Modern Control Systems Analysis
and Design Using MATLAB®

Robert H. Bishop

The University of Texas at Austin

‘ A
J vY
g) ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts « Menlo Park, California « New York
Don Mills, Ontario » Wokingham, England « Amsterdam « Bonn
Sydney + Singapore « Tokyo « Madrid + San Juan +» Milan « Paris

Preface

;iiﬁéﬁ te Professor ichard C. Dorf
: ment of this text. I also
é , Daniel Burkhart for their

ltude goes to my wife, Lynda, for assist-
manuscript and for her continuous support and

R.H.B.

Austin, Teras

Contents

Preface

1 MATLAB Basics

1.1 Introduction v v v v v v v v v v oo e
1.2 Statements and Variables.
1.3 MatliCes . . v v v v v v e e e e e e e e e
14 Graphics v v v v v i e e
15 Scripts . « « v v v v i e
2 Mathematical Modeling of Systems
21 Introduction« . v vt
2.2 Spring-Mass-Damper System
2.3 Transfer Functions
2.4 Block Diagram Models
2.5 Design Example
38 Control System Characteristics
3.1 Introduction« o v v v v v v v
3.2 Speed Tachometer System
3.3 English Channel Boring Machines
4 Control System Performance
41 Introduction« v v v i i
4.2 Time-Domain Specifications
4.3 Simplification of Linear Systems

5 Control System Stability
5.1 Introduction " s a

vii

61
61
61
68

71

viii
Contents

5.2 Routh-Hurwitz Stability 72
5.3 Example: Tracked Vehicle Turning Control . . ., . . . 76
6 Root Locus Method 81
6.1 Introduction 81
6.2 Obtaining a Root Locus Plot PR e oy - 82
6.3 Sensitivity and the Root Locus . . “ e mBE B . 88
7 Frequency Response Methods 91
7.1 Introduction 91
7.2 BodeDiagram...................:”92
7.3 Specifications in the Frequency Domain 95
7.4 Example: Engraving Machine System 98
8 Stability in the Frequency Domain 103
8.1 Imtroduction 103
- 82 Nyquist Plots _ °° 104
8.3 Nichols Charts _ 110
84 Examples.....................:::111
9 State-Space Methods 121
9.1 Introduction 121
9.2 Model Relationships 122
9.3 Stability of Systems in the Time Domain 125
9.4 TimeResponse...................::129
. 10 Control System Design - 133
10.1 Introduction 133
10.2 Lead Compensation 134
10.3 Lag Compensators 136
10.4 Example: Rotor Winder Control System 138
11 Robust Control Systems 151
11.1 Introduction 151
11.2 Robust PID Controlled Systems 152

I
ndex/Glossary 159

Chapter 1
MATLAB Basics

1.1 Introduction

MATLAB is an interactive program for scientific and engineering
calculations. The MATLAB family of programs includes the base
program plus a variety of toolbores. The toolboxes are a collection
of special files, called M-files, which extend the functionality of the
base program. Together the base program plus the Control System
Toolbox provide the capability to use MATLAB for control system
design and analysis. In the remainder of this book, whenever we refer
to MATLAB, you can interpret that as meaning the base program
plus the Control System Toolboz.

Most of the statements, functions, and commands are computer
platform independent. Regardless of what particular computer sys-
tem you use, your interaction with MATLAB is basically the same.

E This book concentrates on this computer platform independent in-

teraction. A typical session will utilize a variety of objects that
allow you to interact with the program. These objects are

1. statements and variables,
2. matrices,
3. graphics, and

4. scripts.

2 Chapter 1. MATLAB Basics

MATLAB interprets and acts on input in the form of one or more

of these objects. Our goal in this chapter is to introduce each of the
four objects in preparation for our ultimate goal of using MATLAB
for control system design and analysis.

The manner in which MATLAB interacts with your computer
system is computer platform dependent. Examples of computer de-
pendent functions include installation, the file structure, generating
hardcopies of the graphics, invoking and exiting a session, and mem-
ory allocation. Questions related to platform dependent issues are
not addressed here. This is not to imply that they are not impor-
tant, but rather that there are better sources of information such as
your Users Guide and your local resident expert. This book is not
intended as a substitute for your Users Guide.

Before proceeding, make sure that you can invoke a session and
exit MATLAB . You need to be able to get to the command window
and see the command prompt “ >> ”. To begin a session on a
Macintosh you will probably double-click on the MATLAB program
icon. On an IBM PC compatible you will probably type matlab at
the DOS prompt.

The remainder of this chapter is organized as follows. There are
four sections corresponding to the four objects listed above. In the
first section we present the basics of statements and variables. Fol-
lowing that is the subject of matrices. The third section presents an
introduction to graphics, and the chapter concludes with a discussion
on the important topic of scripts and M-files.

1.2 Statements and Variables

Statements have the form shown in Figure 1.1. MATLAB uses the

assignment so that equals (“=") implies the assignment of the ex-

pression to the variable. The command prompt is two right arrows,
“ >> 7. A typical statement is shown in Figure 1.2, wherein we
are entering a 2 X 2 matrix to which we.attach the variable name
A. The statement is executed after the carriage return (or enter
key) is pressed. The carriage return is not explicitly denoted in the
remaining examples in this and subsequent chapters.

1.2. Statements and Variables 3

command prompt

/

»</ariable=expression

Figure 1.1 MATLAB Statement Form.

The matrix A is automatically displayed after the statement is
executed following the carriage return. If the statement is followed
by a semicolon (;), the output matrix A is suppressed, as seen in
Iigure 1.3. The assignment of the variable A has been carried out
even though the output is suppressed by the semicolon. It is often
the case that your MATLAB sessions will include intermediate cal-
culations for which the output is of little interest. You should use
the semicolon whenever you have a need to reduce the amount of
output. Output management has the added benefit of increasing the

execution speed of the calculations, since displaying screen output

takes time. ,

The usual mathematical operators can be used in expressions.
The common operators are shown in Table 1.1. The order of the
arithmetic operations can be altered by using parentheses.

The example in Figure 1.4 illustrates that MATLAB can be used
in a “calculator” mode. When the variable name and “=" are omit-
ted from an expression, the result is assigned to the generic variable
ans. MATLAB has available most of the trigonometric and elemen-
tary math functions of a common scientific calculator. The Users

»A=[12; 4 6] <ret>

A=
1

2 .
carriage return
4 6 g

Figure 1.2 Example Statement: Matrix Input.

4 Chapter 1. MATLAB Basics

»A=[1 2;4 6];-a—

»

»A=[1 2;4 6]

A=

Figure 1.3 Using Semicolons to Suppress the Qutput.

Guide has a complete list of available trigonometric and elementary
math functions; the more common ones are summarized in Table 1.2.

Variable names begin with a letter and are followed by any num-
ber of letters and numbers (including underscores). Keep the name
length to 19 characters since MATLAB remembers only the first 19
characters. It is a good practice to use variable names that describe
the quantity they represent. For example, we might use the variable
name vel to represent the quantity aircraft velocity. Generally, we
do not use extremely long variable names even though they may be
legal MATLAB names.

Since MATLAB is case sensitive, the variables M and m are not
the same variables. By case we mean upper and lower case. This is
illustrated in Figure 1.5. The variables M and m are recognized as
different quantities.

Table 1.1 Mathematical Operators.

Addition e
Subtraction '
Multiplication
Division
Power

N .

1.2. Statements and Variables 5

»12.4/6.9

ans =
1.7971

Figure 1.4 Calculator Mode.

MATLAB has several predefined variables, including @Inf,
(Nan) z)a,nc(] hree examples are shown in Figure 1.6. Nan stands
for Not-a-Number and results from undefined operations. Inf rep-
resents +oo and pi represents 7. The variable ¢ = V/—1 is used to
represent complex numbers. The variable j = /=1 can be used for

Table 1.2 Common Mathematical Functions.

sin(X) Sine of the elements of X

cos(X) Cosine of the elements of X

asin(X) Arcsine of the elements of X

acos(X) | Arccosine of the elements of X
tan(X) Tangent of the elements of X
atan(X) | Arctangent of the elements of X

atan2(X,Y) | Four quadrant arctangent of the real
] elements of X and Y

(A@X) Absolute value of the elements of X
(sqrifX) Square root of X

imag(X) [Imaginary part of X

real(X) | Real part of X
<65@X) Complex conjugate of X

Tog(X) Natural logarithm of the elements of X
logl0(X) | Logarithm base 10 of the elements of X
(é_xf)}x) Exponential of the elements of X

6 Chapter 1. MATLAB Basics

SM=[1 2];
»m=[357];

Figure 1.5 Variables Are Case Sensitive.

complex arithmetic by those who prefer it over i. These predefined
variables can be inadvertently overwritten. Of course, they can also
be purposely overwritten in order to free up the variable name for
other uses. For instance, one might want to use i as an integer and
reserve j for complex arithmetic. Be safe and leave these predefined
variables alone, as there are plenty of alternative names that can be
used. Predefined variables can be reset to their default values by

using clear name (e.g., clear pi).

The matrix A and the variable ans, in Figures 1.3 and 1.4, are
stored in the workspace. Variables in the workspace are automati-

»Z=3+4%j

Z=
3.0000 + 4.0000i

»Inf

ans =
00

»0/0

Warning: Divide by zero
ans =
NaN

Figure 1.6 Three Predefined Variables ¢, Inf, and Nan.

1.2, Statements and Variables 7

»who
Your variables are:

A M ans m z

leaving 675516 bytes of memory free.

Figure 1.7 Using the who Function to Display Variables.

cally saved for later use in your session. The who function gives a
list of the variables in the workspace, as shown in Figure 1.7.

MATLAB has a host of built-in functions. You can refer to the
Users Guide for a complete list. We will describe each function we
use as the need arises.

The whos function lists the variables in the workspace and gives
_additional information regarding variable dimension, type, and mem-
ry allocation. Figure 1.8 gives an example of the whos function.
The memory allocation information given by the whos function

»whos
Name Size Total Complex
A 2 by 2 4 No
M 1 by 2 2 No
ans 1by1 1 No
m Tby3 3 No
z 1 by 1 2 Yes

Grand total is (12 * 8) = 96 bytes,
leaving 664912 bytes of memory free.

Figure 1.8 Using the whos Function to Display Variables.

an be interpreted as follows. Each element of the 2 X 2 matrix A

8 Chapter 1. MATLAB Basics

»clear A
»who

Your variables are:
M ans m z

leaving 663780 bytes of memory free.

Figure 1.9 Removing the Matrix A from the Workspace.

»pi

ans =
3.1416

»format long; pi

ans = v
3.14159265358979

»format short e; pi

ans =
3.1416e+00 =——

»format long e; pi

ans = :
3.141592653589793e+00

Figure 1.10 Outnut Farrmat Ceebord e bo b 21 v o -

1.2. Statements and Variables 9

requires 8 bytes of memory for a total of 32 bytes, the 1 x 1 variable
ans requires 8 bytes, and so forth. All the variables in the workspace
are using a total of 96 bytes. The amount of remaining free memory
depends upon the total memory available in the system. Computers
‘with virtual memory will not display the remaining free memory.

You can remove variables from the workspace with the clear
function. Using the function clear, by itself, removes all items (vari-
ables and functions) from the workspace; clear variables removes
all variablés from the workspace; clear namel name 2 ... removes
the variables namel, name2, and so forth. The procedure for re-
moving the matrix A from the workspace is shown in Figure 1.9.

A simple calculation shows that clearing the matrix A from
memory freed up more than 32 bytes. In some cases, clearing a
variable may not change the value of the displayed free memory at
all. The who function displays the amount of contiguous remaining
free memory. So, depending upon the “location” of the variable in
the workspace, clearing the variable may or may not increase the
displayed amount of remaining free memory. The point is that your
available free memory may be more than displayed with the who or
hos functions.

All computations in MATLAB are performed in double precision.
owever, the screen output can be displayed in several formats.<The
efault output format contains four digits past the decimal point

r nonintegersy This can be changed by using the format function
hown in Figure 1.10. Once a particular format has been speci-
"fled, it remains in effect until altered by a different format input.

” WHO
?77? Undefined function or variable

Symbol in question ==> WHO

” Who
?7? Undefined function or variable
Symbol in question ==> Who

Fioure 1 .11 Function Names are Case Sensitive.

10 Chapter 1. MATLAB Basics

Remember that the output format does not affect the MATLARB
- computations — all computations are in double precision.

On the other hand, the number of digits displayed does not nec-
essarily reflect the number of significant digits of the number. This
is problem dependent, and only you can know the true accuracy of
the numbers that you input and that MATLAB displays.

Since MATLAB is case sensitive, the functions who and WHO
are not the same functions. The function who is a built-in func-
tion, so typing who lists the variables in the workspace. On the
other hand, typing the uppercase WHO results in the error mes.
sage shown in Figure 1.11. Case sensitivity applies to all functions.

1.3 Matrices

MATLAB is short for matriz laboratory. The Users Guide describes
the program as a high-performance interactive software package de-
signed to provide easy access to the LINPACK and EISPACK ma-
trix software. Although we will not dwell on the matrix routines
underlying our calculations, we will learn how to use the interactive
capability to assist us in our control system design and analysis. We
begin by introducing the basic concepts associated with manipulat-
ing matrices and vectors.

The basic computational unit is the matrix. Vectors and scalars
can be viewed as special cases of matrices. A typical matrix expres-
sion is enclosed in square brackets, []. The column elements are
separated by blanks or commas and the rows are separated by semi-
colons or carriage returns. Suppose we want to input the matrix A,

1 —4j V2
A= log(-1) sin(7/2) cos(w/3)
arcsin(0.5) arccos(0.8) exp(0.8)

One way to input A is shown in Figure 1.12. The input style in
Figure 1.12 is not unique.

Matrices can be input across multiple lines by using a carriage
return following the semicolon or in place of the semicolon. This is
useful for entering large matrices. Different combinations of spaces

1.3. Matrices\/ 11

>A=[T, -39, sqrt(2);) ’
log(-1) sin(pi/2) cos(pi/3
asin(0.5), acos(0.8) exp(0.8)]

A =
1.0000 0 -4.0000i 1.4142
0+ 3.1416i 1.0000 0.5000
0.5236 0.6435 2.2255
»A=[1 2;4 5] -+ 5,
A =
1 2
4 5

Figure 1.12 Complex and Real Matrix Input with Automatic Di-
mension and Type Adjustment.

and commas can be used to separate the columns, and different com—} %”’

binations of semicolons and carriage returns can be used to separate
the rows, as illustrated in Figure 1.12.

No dimension statements or type statements are necessary when
using matrices; memory is allocated automatically. Notice in the

t example in Figure 1.12 that the size of the matrix A is automatically

adjusted when the input matrix is redefined. Also notice that the
matrix elements can contain trigonometric and elementary math
functions, as well as complex numbers.

The important basic matrix operations are addition and sub-
traction, multiplication, transpose, powers, and the so-called array
operations, which are element-to-element operations. The rr'lathe—
matical operators given in Table 1.1 apply to matrices. We will not
discuss. matriz division, but be aware that MATLAB has a left- and
right-matrix division capability.

Matrix operations require that the matrix dimensions be com-
patible. For matrix addition and subtraction this means that tl.le
matrices must have the same dimensions. If A is an n X m matrix

12

and B is a p x r matrix, then A +

m = r. Matrix multiplication, given by A x B
if m = p. Matrix-vector multiplication is a sp
multiplication. Suppose b is a vector of length

of the vector b by the matrix A,
allowed if m = p. Thus, y = A %

A x b. Examples of three basic mat

in Figure 1.13.

The matrix transpose is formed with the apostrophe (’). We can
use the matrix transpose and multiplication operation
vector inner product in the following manner.
are m X 1 vectors. Then the inner product (

Chapter 1. MATLAB Basics

B is permitted only if n = p and
, is permitted only
ecial case of matrix
p- Multiplication
n X m matrix, is
b is the n x 1 vector solution of
rix-vector operations are given

where A is an

0 0J;

»A=[1 3; 5 9]; B=[4 -7; 1
»A+B -—
ans =
5 -4
15 9
»b=[1;5]; v
»A*b B l—
ans =
16
50
p
7 A e
ans =
1 5
3 9

Figure 1.13 Three Basic Matrix O
tion, and Transpose.

perations: Addition, Multiplica-

to create a
Suppose w and v
also known as the dot

13

[.3. Maltrices

product) is given by w’ * v. The inner produ.ct .of two vectors is a
ncalar. The outer product of two vectors can similarly .be computed y
a8 w * v'. The outer product of two m X 1 vectors 1s an m X mv’
matrix of rank 1. Examples of inner and outer products are given
‘igure 1.14.
" l'll‘?le basic matrix operations can be modified for ele.ment-by—
eletnent operations by preceding the operator with a period. The
modified matrix operations are known as array opemtzons: The com-
monly used array operators are given in Table 1.3. Matrix addition

e

array multiplication, division, and power do require the preceding

dot, as shown in Table 1.3. . '
Suppose A and B are 2 x 2 matrices given by

by b

a;; a D11 D12

A= 92| pg_ ol] .
az Q22 21 022

hen, using the array multiplication operator, we have

_ anbin aizbys
Ax B = [aznban Gr2b] '
zx 2\ :
»x=[5;pi;sin(pi/2)]; y=[exp(-0.5);-13;piA2]; 3
XY -
ans =
-27.9384

S A E—

ans =
3.0327 -65.0000 49.3480
1.9055 -40.8407 31.0063
0.6065 -13.0000 9.8696

Figure 1.14 Inner and Outer Products. P s

14 Chapter 1. MATLAB Basics

Table 1.3 Mathematical Array Operators.

Addition
Subtraction
Multiplication
Division
Power

LR o+

The elements of A. * B are the products of the corresponding ele-

r1:1ents.of A and B. A numerical example of two array operations is
given in Figure 1.15.

' Before proceeding to the important topic of graphics, we need to
introduce the notion of subscripting using colon notation’. The colon
notation, shown in Figure 1.16, allows us to generate a row vector
containing the numbers from a given starting value, x;, to a final
value, x;, with a specified increment, dx. Y

»A=[1;2;31;B=[-6;7;10];
»A.*B -

ans =
-6
14
30

»A AZ

ans =
1
4
9

Figure 1.15 Array Operations.

15

1.3. Malrices

starting value
l

x=[xi:d§:Xf]

final value
d

increment

Figure 1.16 The Colon Notation.

We can easily generate vectors using the colon notation, and
as we shall soon see, this is quite useful for developing z-y plots.
uppose our objective is to generate a plot of y = zsin(z) versus
for z = 0,0.1,0.2,...,1.0. Our first step is to generate a table of
y data. We can generate a vector containing the values of z at
hich the values of y(z) are desired using the colon notation. This
illustrated in Figure 1.17. Given the desired z vector, the vector

e

r»x=[0:0.1 1]@ y=x.*sin(x);
»[xy]
ans =
0 0
0.1000 0.0100
0.2000 0.0397
0.3000 0.0887
0.4000 0.1558
0.5000 0.2397
0.6000 0.3388
0.7000 0.4510
0.8000 0.5739
0.9000 0.7050
1.0000 0.8415

Figure 1.17 Generating Vectors Using the Colon Notation.

