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Abstract This paper shows how electrical engineering undergraduates can acquire a working
knowledge of the finite element method (FEM) within a short period of time using MATLAB. For
simplicity, only first-order triangular elements are considered. The scalar wave equation for
homogeneous isotropic waveguides is used for introducing the FEM. Simple waveguide problems,
including a design problem, are discussed as examples. It is shown how the knowledge acquired can
be extended to other electromagnetic problems.
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The availability of immense and cheap computing power on desktop or laptop com-
puters has made the numerical solution of electromagnetic problems viable, even
for undergraduate students. Many educators have taken two approaches: use com-
mercially available software1 (which may be an expensive option), or design user
interfaces and simulation code2,3 based on existing programmable mathematical
packages. Neither of these constitutes the object of this paper. The aim of this paper
is similar to that reported in Ref. 4, which introduces the method of moments through
MATLAB.5 MATLAB has received worldwide acceptance in the teaching of many
engineering courses in, for example, signal processing and control engineering. It
will not be unreasonable for teachers in electromagnetics to expect students to have
a working knowledge of and access to MATLAB.

The Finite Element Method (FEM) is a well-established technique in electro-
magnetics and still generates considerable research. Several excellent texts and
monographs6–9 are available. They are suitable for researchers or for a complete
course on finite elements. Moreover, these texts often emphasise the rigorous 
mathematical basis of various FEM formulations. Some also provide program
code.6,9 A practical approach to the derivation of the FEM and its implementation is
provided in Ref. 8. The object of this paper is to provide a brief hands-on under-
standing of FEM through MATLAB, as MATLAB provides powerful support for
matrix operations and dynamic memory allocation.

The material in this paper can be covered in a two-hour lecture. Students may be
given two weeks to absorb the material and carry out assignments similar to the
examples given in this paper.

It is noted that at least one commercial FEM software package, namely Femlab
3 from Comsol Inc.,10 has a version that runs as an add-on to MATLAB. It is not



suitable for teaching FEM programming. However, as illustrated in Ref. 11, students
can use this software to test variational formulations derived by them as the soft-
ware accepts variational formulations as input. Thus, Ref. 11 and this paper are com-
plementary if Femlab 3 is available.

FEM formulation

Introduction
For initiating students to the FEM through MATLAB, the scalar wave equation for
a homogeneous isotropic medium is chosen. The equation is written as:

(1)

where k2 is the eigenvalue.
The scalar wave equation has many applications. In the context of electromag-

netics, the scalar wave equation can be used to analyse problems such as the 
propagation of plane waves, TE and TM modes in waveguides,12 weakly guiding
optical fibers,13 etc. Moreover, by setting k = 0 in the FEM formulation of eqn (1),
one can also illustrate the FEM solution of electrostatic problems.

The FEM solves eqn (1) by minimisation of a corresponding functional given by:

(2)

where S represents the cross-sectional area of the waveguide, k2 = erk2
0 − kz

2, 
k0 = 2p/l0, l0 is the free space wavelength, er is the relative permittivity of 
the medium and the field variation along the direction of propagation, z is taken as
e−jkzz. Students can be referred to Ref. 7 for methods for obtaining FEM functionals.

The FEM approximation
For introducing the FEM approximation, the cross-sectional area is considered to 
be constituted of small triangles. Each triangle is called an element. Hence we 
can write:

(3)

where e represents the element (triangle) number, Ne represents the total number of
elements and Ae represents the area of the element e over which the functions are
integrated.

The function fe at a point P(x,y) inside the triangle may be approximated as

For simplicity, we consider only linear terms:
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Triangles with fe expressed as linear functions are called first-order triangular ele-
ments. Fig. 1 shows a triangle where the values of coordinates and fe at the vertices
are shown.

Using the linear approximation in eqn (4), we can write

Solution of these equations gives

where, ai = (xi1yi2 − xi2yi1)/(2Ae), bi = (yi1 − yi2)/(2Ae), and ci = (xi2 − xi1)/(2Ae). i, i1
and i2 are a cyclic permutation of 1, 2 and 3.

