2(nk
N

N

n

N

n

k

N

nk
N WnxWWnx ++= ∑ ∑

−

=

−

=

(10)

Dividing the sequence x(2n) into further 2 odd and even sequences would reduce the
computations.

WN  is the twiddle factor

n

j

e
π2−

=

nk
n

j

nk
N eW






 −

=
π2






 +





 +

= 22

N
K

NN

N
K

N WWW (11)

2

22 n

n

j
k

n

j

ee
ππ −−

=

k
n

j
k

N eW
π2−

=

)sin(cos ππ jW k
N −=

)1(2 −==





 +

k
N

N
K

N WW

k
N

N
K

N WW ==





 +

2 (12)

Employing this equation, we deduce

)2(
12

0

12

0

2)12()2()(

2

nk
N

N

n

N

n

nk
N WnxWnxkx ++= ∑ ∑

−

=

−

=

(13)

)2(12
12

0

2)12()2()
2

(nk
N

N
N

n

K

N

nk
N WnxWWnx

N
kx −

−

=

+−=+ ∑ ∑ (14)

The time burden created by this large number of computations limits the usefulness of
DFT in many applications. Tremendous efforts devoted to develop more efficient
ways of computing DFT resulted in the above explained Fast Fourier Transform
algorithm. This mathematical shortcut reduces the number of calculations the DFT
requires drastically. The above mentioned radix-2 decimation in time FFT is
employed for domain transformation.

Dividing the DFT into smaller DFTs is the basis of the FFT. A radix-2 FFT divides the
DFT into two smaller DFTs, each of which is divided into smaller DFTs and so on,
resulting in a combination of two-point DFTs. The Decimation -In-Time (DIT) FFT
divides the input (time) sequence into two groups, one of even samples and the other
of odd samples. N/2 point DFT are performed on the these sub-sequences and their
outputs are combined to form the N point DFT.

FIG. 3A.1

The above shown mathematical representation forms the basis of N point FFT and is
called the Butterfly Structure.

STAGE – I STAGE - II

STAGE – III

FIG. 3A.2 – 8 POINT DIT

PROGRAM:
%fast fourier transform

clc;
clear all;
close all;
tic;
x=input('enter the sequence');
n=input('enter the length of fft');
%compute fft
disp('fourier transformed signal');
X=fft(x,n)
subplot(1,2,1);stem(x);
title('i/p signal');
xlabel('n --->');
ylabel('x(n) -->');grid;
subplot(1,2,2);stem(X);
title('fft of i/p x(n) is:');
xlabel('Real axis --->');
ylabel('Imaginary axis -->');grid;

RESULT:

6. Power Spectral Density

AIM:
To verify Power Spectral Density

EQUIPMENTS:

Operating System – Windows XP
Constructor - Simulator
Software - CCStudio 3 & MATLAB 7.5

THEORY:

The power spectral density(P.S.D) is a measurement of the energy at various frequencies.

PROGRAM:

%Power spectral density
t = 0:0.001:0.6;
x = sin(2*pi*50*t)+sin(2*pi*120*t);
y = x + 2*randn(size(t));
figure,plot(1000*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)');
Y = fft(y,512);
%The power spectral density, a measurement of the energy at various frequencies, is:
Pyy = Y.* conj(Y) / 512;
f = 1000*(0:256)/512;
figure,plot(f,Pyy(1:257))
title('Frequency content of y');
xlabel('frequency (Hz)');

RESULT:

7. Sum of Sinusoidal Signals

AIM:
To verify Sum of Sinusoidal Signals using MATLAB

EQUIPMENTS:

Operating System – Windows XP
Constructor - Simulator
Software - CCStudio 3 & MATLAB 7.5

THEORY:
To generate fourier series of a signal by observing sum of sinusoidal signals & observing gibbs
phenomenon effect.

PROGRAM:

% sum of sinusoidal signals
clc;
clear all;
close all;
tic;
%giving linear spaces
t=0:.01:pi;
% t=linspace(0,pi,20);
%generation of sine signals

y1=sin(t);
y2=sin(3*t)/3;
y3=sin(5*t)/5;
y4=sin(7*t)/7;
y5=sin(9*t)/9;

y = sin(t) + sin(3*t)/3 + sin(5*t)/5 + sin(7*t)/7 + sin(9*t)/9;

plot(t,y,t,y1,t,y2,t,y3,t,y4,t,y5);
legend('y','y1','y2','y3','y4','y5');
title('generation of sum of sinusoidal signals');grid;
ylabel('---> Amplitude');
xlabel('---> t');
toc;

RESULT:

8. LPF & HPF

AIM:
To verify response of analog LPF & HPF using MATLAB

EQUIPMENTS:

Operating System – Windows XP
Constructor - Simulator
Software - CCStudio 3 & MATLAB 7.5

THEORY:
Analog Low pass filter & High pass filter are obtained by using butterworth or chebyshev
filter with coefficients are given. The frequency – magnitude plot gives the frequency
response of the filter.

PROGRAM:
% IIR filters LPF & HPF
clc;
clear all;
close all;
warning off;
disp('enter the IIR filter design specifications');
rp=input('enter the passband ripple');
rs=input('enter the stopband ripple');
wp=input('enter the passband freq');
ws=input('enter the stopband freq');
fs=input('enter the sampling freq');
w1=2*wp/fs;w2=2*ws/fs;
[n,wn]=buttord(w1,w2,rp,rs,'s');
c=input('enter choice of filter 1. LPF 2. HPF \n ');
if(c==1)
 disp('Frequency response of IIR LPF is:');
[b,a]=butter(n,wn,'low','s');
end
if(c==2)
 disp('Frequency response of IIR HPF is:');
[b,a]=butter(n,wn,'high','s');
end
w=0:.01:pi;
[h,om]=freqs(b,a,w);
m=20*log10(abs(h));
an=angle(h);
figure,subplot(2,1,1);plot(om/pi,m);
title('magnitude response of IIR filter is:');
xlabel('(a) Normalized freq. -->');
ylabel('Gain in dB-->');
subplot(2,1,2);plot(om/pi,an);
title('phase response of IIR filter is:');
xlabel('(b) Normalized freq. -->');
ylabel('Phase in radians-->');

	STAGE – I