14

Table 1.8 Mathematical Array Operators.

Addition
Subtraction
Multiplication
Division
Power

B

The elements of A. x B are the products of the corresponding ele-

nrllents‘of A and B. A numerical example of two array operations is
given in Figure 1.15.

. Before proceeding to the important topic of graphics, we need to
introduce the notion of subscripting using colon notation,. The colon
notation, shown in Figure 1.16, allows us to generate a row vector
containing the numbers from a given starting value, x;, to a final
value, x;, with a specified increment, dx. Y '

»A=[1 ;2;3];B=["6§7;10];
»A.*B -+

ans =
-6
14
30

»AN2

ans =

el

Figure 1.15 Array Operations.

Chapter 1. MATLAB Basics

1.3, Maltrices

15

starting value final value

J
x=[x;:dx:xf]
1

increment

Figure 1.16 The Colon Notation.

We can easily generate vectors using the colon notation, and
a# we shall soon see, this is quite useful for developing z-y plots.
Buppose our objective is to generate a plot of y = zsin(z) versus
for 2 = 0,0.1,
y data. We can generate a vector containing the values of z at
hich the values of y(z) are desired using the colon notation. This
illustrated in Figure 1.17. Given the desired x vector, the vector

0.2,...,1.0. Our first step is to generate a table of

/&/

»[X y]

»x=[0:0.1:1]{Lf y=x.*sin(x);

ans =
0
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

0
0.0100
0.0397
0.0887
0.1558
0.2397
0.3388
0.4510
0.5739
0.7050
0.8415

Figure 1.17 Generating Vectors Using the Colon Notation.

'y

16 Chapter 1. MATLAB Basics

y(z) is computed using the multiplication array operation. Creating
a plot of y = zsin(z) versus z is a simple step once the table of g-y
data is generated.

1.4 Graphics

Graphics play an important role in both the design and analysis of
control systems. An important component of an interactive control
system design and analysis tool is an effective graphical capability.
A complete solution to the control system design and analysis will
eventually require a detailed look at a multitude of data types in
many formats. The important plot formats include root-locus plots,
Bode plots, Nyquist plots, and time-response plots. The objective of
this section is to acquaint the reader with the basic z-y plotting ca-
pability of MATLAB . More advanced graphics topics are addressed
as the need arises.

MATLAB uses a graph display to present plots. Some computer
configurations allow both the command display and graph display
to be viewed simultaneously. On computer configurations that allow
only one to be viewed at a time, the command display will disappear
when the graph display is up. The graph display is brought up
automatically when a plot is generated using any function which
generates a plot (e.g., the plot function). Switching from the graph
display back to the command display is accomplished by pressing

any ke the keyboard. The plot in the graph display is cleared
y the unction at the command prompt. The@unction is
used to switch to the graph display from the comman display.

There are two basic groups of graphics functions. The first group
of functions, shown in Table 1.4, specifies the type of plot. The list
of available plot types includes z-y plot, semilog and log plots. The
second group of functions, shown in Table 1.5, allows us to customize
the plots by adding titles, axis labels, and text to the plots and to
change the scales and display multiple plots in subwindows.

The standard z-y plot is created using the plot function. The
z-y data in Figure 1.17 are plotted using the plot function as shown

l.4. Graphics 17

Table 1.4 Available Plot Forma,ts.zé-

Plots the vector z versus the vector y.
Plots the vector z versus the vector y.
The z-axis is logyo; the y axis is linear.
Plots the vector z versus the vector y.
The z-axis is linear; the y axis is logio.
Plots the vector z versus the vector y.
Creates a plot with log;o scales on both axes.

plot(x,y)
semilogx(x,y)

semilogy(x,y)

loglog(x,y)

Figure 1.18. The axis scales and line types are automatically
osen. The axes are labeled with the xlabel and ylabel commands;

the plot by using the grid command. We see that a basic z-y
ot is generated with the combination of functions plet, xlabel,

plabel, title, and grid. .
Multiple lines can be placed on the graph by using the plot func-
n with multiple arguments, as shown in Figure 1.19. The default

Table 1.5 Functions for Customized Plots.

Puts ‘text’ at the top of the plot.

Labels the z-axis with ‘text’.

Labels the yaxis with ‘text’.

Puts ‘text’ at (p1,p2) in screen coordinates
““where (0.0,0.0) is the lower left and

(1.0,1.0) is the upper right of the screen)’\'fé
Subdivides the graphics window.

UM ALY AN A MM

Draws grid lines on the current plot.

i title(‘text’)

| xlabel(‘text’)
ylabel(‘text’)

- text(pl,p2,‘text’,18¢Y)

subplot

18

19
Chapter 1. MATLAB Basics i.4. Graphics

) 117" » x=[0:0.1:1]";
:;;)[(O*gn1(;)] ’ » y1=x.*sin(x); y2=9:ln'(X);4_
»plot'(x,y) ’ » plot{x,y1,'-- ,|x,y2, -). -
»title('Plot of x sin(x} vs x ') » text(0.1,0.9, y'1 = x sin x) s
»xiabel('x") » text(0.1,0.85,'y2 = sin(x .5'._ "
»ylabel('y") » xlabel("x"), ylabel('y1 and y2'), gr
»grid
0.9 T T T T ! : 1
yl= e oF SN :
Plot of x sin(x) vs x ?{ S0 - > -
0.9 . ; T . . ; (1174 C—
; ; : : —
0.6 ——
LI
5 =28
: 02 _,
21 sl : - 0.1p- e
0.1 -“ / : 00 -_6.1 ______ (-) .2 8 B 015 i 1
Y ofz 3 04 05 06 07 08 0.9 1 x
. .

Figure 1.19 A Basic z-y Plot with Multiple Lines.
Figure 1.18 A Basic z-y Plot of z sin(z) versus z.

line types can also be altered. The available line types are shown
in Table 1.6. The line types will be automatically chosen unless
specified by the user. The use of the text function
the line types is illustrated in Figure 1.19.

The other graphics functions

Table 1.6 Line Types for Customized Plots.

¥

and changing - | Solid line

- - | Dashed line
: | Dotted line
-. { Dashdot line

loglog, semilogx, and semilogy
are used in a similar fashion to plot. To obtain an z-y plot where

the z-axis is a linear scale and the y-axis is a logyg scale, you would
use the semilogy function in place of the plot function. The cus.

20

tomizing features listed in Table 1

loglog, semilogx,
The graph display

The function subplot(

m X n grid of smaller
means the graph displa

The integer p specifies the window,
left to right, top to bottom. This

Chapter 1. MATLAB Basics

can be subdivided into

the graphics window is subdivided into four subwindows.

[.2 can also be utilized with the
and semilogy functions.
liv smaller subwindows.
mnp.) subdivides the graph display into an
subwindows, where m <2and n <2, This
y can be subdivided into two or four windows,
vtrhere the windows are numbered
s illustrated in Figure 1.20, where

Figure 1.20 Using sub
Display.

Plot to Create a 2x 2 Partition of the Graph

21

14

Scripts

[.b Scripts

Up to this point, all of our interaction with MATLAB has been at
the command prompt. We enter statements and functions at the
gommand prompt, and MATLAB interprets our input and takes the
| appropriate action. This is the preferable mode of operation when-
ver your sessions are short and nonrepetitive. However, the real
E power of MATLAB for control system design and analysis derives
tom its ability to execute a long sequence of commands stored in a
flle. These files are called M-files since the filename has the form file-

L name.m. A script is one type of M-file. The Control System Toolboz

£ 18 a collection of M-files designed specifically for control applications.
 In addition to the pre-existing M-files delivered with MATLAB and

' tho toolboxes, we can develop scripts for our applications.

Scripts are ordinary ASCII text files and are created by using -
your own text editor. Creating and storing scripts are computer
latform dependent topics, which means that you need to seek out
he appropriate expert at your location for more information.

A script is just a sequence of ordinary statements and functions
hat you would use at the command prompt level. A scriptis invoked
at the command prompt level by simply typing in the filename (with-
put the .m file type). Scripts can also invoke other scripts. When
he script is invoked, MATLAB executes the statements and func-
jons in the file without waiting for input at the command prompt.
g The script operates on variables in the workspace.

Suppose we want to plot the function y(t) = sinat, where o)\
8 a variable that we want to vary. Using our favorite text editor, j
' we write a script, which we will call plotdata.m. This is shown
n Figure 1.21. We input a value of o at the command prompt,
and in doing so we place o in the workspace. Then we execute the
script by typing in plotdata at the command prompt. The script
- plotdata.m will use the most recent value of a in the workspace.

After executing the script we can enter another value of « at the
command prompt and execute the script again.

Your scripts should be well documented with comments. A com-
ment begins with a %. If you put a header in your script comprised
of several descriptive comments regarding the function of the script,

22 Chapter 1. MATLAB Basics

»alpha=50;
»plotdata

plotdata.m

% This is a script to plot the function y=sin(alpha*t).
%
% The value of alpha must exist in the workspace prior
% to invoking the script.
%
t=[0:0.01:1];
y=sin(alpha*t);
plot(t,y)
xlabel('Time [sec]’)
ylabel('y(t) = sin(aipha *t M
grid

Figure 1.21 A Simple Script to Plot the Function y(t) = sin at.

then using the help function will display the header comments and
describe the script to the user. This is illustrated in Figure 1.22.

We use plotdata.m to develop an interactive capability with &
as a variable, as shown in Figure 1.23. At the command prompt,
we input a value of o = 10 followed by the seript filename, which in
this case is plotdata. The graph of y(¢) = sinat is automatically

»help plotdata
Thié is a script to plot the function y=sin{alpha*t).

The value of alpha must exist in the workspace prior
to invoking the script.

Figure 1.22 Using the help Function.

23

1.5, Secripts

command prompt

*
Ipha=10; plotdata || £
g
" :
- € 05 1
Time [sec]

eript filename

50; plotdata

sin (alpha*t)

y(©

v

Time [sec]

: _: jgure 1.23 An Interactive Session Using a Script to Plot the Func-
b n y(t) = gin al. .

enerated. We can now go back to the comma,.nd prompt, enter a
alue of o = 50, and run the script again to obtain the upda.ted. plot.
The graphics capability of MATLAB ext:,ends _beyond th‘e mtro}
ductory material presented here. We will investigate the issue o
rraphics further on an as-needed basis.

24

Notes

Chapter 1. MATLAB Basics

Chapter 2

| Mathematical Modeling
5__0f Systems

2.1 Introduction

| The design and analysis of control systems is based on mathemati-
¢al models of complex physical systems. The mathematical models,
which follow from the physical laws of the process, are generally
highly coupled nonlinear differential equations. Fortunately, many
physical systems behave linearly around an operating point within
Jome range of the variables and it is possible to develop linear ap-
proximations to the physical systems. A Taylor series expansmn is
generally utilized in the linearization process. The lmear approxima- ..
jion to the physical system is described by a linear, constant “coeffi-
sient ordlnary differential equation. The Laplace fransform. method _
s one way to compute the solution of the differential equation. The
aplace transform can 4l5o be used to obtain an input-output de-
cription of the linear, time-invariant (LTI) system in the form of
f o transfer function. The application of the many “classical” and
‘modern” control system design and analysis tools are based on
E LTI mathematical models. MATLAB can be used with,LTI systems
given in the form of transfer function descriptions or state-space
descriptions (see Chapter 9, State-Space Methods).

We begin this chapter by showing how to use MATLAB to assist
1 the analysis of a typical spring-mass-damper mathematical model
_ of a mechanical system. Using a MATLAB script, we will develop
" an interactive analysis capability to analyze the effects of natural

25

26 Chapter 2. Mathematical Modeling of Systems

frequency and damping on the unforced response of the mass dis-
placement. This analysis will utilize the fact that we have an ana-
lytic solution that describes the unforced time response of the mass

displacement.
In the subsequent sections, we will discuss transfer functions and

block diagrams. In particular, we are interested in how MATLAB - {

can assist us in manipulating polynomials, computing poles and ze-
ros of transfer functions, computing closed-loop transfer functions,
block diagram reduction, and computing the response of a system to
a unit step input. The chapter concludes with the electric traction
motor control design example found in MCS, pp. 79-81.

The functions covered in this chapter are roots, rootsl, se-
ries, parallel, feedback, cloop, poly, conv, polyval, printsys,
minreal, pzmap, and step.

2.2 Spring-Mass-Damper System

A spring-mass-damper mechanical system is shown in Figure 2.1.
- The motion of the mass, denoted by y{t), is described by the differ-
ential equation

Mij(t) + f2(t) + Ky(t) = r(2), (2.1)

This system is described in MCS, pp. 36-41. The solution, y(t), of
the differential equation describes the displacement of the mass as
a function of time. The forcing function is represented by r(t). The
derivation of the spring-mass-damper mathematical model is based
on the use of ideal springs and dampers. These ideal models for the
spring and damper are based on lumped, linear, dynamic elements
and only approximate the actual elements. The spring-mass-damper
model, given in Eq. (2.1), is a linear, time-invariant approximation
to the physical process; it is valid only in regions where the spring
force is a linear function of the mass displacement and the damping
due to friction is a linear function of the velocity.

The mathematical model, given in Eq. (2.1), might represent an
off-road vehicle shock absorber. Qur objective could be to design
an active control system to make the ride smoother when traversing

27

2.2. Spring-Mass-Damper System

Spring
constant
K

Friction ainn|u|n/saulel
constant [m] =] 4 p‘Ma .
f ’ isplacemen
BR M e ¥(t)
sia/w niwas[nlu

r(t)
Forcing
function

Figure 2.1 Spring-Mass-Damper System.

npaved roads. The control design and subsequent analysis would
¢ based on the vehicle shock absorber model in Eq. (2.1). Of course,
e true test of the control design is the road test. Only .the{.’l can
fve prove that the control design does in fact meet the objective of
& smoother ride on a bumpy road. We will soon see how. i:,o use
MATILAB to enhance our control design and analysis caPablllty.
E Many physical processes are described by ma,t.hen}at'lcal mo.dels
alogous to'Eq. (2.1). A typical electrical RLC cucuﬂ:. is d.escrlbed
an analogous mathematical model where t.he ve.10c1ty, y(t), and
gthe voltage, v(t), are analogous variables. This notion ?f analogous
.ystems is important in system modeling. Any experience gained
h designing and analyzing control systems .for mechanical systfams
described by Eq. (2.1) can be used in controlling analogous electrical,

thermal, and fluid systems. . p
The unforced dynamic response, y(t), of the spring-mass-damper

= e~ sin(wpy/1 ~ (2 t+6),

where § = cos™!(. The initial displacement is y(0). The tran-
" sient system response is underdamped when { < 1, overdamped when

y(t) = (22)

28 Chapter 2. Mathematical Modeling of Systems

¢ >.1, a,fld critically damped when ¢ = 1. We can use MATLAB
to visualize the unforced time response of the mass displacement

following an initial displacement of ¥(0). Consi
. d
and underdamped cases: y(0). Consider the overdamped

e Case 1: ¥(0)=0.15m, w, = /2

sec? Cl =
o Case 2: y(0)=0.15m, w, = \/iﬁic-d, G = 2—% (%:2,-}‘%:1)

The MATLAB co.mm.a.nds to generate the plot of the unforced re-
sponse are shown in Figure 2.2. In the MATLAB setup, the variables

»Y0=0.15; wn=sqrt(2); -=—
»zetal=3/(2*sqrt(2)); zeta2=1/(2*sqrt(2)):
»t=[0:0.1:10]; (#rsar(
»unforcedcommands

 unforcedcommands.m

32 Compute Unfo_rced Response to an Initial C
t1=acos(zetal)*ones(1 length(t));
t2=acos(zeta2)*ones(1 Jlength(t));
¢1=(y0/sart(1-zetal A2));c2=(y0/sqrt(1-zeta2 A2));
yl=cl *exp(—zeta1 *wr*t).*sin(wn*sqrt(1-zetal A2)*t+t1);
},(62 =C2 *exp(-zetaZ*wn*t).*sin(wn*sq'rt(‘I -zeta2A2)*t+t2);
bu=02*exp(-zeta2*wn*t);bi=-bu;
%

PlOt(t:y1_,"',t,y2,"" :tibui':'lt!bl::')l g”d

xlabel('Time [sec]'), ylabel("y(t) Displacement [m])
'text(O.Z,O.85,['overdamped zetal=",num2str(zetal)

- solid'],'sc')
text(0.2,0.80,['underdamped zeta2="

s o Jnum2str(zeta?),...

-

Figure 2.2 Script to Analyze the Spring-Mass-Damper.

i (r=24=9) |

2.2, Spring-Mass-Damper System 29

y(0),wn, t, (1, and {; are input to the workspace at the command
level, Then the script unforcedcommands.m is executed to gen-
grate the desired plots. This creates an interactive analysis capa-
bllity to analyze the effects of natural frequency and damping on
he unforced response of the mass displacement. You can investi-
ate the effects of the natural frequency and the damping on the
Ime response by simply entering new values of wy, (1, or {; at the
gommand prompt and running the script unforcedcommands.m
pgein. The time-response plot is in Figure 2.3. Notice that the
jeript automatically labels the plot with the values of the damping
flicients. This avoids confusion when making many interactive
fimulations. The natural frequency value could also be automati-
Bally labeled on the plot. Utilizing scripts is an important aspect of
fleveloping an effective interactive design and analysis capability in
MATLAB . Since you can relate the natural frequency and damping
b the spring constant, K, and friction, f, you can also analyze the
ects of K and f on the response. '

In the spring-mass-damper problem, the unforced solution to
je differential equation, given in Eq. (2.1), was readily available.
§ general, when simulating closed-loop feedback control systems

02 .
‘ overdamped 2¢1al=1.061-solid
015k underdamped zeta2+0,3536- dashed
\,\ , YO gtime
‘g ol : 2
£ 005k g\
g8
&
S ,
= 0.05} b O DU S T | N
a P S M N 7 QR T
3 -01 e s S S ; 'VII— a‘) R
015}
V123 4+ 5 6 7% 9 10
Time [sec]

Figure 2.3 Spring-Mass-Damper Unforced Response.

30 Chapter 2. Mathematical Modeling of Systems
subject to a variety of inputs and initial conditions, it is not feasible
to attempt to obtain the solution analytically. In these cases, we can
use MATLAB to compute the solutions numerically and to display
the solution graphically. The simulation capability of MATLAB will
be discussed in detail in subsequent sections and chapters.