Hence, we can write

where the terms ui = ai + bix + ciy are also known as barycentric or area coordinates.
It may be noted that

Using row vectors fe = [fe1 fe2 fe3], u = [u1 u2 u3], b = [b1 b2 b3] and c = [c1 c2 c3],
(3) can be written as

where the superscript t indicates the transpose.
Hence,
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Fig. 1 A typical first order triangular element.



where,

(6)

and

(7)

To obtain the matrix Qe, one uses the result provided in Ref. 8:

Matrices with subscript e, obtained for triangle number e, are called local 
matrices.

Forming local matrices with MATLAB
The first step in the FEM is to generate a triangular mesh over the cross-section, S.
As mesh generation is not the object of this introductory paper, there are several
options:

(i) download free mesh generator programs from the internet;
(ii) use mesh generators of any available FEM software (e.g., civil engineering

FEM software); and
(iii) use pdetool available in MATLAB.

For simplicity, only one domain (region) with one boundary and first-order triangu-
lar elements will be considered. Most mesh generators produce text files as output
which can be edited to yield the following data:

Triangle node numbers
A file element.txt which has three columns containing three node numbers of 
each triangle, with rows arranged to correspond to triangle numbers in ascending
order.

Coordinates of nodes
A file coord.txt which has two columns containing x coordinate in the first column
and y coordinate in the second, with rows arranged to correspond to node numbers
in ascending order.

Boundary node numbers
A file bn.txt with one column containing the boundary node numbers in ascending
order.

The function M-file triangle.m contains the following MATLAB program to
compute the local matrices Pe and Qe.
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Forming global matrices with MATLAB
If the total number of nodes is Nn, eqn (5) can be written as

(8)

where f = [f1 f2 . . . fNn
], and Pe

g and Qe
g are Nn × Nn square matrices, such that if p,

q and r are node numbers (1), (2) and (3) of triangle e, only nine matrix elements
of Pe

g and Qe
g are nonzero: pp, pq, pr, qp, qq, qr, rp, rq and rr.

Equation (8) can be written as:

(9)

where and .

Pg and Qg are called global matrices. The global matrices are thus obtained 
by adding the local matrices written as Nn × Nn square matrices. This operation is
easily carried out by the following MATLAB program (explained by comments 
following %).
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function [pe,qe] = triangle (x,y)
ae=x(2)*y(3)-x(3)*y(2)+x(3)*y(1)x(1)*y(3)+. . .
x(1)*y(2-x(2)*y(1);

ae=abs(ae)/2;
b=[y(2)-y(3),y(3)-y(1),y(1)-y(2)];
c=[x(3)-x(2),x(1)-x(3),x(2)-x(1)];
b=b/(2*ae);
c=c/(2*ae);
pe=(b.’*b+c.’*c)*ae;
qe=[2,1,1;1,2,1;1,1,2];qe=qe*(ae/12);

% load the data files
load element.txt; 
load coord.txt;
load bn.txt;
% Find the total number of elements and nodes 
ne=length(element(:,1));
nn=length(coord(:,1));
% Set up null global matrices
pg=zeros(nn,nn);
qg=zeros(nn,nn); 
% Sum over all triangles



Forming the FEM equations
The functional given by eqn (9) can be written as

(10)

The finite element solution is obtained by minimising the functional in (10) with
respect to the nodal values, i.e., by setting

Thus

Since the matrices are symmetrical, this becomes

or in matrix form,

(11)

Now one has to implement boundary conditions. Only perfectly conducting bound-
aries are considered here. The number of boundary nodes is denoted as Nb.
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for e=1:ne;
% Get the three node numbers of triangle number e
node=[element(e,:)];
% Get the coordinates of each node and form row vectors
x=[coord(node(1),1),coord(node(2),1),coord(node(3),
1)];

y=[coord(node(1),2),coord(node(2),2),coord(node(3),
2)];

% Calculate the local matrix for triangle number e 
[pe,qe]=triangle(x,y);
% Add each element of the local matrix to
% the appropriate element of the global matrix
for k=1:3;for m=1:3;
pg(node(k),node(m))=pg(node(k),node(m))+pe(k,m);
qg(node(k),node(m))=qg(node(k),node(m))+qe(k,m);
% Close the three for loops
end;end;end;



Boundary conditions: TE modes
For TE modes, f represents the axial magnetic field, Hz, and the boundary condition
is the Neuman condition, df/dn = 0, where n is the normal to the perfectly con-
ducting boundary. In FEM, this is a natural boundary condition and need not be
imposed. Thus the values at the boundary are considered to be unknown and the
eigenvalue equation (11) is solved using the MATLAB statement ksquare =
eig(pg,qg).