2.3 Transfer Functions

The transfer function is an input-output description of an LTI sys-
tem, as described in MCS, pp. 52-63. It relates the Laplace trans-
form of the output variable to the Laplace transform of the input
variable with zero initial conditions. Consider the LTI system de-
scribed by the transfer function G(s), where

_Y(8) ams™ tamoas™ 4 tas+ag
- R(s) s 4b,_ysn 1 ... +as+by

G(s)

where m < n, and all common factors have been canceled. The |

roots of the numerator polynomial of G(s) are called the zeros of the
system; the roots of the denominator polynomial are called the poles.
Setting the denominator polynomial to zero yields the characteristic
equation

$" +bp_18" N4 b ays 4+ by = 0.

The transient response of a system is directly related to the s-plane |

locations of the poles and zeros.

We can use MATLAB to analyze systems described by trans-
fer functions. Since the transfer function is a ratio of polynomials,
we begin by investigating how MATLAR handles polynomials, re-
membering that working with transfer functions means that both a
numerator polynomial and a denominator polynomial must be spec-
ified. '

In MATLAB polynomials are represented by row vectors contain-
ing the polynomial coefficients in descending order. For example, the
polynomial

p(s) = s>+ 352 +4 (2.4)

is entered as shown in Figure 2.4. Notice that even though the

(2.3)

31

1.0, 'Transfer Functions

[op=[13 0 4] =———

»r=roots(p) \

: r-

1 -3.3553e+00
1.7765e-01+ 1.0773e+00i
1.7765e-01- 1.0773e+00i

| »p=poly(r) <—

I Pp-

1.0000 3.0000 0.0000 - 0.0000i

4.0000 + 0.0000i

gure 2.4 Entering the Polynomial p(s) = s® 4+ 352 + 4 and Cal-
lating Its Roots.

Ticient of the s term is zero, it is included in the input definition
p(s). .)
L If p is a row vector containing the coefficients of p(s) in descend-
g order, then roots(p) is a column vector containing the roots of
fe polynomial. Conversely, if r is a column vector containing the
bots of the polynomial, then poly(r) is a row vector with the poly-
forial coefficients in descending order. We can compute the roots
¥ the polynomial p(s), given in Eq. (2.4), with the roots function as
' own in Figure 2.4. The roots1 function also computes the roots of
 polynomial but gives a more accurate result when the polynomial
fas repeated roots. In Figure 2.4 we also show how to reassemble
e polynomial with the poly function.

Multiplication of polynomials is accomplished with the conv
unction. Suppose we want to expand the polynomial n(s), where

- n(s) = (3 +2s + 1)(s +4).

T'he associated MATLAB commands using the conv function are
hown in Figure 2.5. Thus, the expanded polynomial, given by n, is

n(s) = 3s® + 14s% 4 95 + 4.

32 Chapter 2. Mathematical Modeling of Systems

»p=[3 2 1]; g=[1 4];
»nECOHV(p,q) .,-*H_l: e
n=

3 14 ¢

4 - e

»value=polyval(n,-5)
value = "*“*“[

-66

Figure 2.5 Using conv and polyval to Multiply and Evaluate the i

Polynomials (3s% + 2s + 1)(s + 4).

The fun.ction polyval is used to evaluate the value of a polynomial _-
at the given value of the variable. The polynomial n{s) has the value |

n(~5) = —66, as shown in Figure 2.5.

'In tllle next example we will obtain a plot of the pole-zero lo- ’
cations in the complex plane. This will be accomplished using the
pzmap function, shown in Figure 2.6. On the pole-zero map, ze- |

§on

ros are denoted by an “o” and poles are denoted by an “x”. If the }
pzmap function is invoked without left-hand arguments, the plot is 1

automatically generated,

Figure 2.6 The pzmap Function.

2.4, 'Transfor Functions 33

B EXAMPLE 2.1 Transfer Functions

(lonsider the transfer functions

(s+1)(s+2)

652 + 1
(s +2i)(s — 2i)(s + 3)°

T R 4+32+3s+1

and H(s)=

()

Utilizing a MATLAB script, we can compute the poles and zeros of
¥(s), the characteristic equation of H(s), and divide G(s) by H(s).
We can also obtain a plot of the pole-zero map of G(s)/H(s) in the
omplex plane.
The pole-zero map of the transfer functionG(s)/H(s) is shown
A Figure 2.7, and the associated MATLAB commands are shown in
ure 2.8. The pole-zero map shows clearly the five zero locations,
lit it appears that there are only two poles. This cannot be the
e since we know that the number of poles must be greater than
f equal to the number of zeros. Using the rootsl function we can
rtain that there are in fact four poles at s = —1. Hence, multiple
e or multiple zeros at the same location cannot be discerned on

pole-zero map.

Pole-Zero Map

) _is :2 _1‘.5 -.1 -0:5 3
Real Axis

Figure 2.7 Pole-Zero Map for G(s)/H(s).

34

Chapter 2. Mathematical Modeling of Systems

»numg=[6 0 1]; deng=[1 3 3 1]:
»Z=roots(numg)

r4
0 + 0.4082i
0-0.4082i
»p=roots1(deng)

-

l

»n1=[1 1]; n2=<[1 2]; d1=[1 2%]; d2=[1 -2*i]; d3=[1 3%
>>n:.{mh=conv(n1 ;N2); denh=conv(d1 ,conv(d2,d3)): ,
»printsys(numh,denh) g ,
num/den =

SA2 +3s+2

SA3+3sA2+4s5+12

»num=conv{numg,denh); den=conv(deng,numh);
»printsys(num,den)
num/den =

6 A5 + 18574 + 255A3 + 75542 4+ 454 12

SA5+63A4+ 14sA3 + 16sA2 + 95+ 2
»pzmap(num,den) e —
»title('Pole-Zero Map')

Figure 2.8 Transfer Function Example for G(s) and H (s).

24. Block Diagram Models 35

2.4 Block Diagram Models

Buppose we have developed mathematical models in the form of
_ tpansfer functions for the plant, represented by G(s), and the con-
toller, represented by H(s), and possibly many other system com-
nents such as sensors and actuators. Qur objective is to inter-
nect these components to form a control system. We will utilize
IMATLAB functions to carry out the block diagram transformations.
Plock diagram models are described in MCS, pp. 64-69.
i The process to be controlled is shown in Figure 2.9. A simple
ppen-loop control system can be obtained by interconnecting the
blant and the controller in series as illustrated in Figure 2.10. We
Jan use MATLAB to compute the transfer function from R(s) to

¥ (s), as illustrated in Example 2.2.
EXAMPLE 2.2 Series Connection

ot the process, represented by the transfer function G(s), be

1
| Gs) = So0a7
fnd let the controller, represented by the transfer function G.(s), be
s+1
G(s) = ST 2

Ne can use the series function to cascade two transfer functions

1(3) and G(s), as shown in Figure 2.11.
f The transfer function G.G(s) is computed using the series func-
n as shown in Figure 2.12. The resulting transfer function, G.G(s),

-

Process

Gs [

Us) ————»

Figure 2.9 Open-Loop System.

36 Chapter 2. Mathematical Modeling of Systems

Controiler Ufs) Process

Als) Ge(s) ™ as [Y

Figure 2.10 Open-Loop Control System.

is
num s+1
Glley= 3= 50053 + 100052

Block diagrams quite often have transfer functions in parallel. In
such cases, the function parallel can be quite useful. The parallel :

function is described in Figure 2.13.

We can introduce a feedback signal into the control system by]
closing the loop with unity feedback, as shown in Figure 2.14. The .
signal E.(s) is an error signal, the signal R(s) is a reference input. |
In this control system, the controller is in the forward path and the

closed-loop transfer function is

__G.G(s)
) =1Tee0

U ' SYSTEM 1 SYSTEM 2

Figure 2.11 The series Function.

2.

Block Diagram Models 37
U(S) - 1
R(s) —m| Ge(3) ":f% || G(5) 50z [1

»numg=[1]; deng=[500 0 0];
»numh=[1 1]; denh=[1 2];
»[num,den]=series(numg,deng,numh,denh);
»printsys(num,den)
num/den =

s+ 1

-

500 sA3 + 1000 sA2

Figure 2.12 Application of the series Function.

here are two functions we can utilize to aid in the block diagram re-

tion process to compute closed-loop transfer functions for single-
; multi-loop control systems. These functions are cloop and
ydback.

- The cloop function calculates the closed-loop transfer function

SYSTEM 1

i Gi(s) 2 |

U(s) Y{(s)
& SYSTEM 2 +

? Ga(s) .

Figure 2.13 The parallel Function.

39

38 Chapter 2. Mathematical Modeling of Systems §4. Block Diagram Models
SYSTEM 1
E.(s Controller | yys) | Process) + » Y(s}
R(s)—*—:- at) Ga(s) :b- G(s) Y(s) H(s) ’—""'i G(s) ‘
+ i d | ' SYSTEM 2
| H(s)

Figure 2.14 A Basic Control System with Unity Feedback.

as shown in Figure 2.15 with the associated system configuration |
and a.ssﬁmes\unity feedback with negative feedback as the default. :

The feedback function is shown in Figure 2.16 with the associ- }
ated system configuration, which includes A (s) in the feedback path.]
For both the cloop and feedback functions, if the input “sign” is
omitted, then negative feedback is assumed. In Example 2.3 we |
show an application of the cloop function, and in Example 2.4 we
show an application of the feedback function.]

B EXAMPLE 2.3 The cloop Function

Figure 2.16 The feedback Function.

Another basic feedback control configuration is show.n in Fig-
fp 2.18. In this case, the controller is located in the feedback path.
e error signal, E,(s), is also utilized in this control system con-
buration. The closed-loop transfer function is

G(s)

T(8) = st

T 1+ GH(s)

Let the process, G(s), and the controller, G(s), be as in Example 2.2
(see Figure 2.12). To apply the cloop function we first use the]
series function to compute G.G(s), followed by the cloop function]
to close the loop. The command sequence is shown in Figure 2.17. 4
The closed-loop transfer function, as shown in F igure 2.17, is

1|U(s) 1

Ea(s) -
‘_...(‘)_'a Gc(s)=::2—-—-6(s)-50052 > Y(s)

»numg=[1]; deng=[500 0 0];
»numc=[1 1]; denc=[1 2];
»{num1,den1]=series(numg,deng,numc,denc);
»{num,den]=cloop(num1,den1,-1);
»printsys(num,den)
num/den =

T(s) = GeG(s) mum _ s+1
"1+ G.G(s) den 50053 + 10002 1 s +1

SYSTEM 1

R(s) ——Zg\p G G(s) %P—‘ Y(s)

L

s+1 -4—

500543 + 1000sA2 + s+ 1

Figure 2.17 Application of the cloop Function.

Figure 2.15 The cloop Function.

40 Chapter 2. Mathematical Modeling of Systems

H(s)

Feedback Loop.

N EXAMPLE 2.4 The feedback Function

Again, let the process, (/(s), and the controller, H (), be as in Ex-
ample 2.2 (i.e., H(s) = G.(s)). To compute the closed-loop transfer
function with the controller in the feedback loop we use the feed-
back function. The command sequence is shown in Fi 1gure 2.19,
The closed-loop transfer functzon is

T(s) = G(s) _ bum - s+2
; 1+GH(S) en 50053+100032+3+1

:'The MATLAB funct1ons serles cloop, and feedback can be used

L Es) A |
+ a -1
R(s) e Y(s)
t
»numg=[1]; deng=[500 0 0J;
»numh=[1 1]; denh=[1 2);
»[num,den]= feedback(numg, deng,numh denh,-1);

»printsys(num,den)
num/den =

S+ 2

500 $"3 + 1000 872 + § + 1

Figure 2.19 Application of the feedback Function,

A multi-loop feedback system is shown in Figure 2.20. This example

closed-loop transfer function

T(s)= %E—g—,
when 1 1
Gy(s) = PRTIL Ga(s) = PN
| 6o = s 0=
-] ﬁ;'(;)_ s41 Hé(.s).=.2 Hg(s) TRV

'. For this example a ﬁve-step procedure is followed

SRR TR

2.4. Block Diagram Models 41

as aids in block diagram manipulations for multi-loop block dia-
grams. This is illustrated in Example 2.5.

M EXAMPLE 2.5 Multi-Loop Reduction

can be found in MCS, pp.67-69. Our ob]ectlve is to compute the

s+2"

e Step 1: Input the system tra_nsfer functions into MATLAB .

e Step 2: Move H; behind G,.

Hy(s)

5 3 . y
R(s)— Gifs) " GJ.T)TG!{S) «(s) }—w Y(3)
' H{s)

Hy(s) L

Figure 2.20 Multi-Loop Feedback Control System.

\ 43
24. Block Diagram Models

+ _ G —w a B C(s)
() o1 A Gy T
H e

H3

42 Chapter 2, Mathematical Modeling of Systems

¢ Step 3: Eliminate the G3G4H,; loop.

e Step 4: Eliminate the loop containing H,.

¢ Step 5: Eliminate the remaining loop and calculate T(s).

The five steps are illustrated in Figure 2.21, and the corresponding
block diagram reduction is shown in Figure 2.22. The result of
executing the MATLAB commands is

2
num $° +45* + 65° 4 697 + 55 4 2 (a) Step

den 128 + 2055% + 106651 4- 251753 + 3128352 +2196s + 712"

We must be careful in calling this the closed-loop transfer function.
Recall that the transfer function is defined to the input-output rela-
tionship after pole-zero cancellations. If we compute the poles and
zeros of T'(s), we find that the numerator and denominator poly-
nomials have (s + 1) as a common factor. This must be canceled
before we can claim we have the closed-loop transfer function. To

¢ - Gy G4 —F-C(S)

! n(s)#—» o [=0—= voxam
Hy it}

(b) Step 3

R(s) ;T——— G
3

(c) Step 4

e RO - C(s.
1-G3CaHy + GoG3Hy)

Y

»ng1=[1]; dg1=[1 10];

»ng2=[1]; dg2={1 1];

»ng3=[10 1]; dg3=[1 4 4];

»ng4=[1 1]; dg4=[1 6];

»nh1=[1 1]; dh1=[1 2L

»nh2=[2]; dh2=[1];

»nh3=[1]; dh3=[1];
»n1=conv(nh2,dg4); d1 =conv(dh2,ng4);
»[n23,d23]=series(n93,d93,ng4,dg4);
»[n2,d2]=feedbac|_<(n23,d2a,nh‘l ,dh1,+1):
»[nSa,dSa]=series(ngZ,ng,n2,d2); ;
»[n3,d3]=feedback(n3a,d3a,n1 Adi);
»[n4,d4]=series(ng1 ,dg1,n3,d3);
»[num,den]=cloop(n4,d4,-1);

GG GGy i C(s)
R(s) —™| s+ G232+ CLG2G3GaH3 -

(d) Step 5

Figure 2.22 Block Diagram Reduction of Multi-Loop System (See
Example 2.5 in MCS, pp. 67-69).

Figure 2.21 Multi-Loop Block Reduction.

44 Chapter 2. Mathematical Modeling of Systems

Figure 2.23 The minreal Function.

assist us in t:kle pole-zero cancellation we will use the minreal func-
tloln. The minreal function, shown in Figure 2.23, removes common
pole-zero factors of a transfer function. The final step in the block

reduction process is to cancel out the common factors, as shown |
,]

in Figure 2.24. The closed-lo t SN Lo
ure 2.94 as T(s) op transfer function Is given in Fig-

{)unction we find tha-t the order of the denominator polynomial has
een reduced from six to five, implying one pole-zero cancellation.

»numg=[14665 2];
»deng=[12 205 1066 2517 3128 2196 712];
»[num,den]=minreal(numg,deng); ’
»printsys(num,den)

1 pole-zeros cancelied

num/den =

0.08333 sA4 4 0.25 sA3 +0.25sA2 +0.25 s + 0.1 667

SAS + 16.08 sA4 + 72.75 sA3 4+ 137 sA2 + 123.7 s + 59.33

Figure 2.24 Application of the minreal Function.

= num/den. After the application of the minreal

4.5, Design Example 45

2.5 Design Example

Electric traction motors are utilized on trains and transit vehicles.
The detailed block diagram model with the transfer functions of the
-mower amplifier, armature controlled motor, and sensor, is shown in
igure 2.25. This is Example 2.9 in MCS, pp. 79-81. Our objective
o compute the closed-loop transfer function and investigate the
sponse of w to a commanded wy. The first step, as shown in Fig-
re 2.26, is to compute the closed-loop transfer function w/wy. The
glosed-loop characteristic equation is second-order with w,, = 52 and
i = 0.012. Since the damping is low we might expect the response
40 be highly oscillatory. We can investigate the response w(t) to
reference input, wq(t), by utilizing the step function. The step
inction, shown in Figure 2.27, calculates the unit step response of
linear system.

The step function is a very important function since control
stem performance specifications are often given in terms of the
Minit step response. The state response, given by z(f), is an output
M the step function and will be discussed in detail in Chapter 9,
Jtate-Space Methods. Include « in the left-hand argument list, but
flo not be concerned with it for the time being.

If the only objective is to plot the output, y(¢), we can use the
jtep function without left-hand arguments and obtain the plot au-
Bomatically with axis labels. If we need y(t) for any reason other
plotting, we must use the step function with left-hand argu-
iments, followed by the plot function to plot y(t). We define ¢ as a

{¢,]
w; + - 1 0:-
- 25 +0.5
Gy o
0.1 t=

Figure 2.25 Electric Traction Motor Block Diagram.

47
46 Chapter 2. Mathematical Modeling of Systems 2.5, Design Example

A
»num1=[10]; den1=[1 1]; num2=[1]; den2=[2 0.5]
»num3=[540]; den3=[1]: num4=[0.17]; den4=[1]:

»[na,da]=series(num1,den ,num2,den2);
»[nb,db]=feedback(na,da,num4,den4,—1)

s} e e

14

»[nc,dc]=series(num3,den3,'nb,db); %‘ 12l RiRINININ i

»[num,den]=cloop(nc,dc,-1); ~~—__ cE AR AR ML AL

i il f HH AL
5400 * 0,64 1 1 S | B

2sA2 +2.5s + 5402

02k uh —
Figure 2.26 Electric Traction Motor Block Reduction. 05 OE.S 1 15 2 25 3
] Time [sec]
row vector containing the times at which we wish the valye of the §
output variable y(t). motoresponse.m
The step response of the electric traction motor is shown in Fig-

% This script computes the step
% response of the Traction Motor

% Wheel Velocity

ure 2.28. As expected, the wheel velocity response, given by y(t), is
highly oscillatory.

%
num={5400]; den=[2 2.5 5402];
e =[0:0.005:3];
i — | SYSTEM g . Itzxz[xot]=step(num.,_den,t);_ -
- , X,t |=Stepinu Ly
| tap G(s) output plot(t,y),grid
D input

t xlabel('Time [sec]')

ylabel('Wheel velocity')

Figure 2.28 Traction Motor Wheel Velocity Step Response.

.

Figure 2.27 The step Function,

Chapter 2. Mathematical Modeling of Systems

Notes

B 347 g i

Chapter 3

Control System Characteristics

3.1 Introduction

We introduce feedback to

1. decrease the sensitivity of the system to plant variations,
2. enable adjustment of the system transient response,
3. reject disturbances, and

4. reduce steady-state tracking errors.

The advantages of feedback (listed above) come at the cost of in-
creasing the number of components and system complexity, reduc-
tion in the closed-loop system gain, and the introduction of possi-
ble instabilities. However, the advantages of feedback outweigh the
disadvantages to such an extent that feedback control systems are
found everywhere. In this chapter, the advantages of feedback are
illustrated with two examples, Our objective is to illustrate the use
of MATLAB in the control system analysis.

In the first example, we introduce feedback control to a speed
tachometer system in an effort to reject disturbances. The tachome-
ter speed control system example can be found in M CS, pp. 125-128.

The reduction in system sensitivity to plant variations, adjust-
ment of the transient response, and reduction in steady-state error
are demonstrated in a second example. This is the English Channel
boring machine example found in MCS, pp. 134-137.

49

50 Chapter 3. Control System Characteristics

3.2 Speed Tachometer System

The open-loop block diagram description of the armature controlled
dc-motor with a load torque disturbance, Ty(s), is shown in Fig-
ure 3.1. The values for the various parameters, taken from Example

2.9 in MCS, pp. 79-81, are given in Table 3.1. We have two in- = |

puts to our system, V,(s) and Ty(s). Relying on the principal of
superposition, which applies to our LTI system, we consider each
input separately. To investigate the effects of disturbances on the
system, we let V,(s) = 0 and consider only the disturbance Ta(s).
Conversely, to investigate the respouse of the system to a reference
input, we let Ty(s) = 0 and consider only the input V,(s).

The closed-loop speed tachometer control system block diagram
is shown in Figure 3.2. The values for K, and K, are given in
Table 3.1, _

If our system displays good disturbance rejection, then we expect
the disturbance Ty(s) to have a small effect on the output w(s).
Consider the open-loop system shown in F igure 3.1 first. We can
use MATLAB to compute the transfer function from Ty(s) to w(s)
and evaluate the output response to a unit step disturbance (i.e.,
Tu(s) = 1/s). The time response to a unit step disturbance is shown
in Figure 3.3. The script opentach.m, shown in Figure 3.3, is used
to analyze the open-loop speed tachometer system.

‘The open-loop transfer function is

wis) _mum -1
Tau(s) ~ den ~ 2s+15
e Gi(s)
VQ(S)T 7;: !i(ﬂ o TM(S)+ -TL(S) Js1+ f =
Kp [=—

Figure 3.1 Open-Loop Speed Tachometer Control System where
Kj is the Back Electromotive-Force Constant.

1.2, Speed Tachometer System

o1

Table 3.1 Tachometer Control System Parameters.

Ra Km J f Kb KCI K‘t

1 |10 21050115411

Since our desired value of w(t) is zero (remember tha,-t V.(s) = 0),
the steady-state error is just the final value of w(t), which we denote

by w,(t) to indicate open-loop. The steady-state error, shzwnhzﬁ
 the plot in Figure 3.3, is approximately t}}e value of the sll)lee twd

L | = 7 seconds. We can obtain an approximate value of the s ee;,l : y};
L slate error by looking at the last value in the outp.ut vc-ector Yoo, W rI]\}(;

L we generated in the process of making the plot in Figure 3.3. The

pproximate steady-state value of w, is
wo(00) & w,(7) = —0.6632 rad/sec.

he plot verifies that we have in fact reached steady-state. .
In a similar fashion, we begin the closed-loop system analysis by
computing the closed-loop transfer function from Ty(s) to w(s), and

[then generating the time-response of w(t) to a unit step disturbance
3 input. The output response and the script closedtach.m are shown

in Figure 3.4. The closed-loop transfer function from the disturbancer

Ta(s)
d Gi(9)
+ t 1 w(s)
Km =
o Ka y | Ra '+O s +f >
K,

Ke |t

Figure 3.2 Closed-Loop Speed Tachometer Control System.

52 -
Chapter 3. Control System Characteristics 1.2. Speed Tachometer Systern 53

Open-Loop Disturbance Step Response
T 5 T

L

0:&10’3 Closed-Loop Disturbance Step Response

N

04 _\ [P S — - ﬁ
0.6 - ;]

-1:4 \ - T —

speed [rad/sec]
*.'3 g
/

-1.6 \ . S — — i
T~
—1.8 B G e e Y i eatar s S e L _ _______ AL i M -1
250002 0:004 0.006 0.008 0.01 0.012 0.014 D016 0.018 0.02
time [sec]
closedtach.m

tirne [sec)

% Speed Tachometer Example

%

Ra=1; Km=10; J=2; f=0.5; Kb=0.1; Ka=54; Kt=1;
num1=[1]; den1=[J,f]; num2=[Ka*Kt]; den2=[1];
num3=[Kb]; den3=[1]; num4=[Km/Ra]; den4=[1];
[numa,denal=parallel(num2,den2,num3,den3);
[numb,denb]=series(numa,dena,num4,den4);
[num,den]=feedback(num1,den1,numb,denb);

opentach.m

%Speed Tachometer Example
% .

Ra=1; Km=10; J=2; f=0.5; Kb=0.1; &
num1=[1]; den1=[J,f); numZ=[Km*Kb/Ra]; den2=[1];
[num,den]=feedback(num1 ,den1,num2,den?);

%

numM=-num; % _
printsys(num,den) NUM=-NUM; ~a—|"
% printsys(num,den)

%
[ye,x,t]=step(num,den); plot(t,yc) &
title('Closed-loop Disturbance Step Response’)

xlabel('time [sec]"), ylabel('speed [rad/sec]'), grid
%
yc(length(t)) ~=—

[yo,x,t]zstep(num,den); plot(t,yo) -4—
tltle('Oplen-Ioop Disturbance Step Respoﬁgé
;l’abel('tlme [sec]"), ylabel('speed"), grid

Figure 3.3 Open-Loop Analysis of the Tachometer System,

Figure 3.4 Closed-Loop Amnalysis of the Tachometer System.

54 Chapter 3. Control System Characteristics

input is
w(s) _num -1
Ta(s) den 25 +541.5°

As before, the steady-state error is just the final value of w(t), which
we denote by w,.(t) to indicate closed-loop. The steady-stat,e error
is shown on the plot in Figure 3.4. We can obtain an approximate
value of the steady-state error by looking at the last value in the
output vector y., which we generated in the process of making the
plot in Figure 3.4. The approximate steady-state value of w is

w,(00) & w,(0.02) = -0.0018 rad/sec.

We generally expect that w,(c0)/ wo(00) < 0.02. The ratio of closed-
loop to oI?en—loop steady-state speed output due to a unit step dis-
turbance input, in this example, is

we(o0)

~——= = 0.0027.

w,(00)
We have _a_,chieved a remarkable improvement in disturbance rejec-
tion: It is clear that the addition of the negative feedback loop
reduced the effect of the disturbance on the output. This demon-
strates the disturbance rejection property of closed-loop feedback
systems,

3.3 English Channel Boring Machines

TI.1e blf)ck diagrz.xm description of the English Channel boring ma-
chines is shown in Figure 3.5. The transfer function of the output
due to the two inputs is '

K 1
Os) = —— —_—

(s) 32+123+KR(3)+32+123+KD(5)'
:I‘he.eﬁect of the control gain K on the transient response is shown
in Figure 3.6 along with the script english1.m used to generate the
plots. Qompa,nng the two plots in Figure 3.6, it can be seen that
decreasing K decreases the overshoot. Although it is not as obvious

d.43. English Channel Boring Machines 55

disturbance
D(s) boring
machine
‘ G(s)
e K h s (s+12) an;l—e

desired
angle

Figure 3.5 Boring Machine Control System Block Diagram.

. from the plots in Figure 3.6, it is also true that decreasing K de-

[creases the seftling time. This can be verified by taking a closer look

f (at the command level) at the data used to generate the plots. This

- example demonstrates how the transient response can be altered by

- feedback control gain K. Based on our analysis thus far, we would
refer to use X = 50. However, there are other considerations that
must be taken into account before we can establish the final design.
Before making the final choice of K, it is important to consider
" the system response to a unit step disturbance. This is shown in Fig-
ure 3.7. We see that increasing K reduces the steady-state response
of ¢(t) to the step disturbance. The steady-state value of c(t) is 0.02
and 0.01 for K = 50 and 100, respectively. The steady-state errors,
percent overshoot, and settling times are summarized in Table 3.2.
The steady-state values are predicted from the final value theorem

as follows:
1 1 1

lim (%) =1]m3.3(5+12)+1{ ==

{—eo 8—0

If our only design consideration is disturbance rejection, we would
prefer to use K = 100.

We have just experienced a very common trade-off situation in
control system design. In this particular example, increasing K leads
to better disturbance rejection, while decreasing K leads to better
performance (via less overshoot and quicker settling time). The final

=4 M A Ls
56 Chapter 3. Control System Characteristics

15 . , . Step response for K=100

=
(%Y
0.5¢
0 i L 1 1 1 i 1 M
0 02 04 06 08 1 12 14 16 1%
lime [sec]
15 . ‘ . S lep response fpr K =50
e A
=
T
0.5t
0 1 L L 1 1 L I 1
0 02 04 06 08 1 12 14 16 13
time [sec]
english1.m

3//0 Response to a Unit Step Input R(s)=1/s for K=50, 100
(+] .

numg=[1]; deng=[1 12 0]; K1=100:; K2=50;
num1=K1*numg; num2=K2*numg;

% .
[numa,dena]=cloop(n_um1 ,deng), I
[numb,denb]:cloop(num2,deng); .

% 4-”’1

t={0:0.05:2.0 — -

[y1,x,t]=step(numa,dena,t): [y2,x,t]=step(numb,denb,t):

subplof(.21 1),plot(t,y1), title('Step Response for K=1 00"

xlabel('time [sec]'),ylabel('c(t)")

subplot(212),plot(t,y2), title('Step Res _50"
L 5 Y2), ponse for K=50

xlabel('time [sec]'),ylabel("c(t)") :

3.8, English Channel Boring Machines

' Disturbance Response forX =100

0.015

53 04 06 08 1 12 14 16 18
time [sec]
, Disrugbance }legg(_mse for Ig =100 i

0304 06 08 1 12 14 16 18
time {sec]
englishZz.m

57

% Response to a Disturbance D(s)=1/s for K=50, 100
%

numg=[1]; deng=[1 12 0]; K1=100; K2=50;

% o
[numa,dena]=feedback(numg,deng,K1,1);
[numb,denb]=feedback(numg,deng,K2,1); -

% |
£=[0:0.05:2.0]; >

[y1,x,t]l=step(numa,dena,t); [yZ,x,
subplot(211),plot(t,y1)

title(' Disturbance Response for K=100")
xlabel("time [sec]'),ylabel('c(t)")
subplot(212),plot(t,y2)
title('Disturbance Response for K=50')
xlabel("time [sec]"),ylabel('c(t)")

Figure 3.7 The Response to a Step Disturbance with k=100 and
K=50.

Figure 3.6 The Response to a Step Input with k=100 and K=50.

58 Chapter 3. Control System Characteristics

Table 3.2 Response of the Boring Machine Control System for K =
50 and K = 100. '

K=50(K=100

P.O. 0 10
T, 1.1 1.3
€ss 2% 1%

decision on how to choose K rests with the designer. So you see that §

while MATLAB can certainly assist you in the control system design,
it cannot replace your decision-making capability and intuition.
The final step in the analysis is to look at the system sensitivity

to changes in the plant. The system sensitivity is given by (Eq. 3.62,
MCS, p. 137)

1

5¢) = T xam

s(s +12)
s(s+12)+ K

We can compute the values of $(s) for different values of s and
generate a plot of the system sensitivity. For low fre

quencies, we
can approximate the system sensitivity by '

12s
S(s) = —.
Increasing the gain K reduces the system sensitivity. The system
sensitivity plots are shown in Figure 3.8 for K = 50. The sensitivity
approximation is also shown in Figure 3.8.

a4 Buglish Channel Boring Machines

System sensitivity to plant variatlions

s(s+12)

\E(s) =

s(s+12)+K

s(s+12)

0 ' 06 08 1 12
% 82 Real(S)
System sensitivity to plant variations
? i z s
4 .S(.s.).,;..2.5.......4E :...)-
: K Y e ST S R R

3 ...-........:.. . :

R —— S
2 :/ g :
| REEREEEE /a . '
) 3 10 15 20

w [rad/fsec]
english3.m

s(s+12)+K

% System Sensitivity Plot
%
K=50; num=[1 12 0J; den=[1 12 KJ;

w=[0.1:0.05:20]; s=w*i; <41
n=s.A2 + 12*s; d= s.A2 +12%s+K; S=
n2= 12*s; d2=K; S2=n2./d2; A

% ¥ _

clg
plot(real(S),imag(S))

title("System Sensitivity to Plant Variations')

xlabel({'Real(S)"), yIabeI('Imag(S)‘), grid

pause

plot(w,abs(S),w,abs(52))

xlabel('w [rad/sec]'), ylabel('Abs(S)"), grid

Figure 3.8 System Sensitivity to Plant Variations.

60

Chapter 3. Control System Characteristics

Notes

Chapter 4

Control System Performance

_4.1 Introduction

L Primary concerns in control system design are stability and perfor-
i mance. Performance is an issue for stable systems and is the topic
1 of this chapter. In order to design and analyze control systems,
i we must first establish adequate performance specifications. Per-
formance specifications can be presented in the time domain or the
requency domain. Time-domain specifications generally take the
rm of settling time, percent overshoot, rise time, and steady-state
ferror specifications. Stability and frequency-domain specifications
re addressed in the next chapters.

This chapter is organized as follows. In the next section we
‘{nvestigate time-domain performance specifications given in terms of
{ransient response to a given input signal and the resulting steady-
slate tracking errors. The chapter concludes with a discussion of
simplification of linear systems.

The MATLAB functions introduced in this chapter are impulse
and 1sim. These functions are used to simulate linear systems.

4.2 Time-Domain Specifications

~ 'lime-domain performance specifications are generally given in terms
of the transient response of a system to a given input signal. Since
the actual input signals are generally unknown, a standard fest input

61

62
Chapter 4. Control System Performance
Mp % overshoot’
1 —
ct) 09
05t
0.1
T, - T, T "
rise . peak settling time time
time time

Figure 4.1 Step Response of a Second-Order System.'

signal is used. The test signals are of the general form
r(t) =t",
and the corresponding Laplace transform is

R(s) = n!

ght+1’

l:;hentv:a *—-1 1,2, ::u-ld 3 we have the step, ramp, and parabolic inputs
PI?E wvely. An impulse function is also used as a test signal ’
e estset:ndard perfon;la,nce measures are usually defined in -terms
response and the impulse res
ponse. The most comm:

:itse;)tfesp?;si perf(l)(rma.nce measures are percent overshoot (P 00)n
ime eak tim i i n in
Ciert) r) P e (T;), and settling time (T%), as shown in

Consider the second-order system shown in Figure 4.2. The

4.2. Time-Domain Specifications 63

+
R(s) ﬂ"—?——"

Figure 4.2 Single-Loop Second-Order Feedback System.

wh

@k » C(s)
_s(S+C0)n)

f closed-loop output is

Lu’2

C(s) = =

82 + 2 wns + wl R(e).

We have already discussed the use of the step function to com-
i pute the step response of a system. Now we address another im-
b portant test signal: the impulse. The impulse response is the time
b derivative of the step response. We compute the impulse response
‘with the impulse function shown in Figure 4.3.

We can obtain a plot similar to Figure 4.5(a) in MCS, p, 162
ith the step function, as shown in Figure 4.4. Using the impulse
function, we can obtain a plot similar to Figure 4.6 in MCS, p.
163. The response of a second-order system for an impulse function
input is shown in Figure 4.5. In the script, we set w, =1, which is

(Y]

t

SYSTEM Yo

G(s)

output :

impulse
input

Figure 4.3 The impulse Function.

64

g zeta=0.1,0.2,04,0.7, 1.0, 2.0

16 £\

1.2

1k

cft)

08
0.6

04

Fof
Lif o
0.2F bt
.. g
o
4

00 i
2 4 6 8 10 12

wn*t
stepresponse.m

Chapter 4. Control System Performance

X T e S 1.
1.4 / SN

‘Time-Domain Specilications 65

zeta=0.1,0.25, 0.5,1.0
1 S A B

0.8

G [
02}

0

g(tiwn

02

04

06 _

VG——— 3 4 5. 6 1 8§ 9 10

Impulseresponse.m

% Compute step response for a second-order
. - t

% Duplicate Figure 4.5(a) in MCS, p. 162 sem
%

t=[0:0.1:12]; num=[1 1;
zetal=0.1; den1=[1 2*zetal 11;
zeta2=0.2; den2=[1 2*zeta? 1]; =
zeta3=0.4; den3=[1 2*zeta3 15
zeta4=0.7; dend=[1 2*zeta4 1];
zeta5=1.0; den5=[1 2*zeta5 11;
;eta6=2.0; den6=[1 2*zetab 1);
0
[y1.x,t]=step(num,den?) [y2,x,t]=step(num,den2,t) 3
Eyg,x,t]=step(num,den3,t); [y4,x,t]=step(num,den4,t);
‘}z X,t]=step(num,dens5,t): [y6,x,t]=step(num,den6,t);
Plot(t,y1,t,y2,t,y3,t,y4,t,y5,t,y6)
x_label(' wn*t'), ylabel('c(t)’) -—
title('zeta = 0.1, 0.2, 0.4, 0.7, 1.0, 2.0")

% Compute impulse response for a second-order system
% Duplicate Figure 4.6 in MCS, p. 163
%

t=[0:0.1:10]; num=[1];

zetal=0.1; den1=[1 2*zetal 1]; %]
zeta2=0.25; den2=[1 2*zeta2 1],
zeta3=0.5; den3=[1 2*zeta3 1];
zetad=1.0; dend=[1 2*zetad 1];

%

[y1,x,t]=impulse{num,den1,t);
[y2,x,t]=impulse(num,den2,t); ---——
[y3,x,t]=impulse(num,den3,t);
[y4,x,t]=impulse(num,den4,t);
%

plot(t,y1,t,y2,t,y3,t,y4) %
xlabel(* wn*t'), ylabel('g(t)/wn')

Fii!ure 4.4 Resnanca af o Qannmd m_d_. 0 . . . o

title("zeta = 0.1, 0.25, 0.5,1.0"), grid

Figure 4.5 Response of a Second-Order System to an Impulse.

66

"y
SYSTEM 3t
arbitrary G(s) output
input
t

t

Chapter 4. Control System Performance |

Figure 4.6 The Isim Function.

equivalent to computing the step
a more general plot valid for any wy > 0,
In many cases, you may need to simulate

an arbitrary but known input. In these cases, you can use the lsim
function. The Isim function is shown in Fj

the use of Isim is given in Example 4.1.

B EXAMPLE 4.1 Mobile Robot Steering Control

The block diagram for a steeri
is shown in Figure 4.7 (see MCS, pp. 174-176).