Boundary conditions: TM modes
For TM modes, f represents the axial electric field, Ez, and the boundary condition
for the perfectly conducting boundary is, f = 0. This is the Dirichlet condition, which
must be strictly imposed in the FEM. It requires the following:

(i) Omitting differentiation with respect to the known boundary nodes. This can
be done by simply deleting the rows of Pg and Qg corresponding to the 
boundary nodes.

(ii) Deleting the columns of Pg and Qg corresponding to the boundary nodes, as 
f = 0 at these nodes.

The deletion of the row and column corresponding to a boundary node is easily
accomplished using Matlab’s dynamic memory allocation feature. The deletion 
procedure is implemented as follows:
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% Find the total number of boundary nodes,nb
nb=length(bn(:,1));
% Create an auxiliary column vector of 
% boundary nodes
bnaux=bn;
for n=1:nb;
%Read the node number k of the boundary node
k=bnaux(n);
% Delete kth row and column of the global 
% matrices
pg(k,:)=[];
qg(k,:)=[];
pg(:,k)=[];
qg(:,k)=[];
% After deletion, the row/column numbers 
% corresponding to boundary node numbers>k are
% reduced by one. As boundary node numbers are
% in ascending order, all node numbers can be
% reduced with a unit column vector of length nb
bnaux=bnaux – ones(nb,1);
end;



As before, the eigenvalue equation is solved, but this time with the reduced 
matrices obtained with the above procedure.

Homogeneous hollow waveguide examples

There are many homogeneous hollow waveguide problems in the available litera-
ture which can be given as assignments to students. Four examples are given here.
In these examples, pdetools was used to get first-order triangular mesh data. All the
examples can be worked out with notebook PCs.

Homogeneous rectangular waveguide
The waveguide (WR-90) dimensions are 2.286 × 1.016cm. Tables 1 and 2 compare
the FEM and analytical values of k2 for TEmn and TMmn modes respectively. m rep-
resents the number of half wavelengths along the longer side and n represents the
number of half wavelengths along the shorter side. FEM values are obtained with
2688 triangles and 1405 nodes. It may be seen that the error increases for higher
values of k2, i.e., for higher-order modes. This is because for a given triangle size,
the linear approximation inside a triangle can better represent f for lower-order
modes which vary less rapidly in the waveguide cross-section.

Homogeneous square waveguide
This example is used to show degenerate (equal) eigenvalues. It also allows one to
progress towards a physical understanding of why FEM produces degenerate eigen-
values for circular waveguides. The waveguide dimensions are 1.5 × 1.5cm. For the
sake of brevity, a comparison of FEM and analytical results is shown only for TE
modes in Table 3. FEM values are obtained for 4960 triangles and 2565 nodes. It
may be seen that modes such as TE12 and TE21 have the same eigenvalue. It is noted
that rotating the field profile of the TE12 mode by 90° gives the field profile of the
TE21 mode.
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TABLE 1 Values of k2 (in cm−2) for TEmn modes (analytical values in brackets)

m
n

0 1 2

0 No mode 9.574(9.561) 38.459(38.245)
1 1.889(1.889) 11.468(11.450) 40.366(40.133)
2 7.563(7.555) 17.157(17.116) 46.104(45.799)

TABLE 2 Values of k2 (in cm−2) for TMmn modes (analytical values in brackets)

m
n

1 2 3

1 11.468(11.450) 40.362(40.133) 89.024(87.939)
2 17.158(17.116) 46.103(45.799) 94.846(93.605)
3 26.662(26.559) 55.695(55.242) 103.655(103.048)



Homogeneous circular waveguide
The radius of the circular waveguide is taken as 1.5cm. FEM and analytical values
of k2 for TEmn modes are given in Table 4. m represents the degree of rotational sym-
metry of the fields and n represents the nth root of the characteristic equation for k.
FEM values are obtained for 4160 triangles and 2145 nodes. For m ≠ 0, the FEM
produces two equal eigenvalues. As in the square waveguide, the field patterns cor-
responding to these equal eigenvalues are rotated by 90° with respect to one another.
For m = 0, rotation by 90° produces identical patterns. This result is not obvious
from analytical methods.