Controller Vehicle dynamics

R(s)

+

Gi(s) =1 G(s) ='rs’i1

Figure 4.7 Block Diagram of a Steering Control System for a Mobile
Robot.

response versus w,t. This gives us]

the system response to |

gure 4.6. An example of |

Time-Domain Specifications

mobilerobot.m

1g control system for a mobile robot .

% Compute the response of the Mobile Robot Control
% System to a triangular wave input

% /

numg=[10 20]; deng=[1 10 O];

[num,den]=cloop(numg,deng);

t=[0:0.1:8.21";

v1=[0:0.1:2]";v2=[2:-0.1:-2]";v3=[-2:0.T:
u=[v1;v2;v3];
[y.x]=Isim(num,den,u,t); <+
lot(t,y,t,u),
)F:I:bgl()‘,time [sec]"), ylabel('theta [rad]'), grid

Figure 4.8 Transient Response of the Mobile Robot Steering Con-
trol System to a Ramp Input.

68 Chapter 4. Control System Performance :

Suppose the steering controller, G} (s), is

K,
Gl(S) = Kl + —S—

When the input is a ramp, the steady-state error js

A 3
Cps = }-{:, (4.1)]
where
K, = K,K.

The effect of the controlier constant, K, on the steady-state error |

is evident from Eq. (4.1). Whenever K, is large, the steady-state |
error is small, and vice versa,. '

We can simulate the closed-loop system response to a ramp input §

using the Isim function. The controller gains K, K, and the systemj

gain K can be represented symbolically in the script so that various |
values can be selected and simulated. The results are shown in]
Figure 4.8 for K; = K — 1,Ky=2 and 7 = 1/10.

4.3 Simplification of Linear Systems

In practice, it may be necessary to approximate a higher-order trans- |
fer function model with a lower-order model. For example, it may |
be impractical to implement a high-order controller in a control sys- |
tem. However, it may be possible to develop a lower-order approx- |
imate controller that closely matches the input-output response of !
the high-order controller. A procedure for approximating transfer |
functions is given in MCS, pp. 185-187. We can use MATLAB to |

compare the approximate model to the actual model, as illustrated §
in the following example.

B EXAMPLE 4.2 A Simplified Model

Consider the third-order system

6
H{s) = $3+6524+ 11546

1.4, Simplification of Linear Systems

69

A second-order approximation (see MCS, pp. 187-188) is

1.60
L(s) = 32585 + 160"

i i i es is given in Figure 4.9.
A comparison of their respective step responses is g !

Siep response

stepcompare.m
% Compare step response for se
1)
I‘f:.lm'|=[6]; den1=[1 611 6] —
num2=[1.6]; den2=[1 2.584 1.6
t=[0:0.1:8];
[y1,x,t]=step(num1i,deni,t);

[y2,x,t]=step(num2,den2,t);
plot(t,y1,t,y2), grid '
xlabel('time [sec]'), ylabel('step response’)

3 Figure 4.9 Step Response Comparison for an Approximate Transfer

Function Versus the Actual Transfer Function.

70

Chapter 4. Control System Performance ¥

Notes

Chapter 5

Control System Stability ’

1 Introduction

1e stability of a closed-loop control system is a fundamental issue
B controls. Generally speaking, an unstable closed-loop control sys-
Ao is of little practical value. For linear systems, a necessary and
Bufiicient condition for a feedback system to be stable is that all the
Bolcs of the system transfer function have negative real parts. In
Bther words, the poles must lie in the left-half plane for the system
o be stable. The Routh-Hurwitz stability method provides a struc-
jurcd mechanism for determining the number of unstable poles of
e closed-loop characteristic equation. This allows us to obtain a
” or “no” answer to stability without explicitly calculating the
I(‘S.
' This chapter begins with a discussion of the Routh-Hurwitz sta-
lity method. We will see how MATLAB can assist us in the stabil-
analysis by providing an easy and accurate method for comput-
Hing the poles of the characteristic equation. For the case where the
Leharacteristic equation is a function of a single parameter, it will be
- -‘goﬁsible to generate a plot displaying the movement of the poles as
F{he parameter varies. The chapter concludes with an example.
. The function introduced in this chapter is the function for, which
f In used to repeat a number of statements a specific number of times.

71

72 hapter 5. Control System Stability @& 5., Routh-Hurwitz Stability 73
5.2 Routh-Hurwitz Stability s3] 1 2
s2

The Routh-Hurwitz criterion is a necessary and sufficient criterion}
for stability. Given a characteristic equation with fixed coeflicients,}
we can use Routh-Hurwitz to determine the number of roots in the
right-half plane. For example, consider the characteristic equation V‘

1
S

™~ 24 0 N

]

jFigure 5.2 Routh-Hurwitz Array for the Closed-Loop Control Sys-

= gD 2 =
gls) =5+ & 2+ 2=0 o with T(s) = C(s)/R(s) = 1/(s* + s* + 25 + 24).

associated with the closed-loop control system shown in Figure 5.1.}
The corresponding Routh-Hurwitz array is shown in Figure 5.2. The}
two sign changes in the first column indicate that there are two!
roots of the characteristic polynomial in the right-half plane; hence}
the closed-loop system is unstable. Using MATLAB we can verify;
the Routh-Hurwitz result by directly computing the roots of the'
characteristic equation, as shown in Figure 5.3, using the roots;
function. Recall that the roots function computes the roots of a
polynomial. 1

Whenever the characteristic equation is a function of a single]
parameter, the Routh-Hurwitz method can be utilized to determinef
the range of values that the parameter may take while maintaining;
stability. Consider the closed-loop feedback system in Figure 5.4.
The characteristic equation is

frosult graphically. As shown in Figure 5.5, we establish a vector of
Jues for K at which we wish to compute the roots of the charac-
ristic equation. Then using the roots function we calculate and
ot the roots of the characteristic equation, as shown in Figure 5.5.
1t can be seen that as K increases, the roots of the characteristic
Bquation move toward the right-half plane as the gain tends toward
IK = 8, and eventually into the right-half plane when K > 8. This is
B graphical verification of the Routh-Hurwitz result obtained above.
In, the next chapter we will discover a compact method of obtaining
fhe plot of the root locations as a function of one parameter using
the root locus method.

g(s)=s°+s*+4s+ K =0.

»numg=[1]; deng=[1 1 2 23];

Using a Routh-Hurwitz approach we find that we require 0 < K < 8 »[num,den]=cloop(numg,deng);

for stability (see MCS, p. 215). We can use MATLAB to verify this »roots(den)
ans =
+ |G(s) = 1
R(s) $%452+25 +23 > C(s) -3.0000

1.0000 + 2.6458i
1.0000 - 2.6458i

ﬁ’. Figure 5.3 Using the roots Function to Compute the Closed-Loop

Figure 5.1 Closed-Loop Control Syst ith T'(s) = C(s)/R(s) =
igure osed-Loop Lontrol dystem wi (S) (3)/ (S) Jontrol System Poles of the System Shown in Figure 5.1.

1/(s® + s + 25 + 24).

74 ity |
Chapter 5. Control System Stability 8 1 9 Routh-Hurwilz Stability 75

R(s) + K) 1 The script in Figure 5.5 contains the for function. The for func-
i s°+2 52445 C(s) lion provides a mechanism for repeatedly executing a series of state-
ments a given number of times. The for function connected to an

end statement sets up a repeating calculation loop. Figure 5.6 de-
. wcribes the for function format and provides an illustrative example
. of its usefulness. The example sets up a loop that repeats ten times.
Juring the ith iteration, where 1 < ¢ < 10, the ¢th element of the
E vector a is set equal to 20 and the scalar b is recomputed.
i The Routh-Hurwitz method allows us to make definitive state-
b nents regarding absolute stability of a linear system. The method
| does not address the issue of relative stability, which is directly
f related to the location of the roots of the characteristic equation.
t Routh-Hurwitz tells us how many poles lie in the right-half plane,
 but not the specific location of the poles. With MATLAB we can
 sasily calculate the poles explicitly, thus allowing us to comment
ﬁgn the system relative stability. We conclude this chapter with an
faxample taken from MCS, pp. 225-225.

Figure 5.4 Closed-Loop Control S ;
ystem with T'(s) = -
K/(s® + 25% 4 4s + K). (8) = C(s)/R(s) =

—»+ for variable=expression
3 ; :] statement
3 -2 real axis 0 1 :
;% This s.cript computes the roots of the characteristic) tat t
t»/o equation q(s) = sA3 + 2 sA2 + 4 s + K for 0<K<20 sl statemen

%
K=[0:0.5:20];
for i=1:length(K)

a=[12 4 K@)} - _
p((;,i)=roots(q); for a:(=i)1 ;g :
en _20;
plot(real(p),imag(p),'x"), grid nl:j:a(i)+2*i;

e

xlabel('real axis"), ylabel('imaginary axis')

Figure 5.5 Plot of Root Locations of q(s) = s* +2s% + 45 + K for

0< K <20 Figure 5.6 The for Function and an Illustrative Example.

76 Chapter 5. Control System Stability ;'

5.3 Example: Tracked Vehicle Turning Control{'

The block diagram of the control system for the two-track vehicle_
is shown in Figure 9.7. The design objective is to find 4 and Kj
such that the system is stable and the steady-state error for a ramp|
input is less than or equal to 24% of the command. We can use the|
Routh-Hurwitz method to aid in the search for appropriate values
of @ and K. The closed-loop characteristic equation is i

q(s) = 5"+ 8s° + 175 + (K + 10)s + aK = 0,
Using the Routh-Hurwitz array we find that for stability we require

K <126, oK >0.

parameterized a versus K region in which stability is assured. Then}
we can find a set of (g, K) belonging to the stable region such that)
the steady-state error specification is met. This procedure, shown
in Figure 5.8, involves selecting a range of values for @ and K and]

K. For each value of X, we find the first, value of a that results in at]
least one root of the characteristic equation in the right-half plane.|
The process is repeated until the entire selected range of ¢ and K is|
exhausted. Then, the plot of the (a, K) pairs defines the separation §
between the stable and unstable regions.]

Controlier OWer train and vehicie

G(s)
Gels)
+ E(s) [s+a K
R(s) —» ’ s+ 1 _"'-'33+752+1OS Cts)

Figure 5.7 Turning Control for a Two-Track Vehicle,

k. twotrackstable.m

Ao Example: Tracked Vehicle ‘Turning Control 7

25

20 40 60 80 100 120

% the stability region for the two track vehicle

% contro! problem

%

a=[0.1:0.01:3.0]; K=[20:1:120];

x=0*K; y=0*K; #——

n=length(K); m=length(a);

for i=1:n
for j=1:m o
q=[1s 8: 17: K(|)+10: K(I)*a(j)], -
p=roots(q); N :
if max(real(p)) > 0O, x(i)=K(); y(i)=a(j-1); break; end
end

end N
plot(x,y), grid, xlabel('K'), ylabel('a")

.Figure 5.8 Stability Region for a and K for Two-Track Vehicle
B luning Control.

78 Chapter 5. Control System Stabilit

The region to the left of the plot of a versus K in Figure 5.8 i
the stable region, since that corresponds to K < 126.
If we assume that r(¢) = At,t > 0, then the steady-state error

€1 = lim s s(s+1)(s +2)(s+5) A

=0 s(s+1)(s+2)(s+5) + K(s+a) s?

104
aK'’

i
where we have used the fact that

1 R(s) = s(s + l)(s +2)(s + 5)
1+ G.G(s) 3(s+1)(3+2)(s+5)+1’((s+a)

Given the steady-state 3pe01ﬁcat10n ess < 0.24A, we find that th
speaﬁcataon is satisfied when 4

E(s) = ()

10A
oK < 0. 24A

or -
aK > 41. 67 (

Any values of d¢ and K that lie in the stable region in Flgure
and satisfy Eq. (5.1) will lead to an acceptable design. For exam
K = 70 and a = 0.6 will satisfy all the design requirements.
closed-loop transfer function (with a = 0.6 and K = 70) is

T(s) = 705 +42
T st 4 85% 4 17s? + 80s + 42

The associated closed-loop poles are

—7.0767,

—0.5781,

—0.1726 + 3.1995i, and
~0.1726 — 3.1995.

w W &

Il

The corresponding unit ramp input response is shown in Figure 5. 9.
The steady-state error is less than 0.25, as desired. ;

—
<o

3. Example: Tracked Vehlele Turning Control

W kLA 0 D

_ time [sec]
akramp.m

% This script computes the ramp response
% for the two-track vehicle turning control
% problem thh a=0.6 and K= 70

t-.[o 0.01: 10] u_td—i
numgc=[1 0.6]; dengc=[1 1];
numg=[70]; deng=[1 7 10 0];
[numa,dena])=series(humgc,dengc, numg,deng .
[num,den]=cloop{numa,dena);
[y, x]=lsim(num,den,u,t); «=—
plot(t,y,t,u), grid

xlabel('time [sec]’), ylabel('c(t)')

ure 5.9 Ramp Response for a = 0.6 and K = 70 for Two-Track
phicle Turning Control.

80

Chapter 5.

Notes

Control System Stabﬂfty

Chapter 6

bot Locus Method

.1 Introduction

he relative stability of a control system is related to the location
Bl the roots of the closed-loop characteristic equation. The tran-
Bont response (i.e., settling time, overshoot, etc.) of a linear control
fster is also related to the location of the poles and zeros of the
Blosed-loop transfer function. The closed-loop system relative sta-
Blity and performance can sometimes be adjusted by changing a
Brameter, such as a control gain. The root locus method provides
 graphical representation of the locus of roots of the characteristic
fuation as one parameter is varied. The graphical representation
f called the root locus plot.
An approximate root locus sketch can be obtained by applying
e orderly procedure outlined in MCS, pp. 241-255. Alternatively,
g can use MATLAB to obtain an accurate root locus plot. How-
per, do not be tempted to rely solely on MATLAB for obtaining
ot locus plots while neglecting the manual steps in developing an
roximate root locus. The fundamental concepts behind the root
jpcus method are buried in the manual steps and it is essential to
Bully understand their application.
__ The chapter begins with a discussion on obtaining a root locus
Blot with MATLAB. This is followed by a discussion of the connec-
jl_ons between the partial fraction expansion, dominant poles, and

81

82

the closed-loop s

Chapter 6. Root Locus Method | t.2. Obtaining a Root Locus Plot =

ystem response. Root sensitivity is covered in the 1

final section.

The functions covered in this chapter are rlocus, rlocfind
residue. The functions rlocus

locus plots, and the residue function is utilized for partial fra,ction-

S.

expansions of rational function

6.2 Obtaining a Root Locus Plot

Consider the closed-loop
loop transfer function is

C(s) K(s+1)(s +3)

T(s) =

control system in Figure 6.1, The closed-

Figure 6.2 The rlocus Function.

_. the root locus plot associated with Eq. (6.1) are shown in Figure 6.3
 along with the associated root locus plot. Invoking the rlocus func-

The characteristic equation can be written as

1 _ii_=
il sGro)+s)

. S‘L*?‘?Slrg

The form of the characteristic equation in Eq. (6.1) is necessary to
use the rlocus function for generating root locus plots.
form of the characteristic equation necessary for application of the]

rlocus function is

P(s) _
1+kq(3) — Y,

where £ is the parameter of interest to be varied from0 < k < wo. .
The rlocus function is shown in Figure 6.2. The steps to obtaining]

G(s) = K§s+1!

Als) s(s+2)

H(s)=_1
$+3

Figure 6.1 Closed-Loop Control System with Unspecified Gain K.

R(s) s(s+2)(s+3)+ K(s+1)

| tion without left-hand arguments results in an automatic generation
f of the root locus plot. When invoked with left-hand arguments, the
';_rlocus function returns a matrix of root locations and the associated
gain vector.

The steps to obtain a root locus plot with MATLAB are as fol-
ows:

(6.)]

1. Obtain the characteristic equation in the form given in Eq. (6.2)
where k is the parameter of interest, and
2. use the rlocus function to generate the plots.

The general

. Referring to Figure 6.3, we can see that as K increases, two
branches of the root locus break away from the real axis. This
f' means that for some values of K, the closed-loop system character-
' istic equation will have two complex roots. Suppose we want to find
§ the value of K corresponding to a pair of complex roots. We can use
. the rlocfind function to do this, but only after a root locus has been
R obtained with the rlocus function. Executing the rlocfind function
- will result in a cross-hair marker appearing on the root-locus plot.
} You move the cross-hair marker to the location on the locus of in-
 terest and hit the enter key. The value of the parameter K and the
- selected point will then be displayed in the command display. The
use of the rlocfind function is illustrated in Figure 6.4,
Continuing our third-order root locus example, we find that when
K = 20.5775, the closed-loop transfer function has three poles and

(6.2) |

C(s)

84 Chapter 6. Rool Locus Method

..) i

Figure 6.3 The Root Locus for the Characteristic Eq. (6:1).

two zeros at
—2.0505 + 4.32275
poles : s = 1 —2.0505 — 4.3297; y ZETOS:§ = (=3) .
~.8989 =3

Considering the closed-loop pole locations only, we would expect

that the real pole at s = —.8989 would be the dominant pole (ses |
MCS, p. 166). To verify this, we can study the closed-loop system S

response to a step input, R(s) = 1/s. For a step input we have

20.5775(s +1)(s + 3 1

C(s) = et 43 1 oy
s(s+2)(s+3)+ 205775(s +1) s

Generally, the first step in computing ¢(¢) is to expand Eq. (6.3) in

a partial fraction expansion (see MCS, pp. 49-52). The residue

6.2. Obtaining a Root Locus Plot 85

Real Axis

»p=[11]; =1 5 6 01; rlocus(p,q)
»ﬂOCfind(p,q)]

Select a point in the graphics window

selected_point =
-2.0509 + 4.3228i
ans =
20.5775

—
g |

Figure 6.4 Using the rlocfind Function.

function can be used to expand Eq. (6.3), as shown in Figure 6.5.
The residue function is described in Figure 6.6.
The partial fraction expansion of Eq. (6.3) is .
_ —1.3786 + 1.7010: —1.3786 — 1.7010: -0.2429 +3
(”‘s+2%%+¢M%is+2%%-¢w%ﬂ}+aww s
Comparing the residues we see that the coefficient of the term cor-
responding to the pole at s = —.8989 is considerably smaller than
the coefficient of the terms corresponding to the complex-conjugate
poles at s = —2.0505 + 4.3227:. From this we expect that the in-
fluence of the pole at s = —.8989 on the output response c(f) is

86 Chapter 6. Root Locus Metbo’i

»K=20., 3775; num=K*T1 4 3]; den= =[1 5 6+K K 0],
»[r,p,k]-resudue(num den)
I om

-1.3786 + 1.7010i

: 6.2, Obtaining a Root Locus Plot 87

b not dominant. The settling time is then predicted by considering
E the complex-conjugate poles. The poles at s = —2.0505 + 4.3227:
rrespond to a damping of (= 0.4286 and a natural frequency of
y = 4.7844. Thus, the settling time is predicted to be

~1.3786 - 1.7010i T, ~ - 1.95 seconds. .-
-0.2429 R - 5
3.0000 Baing the step.function, as shown in Figure 6.7, we find that T,- &
p= 46 seconds. So our approximation of settling time T, ~ 1.95 is a

-2.0505 - 4.3228i
-2.0505 + 4,3228i
-0.8989

0

k=

hig

Figure 6.5 Partial Fraction Expansion of Eq. (6.3).