Design example: single ridge waveguide
Design curves for single ridge waveguides were obtained analytically by Hopfer.14

Figs 2 and 3 compare the FEM solutions, represented by dots, with some of the
design curves given in Figs 5 and 7 of Hopfer’s paper respectively. Good agree-
ment is obtained. Moreover, Fig. 3 illustrates the power of the FEM. In the range,
0.008 < s / a < 0.50, Hopfer was unable to obtain analytical solutions using a single
rectangular waveguide TE mode as the TE30 mode cannot exist by itself but couples
to the TE01 mode. The FEM analysis has no such limitation.

It must be mentioned that for all the waveguide examples considered, a very small
eigenvalue for TE modes was produced by FEM. This value approximates the zero
eigenvalue corresponding to the f = constant mode15 and is ignored.

Extension to other problems

In this section, it is shown that the discussion in Section II can with minor exten-
sions be used to solve many other problems. For the sake of brevity, we consider
only two of them.
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TABLE 3 Values of k2 (in cm−2) for TEmn modes (analytical values in brackets)

m
n

0 1 2

0 No mode 4.388(4.386) 17.567(17.546)
1 4.388(4.386) 8.778(8.773) 21.967(21.932)
2 17.569(17.546) 21.967(21.932) 35.184(35.092)

TABLE 4 Values of k2 (in cm−2) for TEmn modes (analytical values in brackets)

m
n

1 2 3

0 6.540(6.526) 22.013(21.877) 46.581(46.005)
1 1.507(1.506) 12.681(12.631) 32.684(32.384)
2 4.151(4.146) 20.102(19.987) 44.289(44.178)
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Fig. 2 Single ridge waveguide TE10 mode cut-off wavelength a = 2.286cm and b/a = 0.45.
Dots represent values calculated by FEM.

Fig. 3 Single ridge waveguide TE30 mode cut-off wavelength a = 2.286cm and b/a = 0.45.
Dots represent values calculated by FEM.



Electrostatic problems
The functional for Laplace’s equation is:

where f represents the electric potential. e0 is the permittivity of free space and er

is the dielectric constant.
For homogeneous isotropic media, it is easy to see that the FEM equation is 

Pgf t = 0, the matrix Pg being the same as that in Section II.D.
Two boundaries are considered here. The mesh data should have two sets of

boundary nodes. We can take f = 0 at one boundary. For nodes on this boundary,
the corresponding rows and columns of Pg are deleted. For the other boundary, 
f = V, a numerical value. The rows of Pg corresponding to nodes on this boundary
are deleted as before. However the column corresponding to each node is multiplied
by −V and put as a separate matrix. The matrices are added together to form the
matrix R. Next the columns are deleted from Pg to get the reduced matrix P. 
The FEM equation is now of the form Pf t = R which can be solved for f t using
Matlab.

Wave propagation in inhomogeneous waveguides
For homogeneous waveguides, the refractive index, n, is constant and so k is a 
constant. We could find the eigenvalue k2 and then compute the propagation 
constant, kz, from kz

2 = erk2
0 − k2 and k0 = 2p/l0 for a given wavelength, l0. For an

inhomogeneous waveguide, eqn (8) is written as:

, where, ere is the relative permit-

tivity of the medium inside element number e.
Hence eqn (9) becomes:
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Equation (11) now becomes
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The only modification is to generate the mesh with elements of different relative
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waveguide we need to determine the eigenvalue, kz
2, numerically for each 

wavelength.

Conclusion

It is shown how the FEM can be introduced to electrical engineering undergradu-
ates using only a few lines of MATLAB code. The MATLAB codes relate directly
to the FEM operations. Four waveguide examples are given. These examples can be
run on a standard PC. A design example illustrated the advantage of FEM compared
to an analytical method. It was also shown how the concepts acquired can be readily
extended to other problems. The demonstrated problems are 2D in nature. However,
similar programming techniques can be employed for more complex problems, such
as 3D problems presented, for example, by Silvester and Ferrari.6 Institutions with
inadequate financial resources may benefit from the proposed methodology, as only
MATLAB is needed, no add-ons (not even a mesh generator). The material presented
in this paper may also be useful to beginning research students who are uninitiated
in the FEM.
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