Yisy = D, 12 r(n)—.‘_
s p(D) s- O S S - p(n) P

Figure 6.6 The residue Function.

hirly good good approxlmatmn The percent overshoot is pred:cted' -
P be - '
PO~ 100 exp-‘C"/\/l"cz = 22.5%.

can be seen- in Flgure 6. 7, the actual overshoot is very nearly
-_=* Clea.rly, the predlctzon of overshoot is too Iow :
§ In this example the role of the. systern zeros on the transwnt& x

ol 5
4.5

=

[

h = tn o tn W i
.

Amplinde -
[

—

0 0.5 1 15 2 25 3
Time (sec)

»K=20.5775;num=K*[1 4 3]; den-[] 5 64K KJ;
»step(num,den), grid

’ Figure 6.7 Step Response for the Closed-Loop System in Figure
F 6.1 with K = 20.5775.

psponse IS 1llustrated The proximity of the zero at s = —1 to the %
ble at s = —_ —0. 8989 reduces the lmpact of the pole on the transient . |

88

Figure 6.8 Converting a Partial Fraction Expansion Back to a Ra- -_
tional Function. ;

response. The main contributors to the transjent response are the §
complex-conjugate poles at s = —2.0505 + —4.3228;.

One final point regarding the residue function. You can convert §
the partial fraction expansion back to the polynomials num/den, }

given the residues (r), the pole locations (p), and the direct, terms‘
(k), with the command shown in Figure 6.8.

6.3 Sensitivity and the Root Locus

The roots of the characteristic equation play an important role in]

defining the closed-loop system transient response. The effect of S

parameter variations on the roots of the characteristic equation is a..i
useful measure of sensttivity. The root sensitivity can be defined to |

be
a?",'
ok

We can utilize Eq. (6.4) to investigate the sensitivity of the roots of 1
the characteristic equation to variations in the parameter k. If we 4
change % by a small finite amount Ak, and evaluate the modified
root r; + Ar;, it follows from Eq. (6.4) that

)]

Ty A‘T‘;

vy (6.5) 37

The quantity S is a complex number. Referring back to the third-
order example in the previous section, if we change K a factor of 5%,

Chapter 6. Root Locus Method

6.3, Sensitivity and the Root Locus 89

we find that the dominant complex-conjugate pole at s = —2.0505 4+
1.3228i changes by

Ar; = —0.0025 — 0.1168:

when K changes from K = 20.5775 to K = 21.6064. From Eq. (6.5),
il. follows that

—0.0025 — 0.1168:

St = = —0.0494 — 2.33554.
. 1.0289/20.5775

'I'he sensitivity S;* can also be written in the form
Sp = 2.3360 /268.7872°.

'The magnitude and direction of S;* provides a measure -of- the root
sensitivity. The script used to perform the above sensitivity calcu-
lations is shown in Figure 6.9. .

The root sensitivity measure may be useful for comparing the
sensitivity for various system parameters at different root locations.
Ilowever, the root sensitivity measure may not be that useful when

2 utilized in the design process. It is primarily an analysis measure.

pfsensitivity.m -
% Compute the system sensitivity to a parameter

% variation
%
K=20.5775; den=[1 5 6+K K]; r1=roots(den);
%
dk=1.0289; <*—
%

Km=K+dk; denm=[1 5 6+Km Km]; r2=roots(denm);
dr=r1-re; 7
%
S=dr/(dk/K); +——

Figure 6.9 Sensitivity Calculations for the Root Locus for a 5%
Change in K = 20.5775.

90

.1 Introduction

IThe frequency response of a system is the steady-state output re-
fsponse due to a sinusoidal input signal. In the previous chapters
e have discussed the system response to various other test signals
fincluding steps, ramps, parabolas, and impulses. In this chapter, we
pvill investigate the response of systems to sinusoidal inputs. _
I The frequency response methods are based on considering the
Pesponse of linear systems to sinuscidal input test signals as the fre-
muency of the sinusoidal test signal varies. A linear, time-invariant
systemn has the characteristic that, in the steady-state, the output
iresponse due to a sinusoidal input differs from the input only in
Fmagnitude and phase. The transfer function describing the sinu-
 soidal behavior of the system is obtained by replacing s with jw in
 the system transfer function G(s). Then, for a fixed w, G(jw) is a
| complex number with a magnitude and phase. The magnitude and
§ phase of G(jw) can be represented graphically as w varies. This
} type of graphical representation is known as a Bode diagram. It is
I possible to develop control system performance specifications in the
. frequency domain so that an effective control system design method-
ology using the Bode diagram can be used.

The chapter begins with an introduction to the Bode diagram.
. Subsequently, the connection between the frequency response and
performance specifications in the time-domain is discussed. The

91

2

chapter concludes with an illustrative example to gain experience {

designing a control system in the frequency domain.

. 'Ijhe functions covered are bode and logspace. The bode func-
tion is used to ger.lera,te a Bode diagram, and the logspace function }
generates a logarithmically spaced vector of frequencies utilized by |

the bode function.
7.2 Bode Diagram
Suppose we have the transfer function (see MCS, ..p. 321)

s(1+0.55)(1 + 285 4 rs?)’

The B.ode diagram corresponding to Eq. (7.1) is shown in Figure 7.1.
The diagram consists of the logarithmic gain in dB versus w in o;u;
plot and the phase $(w) versus w in a second plot. The man 1.';:
steps for sketching an approximate Bode diagram are given in M g'g'
Pp. 308—3{ 7. As with the root locus plots, it will be temptin t,dg
rely exclusively on MATLAR to obtain your Bode diagramls) Tfea,(:
MATLARB as one tool in your tool kit that you can use to desi‘gn and

50 H TTT T T

O d Tt 1 1 Hil
g -5
o
QO 100 e

-150 R AL Py §ifa 1
10-1 100 101 = -110|2 i ;103
Frequency (rad/sec)

Phase deg

o itz H
Frequency (rad/sec) g

101 i

Figure 7.1 The Bode Plot Associated with Eq. (7.1).

Chapter 7. Frequency Response Methods

(1) |

7.2, Bode Diagram 93

analyze control systems. It is essential to develop the capability to
manually obtain approximate Bode diagrams. There is no substitute
for a clear understanding of the underlying theory.

A Bode diagram is obtained with the bode function shown in
[igure 7.2. The Bode diagram is automatically generated if the
hode function is invoked without left-hand arguments. Otherwise,

E 1hic magnitude and phase characteristics are placed in the workspace
through the variables mag and phase. A Bode diagram is obtained
L with the plot function using mag, phase, and w. The vector w
B ontains the values of the frequency in radians/sec at which the

i DBode diagram will be calculated. If w is not specified, MATLAB will
': automatically choose the frequency values by placing more points in
regions where the frequency response is changing quickly. Since the
Bode diagram is a log scale, if you choose to specify the frequencies
explicitly, it is desirable to generate the vector w using the logspace
L function. The logspace function is shown in Figure 7.3.

The Bode diagram in Figure 7.1 is generated with the commands

;. shown in Figure 7.4. The bode function automatically selected the

O -1 100 100 1e 103

"~ Frequency (rad/sec)

5 0 T T

2 =100} o B s b b e S e

ﬁ _2m « as vaaves A ar e v baaam R R
10-1 100 101 1(e 103

A ——®= Frequency (rad/sec)

Figure 7.2 The bode Function.

84

Cbgpter 7. Frequency Response Method

n points between 107 and 10°

I_Ogarilhmlcnlly spaced vector

»w=|ogspace(1 .3 200)
»[mag phase,w]-.b
b »sem'logx(w 20*Iog10(mag)) grid S
’ »xlabel(Frequency [rad/sec]') ylabel('zo‘log(mag) [dB]')

num,den;w)':"’

20*log(mag) [dB]

00|, L L

-150

10 100 10! ' 102
Frequency [rad/sec]

Figure 7.3 The logspace Function.

103

7.8. Specifications in the Frequency Domain 95

bodescript.m

% Bode plot script for Figure 7.21 in MCS, p. 324
% .

num=5*[0.1 1};

H f1=[1 0]; f2=[0.5 1]; f3=[1/2500.6/50 1],
den=conv(f1,conv(f2,f3));
L %

bode(num,den) " g , 1

Figlllr'e' 7.4 The Script for the Bode Diagram in Figure 7.1.

frequency range as w = 0.1 to 1000 rad/sec. This range is user-
selectable with the logspace function.

3 Speaﬁcatlons in the Frequency Domam ; |

sfy certain performance specifications given in the time-domain, we
'must establish a connection between the frequency response and the
§ transient time response of a system. The relationship between spec-
| ifications given in the time domain to those given in the frequency
| domain depend upon approximation of the system by a second-order
| system with the poles being the system dominant roots. This ap-
' proximation is discussed in MCS, pp. 241-255.

Consider the second-order system shown in Figure 7.5. The

R(s) —m " oh - C(s)

S(‘S'!'t_,ﬂ)n)

Figure 7.5 Single-Loop Second-Order Feedback System.

3 Keeping in mmd our goal of demgnmg control systems ‘that’ sa.t-.‘_' ; e

96 Chapter 7. Frequency Response Methods

closed-loop transfer function is

w?

T(s)

TS 2(wns + w2’

The Bode diagram magnitude characteristics associated with the S

closed-loop transfer function in Eq. (7.2) are shown in Figure 7.6.

The relationship between the resonant frequency, w,, the maximum |

of the frequency response, M, . and the damping ratio, ¢, and the

natural frequency, w,, is shown in Figure 7.7 (and in Figure 7.10 in |

MCS, p.316). The information in Figure 7.7 will be quite helpful in
designing control systems in the frequency domain while satisfying
time-domain specifications.

We have seen that we can relate frequency-domain spectfications
to time-domain specifications by using the information contained in

performance specifications

time related to frequency
domain & dotmnain

d'al_np'ing ratio < M,
rise time X0
overshoot

20*log10(mag) [dB]

. 102

®
3 (;)b Freq. [radfsecj
resonant freq, bandwidth

crossover freq.

Figure 7.6 Second-Order Closed-Loop System Characteristics.

"3 Specifications in the Frequency Domain

n (7.2) |

97

0 6.2 04 06 08 0 02 04 06 08
zeta zela

relation.m

wn=1,zeta=0.15; <*—=t
w=logspace(-1,1,400); -=—]
num=wnA2;
fori=1:110]
zeta=zeta+0.005; <— !
den=[1 2*zeta*wn wnA2];
[mag,phase,w]=bode(num,den,w); . .
z(i)=zeta; [mp(i),|]l=max(mag); wr(i)=w(l);
end
subplot(211),plot(z,mp),grid
xlabel('zeta'), ylabel("Mpw')
subplot(212),plot(z,wr),grid
xlabel('zeta'), ylabel('wr/wn')

NOTE: [mp(l),I]=max(mag) stores the index
of the maximum mag in the variable .

Figure 7.7 The Relationship Between (M,,,w,) and (¢,w,) for a
Second-Order System.

98 Chapter 7. Frequency Response Methods]

the closed-loop Bode diagram. Stability is an important issue that 5:-
can be addressed in the frequency domain by considering the open- |
loop transfer function. This topic will be addressed in the next

chapter.

7.4 Example: Engraving Machine System

Consider the block diagram model in Figure 7.8. This example can |
be found in MCS, pp. 332-835. Our objective is to design K so 8
that the closed-loop system has an acceptable time response to a }
step command. A functional block diagram describing the frequency .
domain design process is shown in Figure 7.9. First we choose K = 2 !
and subsequently iterate on K if the performance is unacceptable. §
A script, shown in Figure 7.10, is used in the design. The value |
of K is defined at the command level. Then the script is executed i
and the closed-loop Bode diagram is generated. The values of M,, |
and w, are determined by inspection from the Bode diagram. Those |
values are used in conjunction with Figure 7.7 to determine the 1

corresponding values of ¢ and w,.

~ Given the damping ratio, ¢, and the natural frequency, w,, the: |
settling time and percent overshoot are estimated using the formulas "

4
T_, NCTR) PO. =~ IOOCXP

If the time-domain specifications are not satisfied, then we adjust K |

and iterate.
The values for ¢ and w, corresponding to K = 2 are ¢ = 0.29 and
wy, = 0.88. This leads to a prediction of P.O. = 38% and T, =16

Motor, screw,
Controller and scribe holder

R(s) + K SRR W

§ (s+1) (s+2)

= ((s)

Figure 7.8 Engraving Machine Block Diagram Model.

Closed-loop Bode diagram
Check —_ Mp
time domain specs g 18 Tt e
o=t B 0| S
- Loy g :
4 = -20 e
Mp=1+eﬁﬁf" 'go-30 P R 8
¥ 40l ok
. & Moo o
' o If satisfied, then exit Freq. [rad/sec]
- and)
' continue analysis. Determine #pe and .

7.4. Example: Lngraving Machine System 99

initial gain
K

Compute closed loop
— Update | transfer function

e K ey
K T T DG D K

Y

Establish relationship between frequency domain
specs and time domain specs
3. : : :

b "oz 04 06 o8
zeta

Determine w, and (.

Figure 7.9 Frequency Design Functional Block Diagram for the
Fneravine Machine.

100]
Chapter 7. Frequency Response Methods L 7.4. Example: Engraving Machine System 101

seconds. The step response, shown in Figure 7.11, is a verification
that the performance predictions are quite accurate and the closed-
loop system performs adequately.

In this example, the second-order system approximation is rea-
i wonable and leads to an acceptable design. However, the second-
f order approximation may not always lead directly to a good design.
[l'ortunately, with MATLAB we have the possibility to construct an
f interactive design facility that can assist us in the design process
£ by reducing the manual computational loads while providing easy
F access to a host of classical and modern control tools.

engravescriptl.m

num={K]; den=[1 3 2 K];a—
w=logspace(-1,1,400);
[mag,phase,w]=bode(num,den,w);
[mp,l]=max(mag);wr=w(l); ?

/ mp,wr

»K=2; engravescript1
mp =

1.8371 1.4
WIr =

0.8171 A // \\
» manual step 1 \ o
»
. N4 i
»zeta=0.29; wn=0.88; engravescript2 s 0.6
s =

15.6740 04 /
£ <

5979 '
00/ 2 4 6 8 10 12 14 l_6 1:'8 20

Time [sec]
engravestep.m

K=2; num=[K]; den=[1 3 2 K];
t=[0:0.01:20];
ju=1.02*ones(length(t),1);
II=0.98*ones(length(t),1);
|=1.38*ones(length(t),1}; —~+—
[y,x]=step(num,den,t);
plot(t,y,t,l,t,u,t), grid

xlabel('Time [sec]"), ylabel('c(t)")

engravescript2.m
ts=4/zeta/wn
po=100*exp(-zeta*pi/sqrt(1-zeta’r2))

Figure 7.10 Frequency Design Script for the Engraving Machine.

Figure 7.11 Engraving Machine Step Response for K =2.

102

Chapter 7. Frequency Response Method,

Notes

L Chapter 8

-St ability in the
Frequency Domain

8.1 Introduction

Sta.blhty of a control system can -be determmed with' frequency-
The basm for the ﬁ'equen'y-doma.m stablhty-

 domain design and ana.lys ; ccmtrol systems We w1ll utlhze sev-
| eral frequency-domain plots in-our stability investigations, and, of
| course, we will use MATLAB to aid in obtaining our plots.
i The chapter begins with a discussion of the Nyquist stability
| criterion and the Nygquist diagram and Nichols chart. We will also
| revisit the Bode diagram in our discussions on relative stability. Two
| examples are given which illustrate the frequency-domain design ap-
| proach. We will make use of the frequency response of the closed-
| loop transfer function, T'(jw), as well as the loop transfer function
GH(jw). We present an illustrative example that shows how to deal
with a time delay in the system by utilizing a Padé approximation.
The functions covered in this chapter are nyquist, nichols,
margin, pade, and ngrid.

103

104 Chapter 8. Stability in the Frequency Domain

8.2 Nyquist Plots

The Nyquist stability criterion is based on Cauchy’s theorem, which ':
is concerned with mapping contours in the complex s-plane. Con- |
sider the system in Figure 8.1. The closed-loop transfer function

18

G(s)
1+ GH(s)’

and the characteristic equation is

T(s) =

F(s)=1+GH(s) = 0.

All of the zeroes of F(s) must lie in the left-hand s-plane for stability.
We choose a contour, T,, in the s-plane which encloses the entire
right-hand s-plane, and plot 'z in the F' (s)-plane and determine the
number of encirclements of the origin. Equivalently, we can plot T'p
in the P(s)-plane and determine the number of encirclements of the

—1 point, where P(s) = F(s) — 1. The Nyquist stability criterion

can be stated as follows:

A feedback control system is stable if and only if, for
the contours I'p, the number of counterclockwise encir-
clements of the (~1,0) point is equal to the number of
poles of P(s) with positive real parts (see MCS, p. 362).

The plot of T'p is the Nyquist plot. It is generally more difficult to

-+ Ea (S) Process
R(S) A G(s) > Y(S)
Controller
H(s)

Figure 8.1 Single-Loop Feedback Control System.

K.2. Nyquist Plots 105

generate the Nyquist plot manually than the Bode diagram. H(?W—
ever, we can use MATLAB to generate the Nyquist plot rather easily.

The Nyquist plot is generated with the nyquist function, as
shown in Figure 8.2. When nyquist is used without left-hand argu-
tnents, the Nyquist plot is automatically generated; otherwise, you
must use the plot function to generate the plot using the vectors re
and im.

One cautionary remark regarding Nyquist plots: Some time in
the course of using the nyquist function you may find that your
Nyquist plot looks strange or that some information appears to be
missing. It may be necessary in these cases to use the axis func-
tion to override the automatic scaling and use the nyquist function
with left-hand arguments in conjunction with the plot function. In
this way you can focus in on the —1 point region for your stability
analysis, as illustrated in Figure 8.3.

A <
L

-1t
=2
-0.5 0 0.5 1 1.5
» Real Axis

Figure 8.2 The nyquist Function.

106 Chapter 8. Stability in the Frequency Domain 1

0.1
0.05
0
0.05
0.1

1 08 06 04 02 0
»num=[0.5]; den=[12 1 0.5]:

»aXiS(["1 -(),-1 "0-1 :0'1]); -
»[re,im]=nyquist(num,den):
»plot(re,im),grid -=—

Figure 8.3 The nyquist Function with Manual Scaling.

Up to this point we have been considering absolute stability on
In other words, our concern has been whether a system 1s stable or
not. However, relative stability measures of gain and phase margi
can be determined from both the Nyquist plot and the Bode dia-
gram. The gain margin is a measure of how much the system gain

would have to be increased for the GH (jw) locus to pass through
the (—1,0) point, thus resulting in an unstable system. The phase
margin is a measure of the additional phase lag required before the '
system becomes unstable. Gain and phase margins can be deter- 5?‘

mined from both the Nyquist plot and the Bode diagram.

Consider the system shown in Figure 8.4. Relative stability can

+ 0.5
R(s) $3+252+5+05 C(s)

Figure 8.4 A Closed-Loop Contro] System Example for Nyquist
and Bode with Relative Stability. o

8.2. Nyquist Plots 107

num=[0.5); den=[1210.5];
[mag,phase,w]=bode{num,den);
margin(mag,phase,w);

Frequency (rad/sec)

g | '
g__zm

T
Frequency (rad/sec)

101

Figure 8.5 The margin Function.

be determined from the Bode diagram using the margin function.
The margin function is invoked in conjunction with the bode func-
tion to compute the gain and phase margins. The margin function
is shown in Figure 8.5. If the margin function is invoked without
left-hand arguments, the Bode diagram is automatically generated
with the gain and phase margins labeled on the diagram. This is
illustrated in Figure 8.6 for the system that is shown in Figure 8.4.
The script to generate the Nyquist plot for the system in Fig-
ure 8.4 is shown in Figure 8.7. In this case, the number of poles of
GH(s) with positive real parts is zero and the number of counter-
clockwise encirclements of —1 is zero; hence the closed-loop system
is stable. We can also determine the gain and phase margins, as
indicated in Figure 8.7, '

108 Chapter 8. Stability in the Frequency Domain 8.2. Nyquist Plots 109
20 Gain Margin = 3.017 Phase Margin = 49,41
| ————— 1.5 a - . - :
3 a0}
5 o
60}
-80 L L L R , ! L S B B Y
101 100 101
Frequency (rad/sec)
0

101 IR —T T T
Frequency (rad/sec)

-1.5 : : : ’
-1.5 -1 05 - 0 0.5
simplebodeplot.m nyquistplot.m
num=[0.5]; % Plot Nyquist and compute Gain and Phase

% Margins for GH(s) = 0.5/sA3+2sA2+5+0.05
%

den=[121 0.5];
%

w=logspace(-1,1,200); num=[0.5]; den=[12 1 0.5 J;

% % /
[mag,phase,w]=bode(num,den,w); [mag,phase,w]=bode(num,den);

% [Gm,Pm,Wcg,Wcp]=margin(mag,phase,w);

%

nyquist(num,den) .gq— .
title(['Gain Margin = ",num2str{Gm),

' Phase Margin = ",num2str(Pm)]) -

margin(mag,phase,w);

Figure 8.6 The Bode Diagram for the System in Figure 8.4 with
Gain and Phase Margins.

Figure 8.7 The Nyquist Plot for the System in Figure 8.4 with
Gain and Phase Margins.

110 Chapter 8. Stability in the Frequency Domain

8.3 Nichols Charts

Another frequency-domain plot that can be used in the design and
analysis of control systems is the Nichols chart. The Nichols chart}
is discussed in MCS, pp. 878-386. Nichols charts can be generated]
using the nichols function, shown in Figure 8.8. I the nichols|
function is invoked without left-hand arguments, the Nichols chart}
is automatically generated, otherwise you must use nichols in con-|
junction with the plot function. A Nichols chart grid is drawn on.
the existing plot with the ngrid function.

The margin function works best in conJunctlon with the bode
function. It is possible to use the margin function after executmg
nichols but, unless you desire a Bode plot with gain and phase,
margin labels you should invoke margin with left-hand arguments
and place the gain and phase margin values in the workspace. The}

Figure 8.8 The nichols Function.

8.4. Examples 111

Gain dB

100 B

Phase (deg)

2150

num={1]; den=[0.2 1.2 10];
w=logspace(-1,1,400); |
axis([-210,0,-24,36]);
nichols(num,den,w);
ngrid

Figure 8.9 Nichols Chart for Eq. (8.1).

b Nichols chart, shown in Figure 8.9, is for the system

1

GUw) = G D0z T 1y

' 8.4 Examples

. B EXAMPLE 8.1 Liquid Level Control System

Consider a liquid level control system described by the block diagram
shown in Figure 8.10 (see MCS, pp. 387-388). Notice that this

112 Chapter 8. Stability in the Frequency Domain K4, Examples 113

Actuator Tank Substituting Eq. (8.3) into Eq. (8.2) we have

Res G} iz AL c(s) Gl s 31.5(0.07435% — 0.4460s + 0.8920)
“,__._:' 0wl T e g2 e T (54 1)(30s + 1)(Z + £ + 1)(0.07435 + 0.4460s + 0.8920)
: Now we can build a script to investigate the relative stability of the
Float Gy (s) f #ystem using the Bode diagram. Our goal is to have a phase margin
1 - i of 30 degrees. The associated script is shown in Figure 8.12. To
(2/9) + (s/3) + 1 i make the script interactive, we let the gain K (now set at K = 31.5)
i be variable and defined outside the script at the command level.

. '['hen we set K and run the script to check the phase margin and
| iterate if necessary. The final selected gain is K = 16. Remember
L that we have utilized a second-order Padé approximation of the time
delay in our analysis.

i M EXAMPLE 8.2 Remote Controlled Battlefield Vehicle

Figure 8.10 Liquid Level Control System.

system has a time delay. The loop transfer function is given by

31.5 exp="T
(s+1)(80s+ 1)(% +2+1)

Since we want to use MATLABin our analysis, we need to chang
Eq. (8.2) in such a way that GH(s) has a transfer function form wit
polynomials in the numerator and denominator. To do this we c
make an approximation to e~*7 with the pade function. The pad
function is shown in Figure 8.11. For example, suppose our time
delay is T = 1 second and we want a second-order approximation. §
n = 2. Then, using the pade function we find that

__ 0.0743s% — 0.4460s -+ 0.8920
™ 0.0743s2 + 0.4460s + 0.8920"

GH(s) =

(8.2) .;

L Consider the speed control system for a remotely controlled battle-
 field vehicle shown in Figure 8.13 (see MCS, pp. 892-402). The de-
i sign objective is to achieve good control with low steady-state error
and low overshoot to a step command. We will build a script to allow
 us to perform many design iterations quickly and efficiently. First,
P let’s investigate the steady-state error specification. The steady-
E state erTor, €45, to a unit step command is

(8.4)

-3

=TT R

i The effect of the gain K on the steady-state error is clear from
I Lq. (8.4). If K = 20, the error is 9% of the input magnitude. If
| K = 10, the error is 17% of the input magnitude, and so on.

: Now we can investigate the overshoot specification in the fre-
L quency domain. Suppose we demand that the percent overshoot be
less than 50%. Solving

(8.3) f

Order of approximation
Time delay g

\

T—1 = 1 2, oum(s)
e 1 sT+2!(sT)+ den(s)

P.O. = 100 exp~¢*/V1-¢ < 59

for ¢ yields .
¢ > 0.215.

Figure 8.11 The pade Function. Referring to Figure 7.7 (or MCS, p.316) we find that M, < 2.45.

114 Chapter 8. Stability in the Frequency Domain

0.85
% 0 Basy s .._______\\
g % T
© -100 \\\
\‘\
-150 N
103 10-2 10-1 100 101 102
Frequency (rad/sec)
0 e
-q"""-nm____.___.h_
o0 -200 ¥
5 N
o 400
& N
A -600 i
-800 B
10-3 10-2 10-1 100 101 102
Frequency (rad/sec)

»K=186; liquidscript -

liquidscript.m

% Liquid Control System Analysis

% ’ /
num=K*[0.0743 -0.4460 0.8920]; d1=[1 1]; d2=[30 1];
d3=[1/9 1/3 1]; d4=[0.0743 0.4460 0.8920];
den=conv{d1,conv(d2,conv(d3,d4)));
%

w=logspace(-2,1,400); - |
[mag,phase,w]=bode(num,den,w);
gfm,Pm,ch,ch]=margin(mag,phase,w);
bode(num,den) -=
title(['Gain Margin = ' ,num2str(Gm), ...
' Phase Margin = ',num2str(Pm)]) <+

Figure 8.12 Bode Diagram for the Liquid Level Control System.

KA. Examples 115

D(s)

. G.(5) G(s) cs)
R(s) | % . I S,
3 Ks+2)| e >
desired - s+1 + s2+25+4 speed

speed

Figure 8.13 Battlefield Vehicle Speed Control System.

E We must keep in mind that the information in Figure 7.7 1s for
i wecond-order systems only and can be used here only as a guideline.
E We now compute the closed-loop Bode diagram and check the values
E of M,,. Any gain K for which M,, < 2.45 may be a valid gain for
E our design, but we will have to investigate further to include step
responses to check the actual overshoot. The script in Figure 8.14 -
 aids us in this task. In keeping with the spirit of the design steps in
L MCS, pp. 392-402, we investigate further the gains K = 20,10, and
1 4.44 (even though M), > 2.45 for K = 20). We can plot the step
esponses to quantify the overshoot, as shown in Figure 8.15.

Alternately, we could have used a Nichols chart to aid the design
rocess. This is shown in Figure 8.16.

The results of the analysis are summarized in Table 8.1 for K =
| 20,10, and 4.44. Suppose we choose K = 10 as our design gain.
| Then we obtain the Nyquist plot and check relative stability. This
 is shown in Figure 8.17. The gain margin is GM = 49.56 and the
- phase margin is PM = 26.11°.

Table 8.1 Actual Response for Selected Gains.

K 444 | 10 20
Percent overshoot | 5% | 30% | 50%
Settling time 3.5 5 6
Peak time 14 | 1.0 | 0.7
€4 31% [17% | 9%

116

Chapter 8. Stability in the Frequency Domain

101 L

100

mag

10-%

100
frequency [rad/sec]

battlescript.m

w=logspace(0,1,200); K=20; ™

%
fori=1:3 =

numge=K*[1 2]; dengc=[1 1];
numg=[1]; deng={1 2 4];
[nums,dens]=series(numgc,dengc,numg,deng);
[num,den}=cloop(nums,dens);
[mag,phase,w]=bode(num,den,w);

if i==1, mag1=mag; phase1=phase; K=10; end
if i==2, mag2=mag; phase2=phase; K=4.44; end
if i==3, mag3=mag; phase3=phase; end
end
%

loglog(w,mag1,'-',w,mag2,"-',w,mag3,'-"),grid
xlabel('frequency [rad/sec]'), ylabel('mag')

Figure 8.14 Remotely Controlled Battlefield Vehicle Closed-Loop ::_
System Bode Diagram Script.

c(t)

gponse.

K4. Examples

1.6

117

14

120

1

0.8

0.6f{}-

04544

0.2HH b SN VOUNUUU SN N U SRS S S

battlestep.m

t=[0:0.1:10]; K=20;
%

fori=1:3 - —
numge=K*[1 2]; dengc=[1 1];

numg=[1]; deng=[1 2 4];
[nums,dens]=series(numgc,dengc,numg,deng);
[num,den]=cloop(nums,dens);

[y,x]=step(num,den,t); <+
if i==1, y1=y; K=10; end

if i==2, y2=y; K=4.44,; end

if i==3, y3=y; end

end

%
plot(t,y1,-",t,y2,'-',t,y3,"-"),grid
xlabel('time [sec]’), ylabel('c(t)’)

Figure 8.15 Remotely Controlled Battlefield Vehicle Step Re-

118 Chapter 8. Stability in the Frequency Domain K.4. Examples 119

Gain Margin = 49.56 Phasc Margin = 26,11
5 T Y ’ ' '
at JE WSS e
it T T
2%
L1t \
é, ok- } ----
&
E 4
2+
3t
4+
'5.2 1 0 1) 3 4 5
Real Axis
battlenichols.m battlenyquist.m
32 Remotely Controlled Battlefield Vehicle % Remotely Controlled Battlefield Vehicle

% Nyquist plot for K=10

%

numge=10*[1 2]; dengc=[1 1];
numg=[1]; deng=[1 2 4];
[num,den]=series(numgc,dengc,numg,deng);
% _
[mag,phase,w]=bode(num,den);
[Gm,Pm,Wcg,Wcpl=margin(mag,phase,w);
%

nyquist(num,den);

title(['Gain Margin = ',num2str(Gm), ...

' Phase Margin = ',num2str(Pm)]}

numge={1 2]; dengc=[1 1]; |
numg=[1]; deng=[12 4]; <+——
[num.den]=series(numgc,dengc,numg,deng);_
%
‘w=logspace(-1,2,200);
axis([-210,0,-24,36])

%

K1=20; K2=10; K3=4.44;
[mag1,phi ,W]=nichols(K1*num,den,w);
[magZ,ph2,w]=nichols(K2*num,den,w);
[mag3,ph3,w]=nichols(KB*num,den,w);
plot(ph1,20*l0g10(mag1),'=',ph2,20%0g1 O(mag?2),'--",...
ph3,20*0g10(mag3),-."),ngrid

Figure 8.17 Nyquist Chart for the Remotely Controlled Battlefield
Vehicle with K = 10.

i

Figure 8.16 Remotely Controlled Battlefield Vehicle Nichols Chart.

120

Chapter 8. Stability in the Frequency Domain

Notes

Chapter 9

State-Space Methods

9.1 Introduction

In the previous chapters we considered control system design and
analysis in the frequency domain. We utilized the Laplace trans-
form to transform the linear, constant coefficient differential equa-
tion model into an algebraic expression in terms of the complex
variable s. Then we operated on our system in input-output (or
transfer function) form

bs™ + -+ bis+ bo
§* 4 G184 F s+ o

C(s) = R(s) = G(s)R(s).

In this chapter we begin to look at control system design and
analysis in the time domain. In contrast to the frequency-domain
approach, the time-domain method utilizes a state-space represen-
tation of the system model, given by

& = Ax + Bu

¢c=Dzx+ Hu (9-1)

The vector @ is the state of the system, A is the constant n X n
system matrix, B is the constant n x m input matrix, D is the
constant p X n output matrix and H is a constant p X m matrix.
The number of inputs, m, and the number of outputs, p, are taken
to be one since we are considering only single-input, single-output
problems. Therefore ¢ and u are not bold variables.

121

122 Chapter 9. State-Space Methods 9.2, Model Relationships 123

A B _ num(s) U
D; iH:: C(s)= G(s) U(s) = den(s) (s)

............................ . | {

state-space model

Figure 9.1 The State-Space Representation bode Function.

cts)=60) Vo) = 5 U | | $2 5% L

The main elements of the state-space representation in Eq. (9.1) |
are the state vector @ and the constant matrices (4,B,D, H). | :
Since the main computational unit in MATLAB is the matrix, the 5' Figure 9.2 Linear System Model Conversion.
state-space representation lends itself well to the MATLAB envi- |]
ronment. In fact, MATLAB covers so many aspects of state-space |
methods that we will not be able to discuss them all here.]

For insténce, consider the third-order system

The new functions covered in this chapter are tf2ss and ss2tf. | C(s) 252+ 8546
: : : . T(s) = - , (9.2)
Most of the functions covered in the previous chapters also apply 1 ; () R(s) °+8s2+16s+6
here. For example, the the bode function can be utilized with | 1
a state-space model, as shown in Figure 9.1. The same idea ap- | | We can obtain a state- -space representation using the tf2ss function
plies to series, parallel, feedback, cloop, printsys, minreal, | | as shown in Figure 9.3. The state-space representation of Eq. (9.2)

step, pzmap, impulse, lsim, rlocus rlocﬁnd residue, bode,

by Eq. (9.1) where
nyquist, and nichols. is given by Eq. (9.1)

[5 -8 —-16 —6 1
9.2 Model Relationships s A= [1) (1) g , B= g)
Given a transfer function we can obtain an equivalent state-space I '
representation, and vice versa. MATLAB has two functions that $EEE and
convert systems from transfer function to state space and back. i D= [2 86] , H=1[0].

The function tf2ss converts a transfer-function representation to a
state-space representation; the function ss2tf converts a state-space
representation to a transfer function. These functlons are shown in |
Figure 9.2.

Notice that the printsys function lists the system matrices as a, b, ¢, d.
The conversion to our notation is as follows:

ar+A, b—» B, c—» D, d— H.

124 Chapter 9. State-Space Methods

convert.m

% Convert G(s) = (2sA2+8s+6)/(sA3+8sA2+16s+6)
% to a state-space representation '

%

num=[2 8 6}; den=[1 8 16 6];
[A,B,D,H}=tf2ss(num,den);

printsys(A,B,D,H)
»convert
x1 X2 x3
x1 -8.00000 -16.00000 -6.00000
x2 1.00000 0 0
x3 0 1.00000 0
b=
ul
x1 1.00000
x2 0
x3 0
C=
x1 x2 x3
yl 2.00000 8.00000 6.00000
d =
ul
y1 0

Figure 9.3 Conversion of Eq. (9.2) to a State-Space Representa-
tion.

9.3. Stability of Systems in the Time Domain 125

9.3 Stability of Systems in the Time Domain

Suppose we have a system in state—space form as in Eq. (9.1). The
stability of the system can be evaluated with the characteristic equa-
tion associated with the system matrix A. The characteristic equa-
tion is

det(sI — A) = 0. (9.3)

'The characteristic equation is a polynomial in s. If all of the roots
of the characteristic equation have negative real parts (i.e., Re(s;) <
0,V7), then the system is stable.

When the system model is given in the state-space form we must
calculate the characteristic polynomial associated with the A ma-
trix. In this regard we have several options. We can calculate the

_ characteristic equation directly from Eq. (9.3) by manually comput-
- ing the determinant of (sI — A). Then we can compute the roots
| using the roots function to check for stability, or alternatively, we

can utilize the Routh-Hurwitz method to detect any unstable roots.

;; Unfortunately, the manual computations can become lengthy, espe-
t cially if the dimension of A is large. We would like to avoid this
. manual computation if possible. As it turns out, MATLAB can
b assist in this endeavor.

The poly function described in Chapter 2 can be used to com-
pute the characteristic equation associated with A. Recall that poly
is used to form a polynomial from a vector of roots. It can also be
used to compute the characteristic equation of A, as illustrated in
Figure 9.4, wherein input matrix, A, is

-8 —16 —6
A=11 0 0
0 1 0

and the associated characteristic polynomial is
$ 4+ 8s% 4 16s + 6.

If A is an n X n matrix, pon(A) is the characteristic equation
represented by the n + 1 element row vector whose elements are the
coefficients of the characteristic equation.

126 Chapter 9. State-Space Methods

coefficients of characteristic

polynomial in descending order

»A=[-8 -16 -6;1 0 0;0 1 0];
»p=poly(A)

1.0000 8.0000 16.0000 6.0000

g\;\lf »roots(p)

R " fans -
-5.0861
-2.4280 -
-0.4859

Figure 9.4 Computing the Characteristic Equation of A with the

poly Function.

B EXAMPLE 9.1 Automatic Test System

The state-space representation for the automatic test system (see ..

MCS, pp. 462-465) is

¢ = Az 4+ Bu (9.4)
where
0 1 0 0
A=|0 -1 1}, B=|0
0 0 -5 K

Our design specifications are (i) step response with a settling time |
less than two seconds, and (ii) overshoot less than 4%. We assume |
that the state variables are available for feedback so that the control §

9.3. Stability of Systems in the Time Domain 127
is given by
u = (—Kl, —Kz, '—K3) . (9.5)

We must select the gains K, K;, K3 and K3 to meet the performance
specifications. Using the design approximation

T, =~ <2 and P.O.= 100 exp'c”/_V 1-¢ « 4,

Cwn

we find that

¢>0.72 and w,>238.

This defines a region in the complex plane in which our dominant
roots must lie to have any chance of meeting the design specifica-

L {ions. Substituting Eq. (9.5) into Eq. (9.4) yields

6 1 0
g=| 0 -1 1 z = Az, (9.6)
KK, —-KK, —(5+ KKaj)

L where A* is the revised A matrix. The characteristic equation asso-

ciated with Eq. (9.6) can be obtained by evaluating det(sI—A*) = 0.

- This results in

Ks+ K, K
s(s+1)(s +5) + KKa(s* + —2r—2s 4“1y =0. (9.7)
K; K
If we view K K3 as a parameter and let K; = 1, then we can write
Eq. (9.7) as follows:

+ S 4 K
1 KK 2 =
KK e)
We place the zeros at s = —4 & 2 in order to pull the 1ocus to

the left in the s-plane. Thus our desired numerator polynomial is
5% + 8s + 20. Comparing corresponding coefficients leads to
Ks+ Ko 1

K, =8 and E=20.

Therefore K; = 0.35 and K; = 0.05. We can now plot a root
locus with K Ka as the parameter, as shown in Figure 9.5. The

128 Chapter 9. State-Space Methods

;%_,:
E \\\ Cco,,
valid region t t
-4 § perforrr?allﬁze ani: "‘\\)
4 \\mn 28 =072
\\\'\}x ”\. T
0 3 % 4 > 6

autolocus.m :

% Boot locus script for the Automatic Test System
% including performance specs regions
num={1 8 20]; den=[1 6 5 0];
clg; rlocus(num,den); hold on ~e—
%
zeta=0.72; wn=2.8;
x=[-10:0.1:-zeta*wn]; y=-(sqrt(1-zetar2)/zeta)*x;
xc=[-10:0.1 -zeta*wn] c—sqrt(wn’\Z-xc '\2)
plot(x,y,"',x,-y,":" x¢,¢,":' xc,-c,':")

Figure 9.5 Root Locus for the Automatic Test System.

9.4, Titme Response 129

15 2 25 3
time [sec]

Figure 9.6 Step Response for the Automatic Test System.

characteristic equation, Eq. (9.7), is
s 4+8s4+20
s(s+1)(s+3)
The selected gain, K Ks = 12, lies in the performance region, as

shown in Figure 9.5. The rlocfind function is used to determine
the value of K K5 at the selected point. The final gains are

1+ KK;

K = 240.00
K]_ = 1.00
K; = 035

The controller design results in a settling time of about 1.8 seconds
and an overshoot of 3%, as shown in Figure 9.6.

9.4 Time Response

The time response of the system in Eq. (9.1) is given by the solution
to the vector differential equation

z(t) = exp(At)z(0) + .[Oi exp|A(t — 7)|Bu(7)dT. (9.8)

130 Chapter 9. State-Space Methods _

The matrix exponential function in Eq. (9.8) is the state transition

matrix, ¢(t), where
$(t) = exp(A1).

We can use the function expm to compute the transition matrix for]
a given delta time, as illustrated in Figure 9.7. The expm(A) func- |}
tion computes the matrix exponential whereas the exp(A) function |

returns €% for each of the elements a;; € A.

—4> The time response of the system in Eq. (9.1) can be obtained |
by using the lsim function. The lsim function can accept as input |
nonzero initial conditions as well as an input function. This is il- |
lustrated in Figure 9.8 for the RLC network (see MCS, Chapter 9) |

described by the state-space representation

A=[(1) :ﬂ , B=[§_] , D={1 0] ,and H=0.

The initial conditions are x;(0) = z3(0) = 1 and the input u(t) = 0. }
If we can compare the results obtained by the Isim function and by
multiplying the initial condition state vector by the state transition §
matrix, we find exactly the identical results. At ¢ = 0.2 the state |
transition matrix is given in Figure 9.7. The state at ¢t = 0.2 is |

predicted by the state transition methods to be

T _ [09671 -0.2968 | { =z, _ { 0.6703
T2)10 | 01484 05219 |\ 2, J,_ T \ 06703)

The state at t = 0.2 is also predicted with the lsim function to be

»A=[0 -2; 1 -3]; dt=0.2; Phi=expm(A*dt)

Phi =

0.9671 -0.2968 —t—_|
0.1484 0.5219

Figure 9.7 Computing the State Transition Matrix for a Given ’_‘

Ty lda. M2 _

9.4. Time Response 131

1
08
0.6F 7

x1

0.4} _]

o o1 02 03 04 05 06 07 08 09 1
time [sec]

0 o1 0z 03 04 05 06 .07 08 09 1
time [sec]

timeresponse.m

A=[0-2;1 -3];
B=[2;0];

D=[1 0];

H=[0];

x0=[11], *+—
t=[0:0.01:17];
U=(Q*t; <—
[y!x]=|5im(A1B:D,H’u!tsxo);
subplot(211), plot(t,x(:,1))
xlabel('time [sec]'), ylabel("x1")
subplot(212), plot(t,x(:,2))
xlabel("time {sec]'), ylabel('x2")

Figure 9.8 Computing the Time Response for Nonzero Initial Con-
ditions and Zero Input.

132

Chapter 9. State-Space Methods

Notes

Chapter 10

Control System Design

10.1 Imntroduction

It is often possible to achieve stability and meet all the control sys-
tem performance specifications by adjusting one or two parameters.
We introduced many examples in the previous chapters illustrating
design by adjusting a few parameters. However, in many cases it is
necessary to add a dynamic compensator into the system. Altering
a control system to meet relative stability and performance spec-
ifications is called compensation. We say that our compensators
are dynamic in the sense that the compensator is itself a system
described by a transfer function or state-space representation with
internal states. A compensator is shown in the control system in
Figure 10.1. The compensator in Figure 10.1 is a cascade or series

Spacecraft
rotational motion
Compensator model
+ 1
0, K(s+2) T :
desired - (s+p) desired
attitude

Figure 10.1 A Compensated Control System for Spacecraft Rota-
tional Motion.

133

134 Chapter 10. Control System Design

compensator since it is placed in the feedforward path. A com- 4
pensator placed in the feedback path is known as a feedback com-
pensator. Compensators can be placed in other paths (e.g., inner @
feedback loops) in the control systemn as well.]

The main topic of this chapter is compensation of feedback con- 1
trol systems. There are many approaches to compensation. We
will consider lead and lag compensators and present a design exam- |
ple that uses both the root locus method and the Bode frequency- 1
domain method to design the compensators. One of the most com-
monly used compensators is the proportional plus derivative plus §
integral (PID). The PID compensator is covered in Chapter 11,

10.2 Lead Compensati_on

Consider the series compensator

Gu(s) = Ko +2)

10.1) 4
S+ p ()]

The selection of the variables Kk » %, and p is based on satisfying the
design performance specifications. Whenever '

2| < |p|

the compensator in Eq. (10.1) is a lead compensator. The pole-zero |
diagram of the lead compensator is shown in Figure 10.2. We can i

1

Figure 10.2 Pole-Zero Diagram of the Lead Compensator.

10.2. Lead Compensation 135

rewrite Eq. (10.1) as

K(1+4 ars)

a(l + 7s) (102)

Ge(s) =
where 7 = 1/p, @ = p/z and @ > 1. The maximum value of the
phase lead occurs at a frequency w,,, where

1

W = \/Zp = i

The maximum phase angle at w,, is ¢,,, where

’ a—1
sin ¢, = Al
Consider, for example, the lead compensator
10(s + 1)
Gl =<0

The associated Bode diagram is shown in Figure 10.3. The maxi-
mum value of the phase lead occurs at

wm=\/z_p=\/13.

The maximum phase lead is

— 1 o
$m = arcsin(— D) = 549,

o+
where o = 10. . .

The phase-lead compensator is a differentiator type compen-
sator. This can be seen by considering the case when |p| >> |z|.
Then it follows that

G (s) ~ [%]3.

We can design lead compensators with frequency-domain design
techniques utilizing Bode diagrams as well as with root, locu's design
methods. The lead compensator increases the phase margin, ?hus
providing additional stability, and increases the system bandwidth
to provide speedier dynamic response.

136 Chapter 10. Control System Design .

20 Ty
% P : vd o
g y | e =
0 ,——~l/
10-1 1 1 102

60L:
g T

40 X

o
//
E 20 ’ \\
ey \"'--.,.__
0 L
101 Zue] 100 ‘r——zp 101 p=10 102
Frequency (rad/sec)

»hum=10*[1 1]; den=[1 10]; bode{num,den)

Figure 10.3 Bode Diagram of the Lead Compensator.

10.3 Lag Compensators

Again consider the series compensator

_ K(s+z)'

G.(s) -

Whenever

lp| < |2|
the compensator G.(s) is a lag compensator. The pole-zero diagram
of the lag compensator is shown in Figure 10.4. The lag compensator

can also be written as in Eq. (10.2) where a < 1. The maximum
value of the phase lag occurs at

wmzﬁ—_—\/l—d.

10.3. Lag Compoeunsators 137

Figure 10.4 Pole-Zero Diagram of the Lag Compensator.

Consider, for example, the lag compensator

0.1(s + 10)

Ges) = s+1

The associated Bode diagram is shown in Figure 10.5.
~ We see that the lag compensator is an integration type compen-
sator by considering |z| >> {p|. Then

Gs) = K + E;—.

This has the same form as the widely used lag compensator

K
G.(s) = K, + TI

This is known as a proportional plus integral (PI) compensator.

The lag compensator is applicable when high steady-state ac-
curacy is required. Although it is possible to increase steady-state
accuracy by simply increasing the system gain, this often leads to
unacceptable transient response and sometimes instability. This
problem is overcome with the addition of a lag compensator and
properly chosen values of K,p, and z. The lag compensator de-
creases the system bandwidth thus suppressing high frequency noise
and slows down the transient response. .

138 Chapter 10. Control System Design]

0 o ——
3 2 \\\d :
_§ -10 N\ %
-15 \\5._
20
101 10p I 102
Frequency] (rad/sec)
6
— 255
— T
éf’ -20 R » ot
40 N
d‘"”
_60 e S
101 ' ' '
=1 109 Yzp 1.0 102
Frequency (rad/sec)

»num=0.1*[1 10]; den=[1 1]; bode(num,den)

Figure 10.5 Bode Diagram of the Lag Compensator.

10.4 Example: Rotor Winder Control System '.

The rotor winder control system is shown in Figure 10.6 (see MCS,
pp. 542-545). The design objective is to achieve high steady-state |
accuracy to a ramp input. The steady-state error to a unit ramp |

Figure 10.6 Rotor Winder Control System.

10.4. Example: ltotor Winder Control System 139
input, R(s) = 1/s% is X
€ss = ‘I?
where Gu(s)
K= ‘1,__)0 R0

; Of course, the performance specification of overshoot and settling

time must be considered as well as steady-state tracking error. In
all likelihood, a simple gain will not be satisfactory. So we will
consider active compensation utilizing lead and lag compensators

.: using both Bode diagrams and root locus plots. Qur approach is to

develop a series of scripts to aid in the compensator designs.
Consider first a simple gain controller, G.(s), where

G.(s) = K.
E} Then,
; . = @
83 — K L

Clearly, the larger we make K, the smaller the steady-state error

ess. However, we must consider the effects of increasing K on the

{ transient response. This is shown in Figure 10.7. When K = 500,

our steady-state error for a ramp is 10% but the overshoot is 70% and
the settling time is around 8 seconds for a step input. We consider
this to be unacceptable performance and turn to compensation. The
two important compensator types that we consider are lead and lag

compensators.
First we try a lead compensator
K(s+ 2
G (s) = Blet2)
| (s+p)

where |z] < |p|. The lead compensator will give us the capability
to improve the transient response. We will use a frequency domain
approach to design the lead compensator.

Suppose we desire a steady-state error of less than 10% to a ramp

input. Then we desire
K, = 10.

140)
Chapter 10. Control System Design 4

c(t)

2 25 3 35 4 45 3

time [sec]

rotorgain.m

K=[50100 200 500 J; =— £2
: |

numg=[1]; deng=[1 15 50 0];

t=[0:0.1:5];
%
fori=1:4

[nums,dens]=ser3es(K(i), 1,numg,deng);
[num,den]=cloop(nums,dens); - |
[y,x]=step(num,den,t);
Ys(ii)=y; .

end
%
plot(t,Ys(:,1),‘-',t,Ys(:,Z),‘~',t,Ys 53),- L4),
xlabel('time [sec]"), ylabel('c(t)'g, W)

Figure 10.7 Transient Response for Simple Gain Controller.

10.4. Example: totor Winder Control System 141

In addition to the steady-state. specifications, suppose also that we
desire to meel certain performance specifications:
(i) settling time T, < 3 seconds, and

(ii) percent overshoot for a step input < 10%.

Solving the approximate formulas
4

Wy

=3

P.O. 2 100exp ¢V~ =10 and T, ~ ;

for ¢ and w, yields
¢ =0.5912 and w, = 2.2555.

The phase margin requirement becomes

~ S
Dpm R 0oL = 60 degrees.

The steps leading to the final design are as follows:

1. Obtain the uncompensated system Bode diagram with K =
500 and compute the phase margin.

2. Determine the amount of necessary phase lead.

3. Evaluate o where sin¢,, = g—;}

4. Compute 10loga and find the frequency w,, on the uncom-
pensated Bode diagram where the magnitude curve is equal to

—10log o .

5. In the neighborhood around w,, on the uncompensated Bode,
draw a line through the 0-dB point at w,, with slope equal to
the current slope plus 20 dB/dec. Locate the intersection of
the line with the uncompensated Bode to determine the lead
compensation zero location. Then calculate the lead compen-

sator pole location as p = az.

6. Draw the compensated Bode and check the phase margin. Re-
peat any steps if necessary.

142 Chapter 10. Control System Design

7. Raise the gain to account for attenuation (1/a).

8. Verify the final design with simulation using step functions,

and repeat any steps if necessary.

We utilize three scripts in the design. The design scripts are shown §
in Figures 10.8, 10.9, and 10.10. The first script is for the uncom-
pensated Bode, the next is for the compensated Bode, and the fina)
script is for the step response analysis. The final lead compensator §

design is
_ 1800(s + 3.5)

Gels) == 25)

The settling time and overshoot specifications are satisfied, but }
K, = 5, resulting in a 20% steady-state error to a ramp input. It is |
possible to continue the design iteration and refine the compensator
somewhat, although it should be clear that the lead compensator §
has added phase margin and improved the transient response as

anticipated.

To improve the steady-state errors we can consider the lag com- §

pensator. The lag compensator has the form

_ K(s+2)
Gele) = (s+p)°

where |p| < |z|. We will use a root locus approach to design the
lag compensator, although it can be done using Bode as well. The
desired root location region of the dominant roots are specified by

¢ =0.5912 and w, = 2.2555.
The steps in the design are as follows:
1. Obtain the root locus of the uncompensated system.

2. Locate suitable root locations on the uncompensated system
which lie in the region defined by ¢ = 0.5912 and w,, = 2.2555.

3. Calculate the loop gain at the desired root location and the
system error constant, K,

uncomp”

10.4. Example: fotor Winder Control System 143

mag [dB]

B (= e 101 108
frequency [rad/sec]

rotorlead.m

K=500; numg=[1]; deng=[1 15 50 0];
[num,den]=series(K,1,numg,deng);
w=logspace(-1,2,200);
[mag,phase,w]=bode(num,den,w); /
[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w);
%
Phi=(60-Pm)*pi/180; -——
%
alpha=(1+sin{Phi))/(1-sin(Phi))
%
M=-10%*log10(alpha)*ones(length(w),1);
%

[mag,phase,w]=bode(num,den,w); .
semilogx(w,20*log10(mag),w,M), gr|c|i ‘
xlabel('frequency [rad/sec]'), ylabel('mag [dB]") -

Figure 10.8 Lead Compensator: Uncompensated Bode.

144 Chapter 10. Control System Design

40 (Birmaggi_n=5964 l_’hase argin = 59,2

ol K

10-[N |1|00 i H i i].Oi:l
Frequency (rad/sec)

Phase deg
3

107 100 = o T
Frequency (rad/sec)

rotoriead1.m
K=1800; —=
numg=[1]; deng=[1 15 50 OJ;
numge=K*[1 3.5]; dengc=[1 25];e—
[num,den]=series(numgc,dengc,numg,deng);
w=logspace(-1,2,200);
[mag,phase,w]l=bode(num,den,w);

[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w);
%

bode(num,den)
title([*'Gain margin = ' num2str(Gm), ...
' Phase margin = ',num2str(Pm)])

Figure 10.9 Lead Compensator: Compensated Bode.

10.4. Example: Rotor Winder Control System

c(t)

145

1.2 T 1 T
1k
0

0 02 04 06 08 1 12 14 16 18

Time (sec)

rotorlead2.m

K=1800;

%

numg=[1]; deng=[1 15 50 O];

numge=K*[1 3.5]; dengc=[1 25);

%
[nums,dens]~——series(numgc,dengc,numg,deng);
[num,den]=cloop(nums,dens);

%

t=[0:0.01:2];

step(num,den,t)

Figure 10.10 Lead Compensator: Step Response.

146 Chapter 10. Control System Desig.

4, Compute o= %ﬁ;&; where K, . = 10.
5. With a known, determine suitable locations of the compen

sator pole and zero so that the compensated root locus Stl‘
passes through desn‘ed location.

6. Verify with simulation and repeat any steps if necessary.

The design methodology is shown in Figures 10.11, 10.12, and 10.134
Using the rlocfind function, we can compute the gain K associated]
with the roots of our ch01ce on the uncompensated root locus th
lie in the performance region. We then compute « to ensure th
we achieve the desired K,. We place the lag compensator pole a
zero in order not to impact the uncompensated root locus. In F
ure 10.12, the lag compensator pole and zero are very near the or1g _
at z = —0.1 and p = —0.01.

The settling time and overshoot spemﬁcatlons are’ nearly satlsﬁ
.,and K, =10 as desired. It is posmble to'continue the design iterat
* " and refine. the cornpensator somewhat, although it should be
that the lag compensa.tor has 1mproved the steady-state errors to

ramp: mput relative to the lead compensa,tor des:gn The ﬁna.l I
compensator des:gn is -

100(3' +0.1)

Gls) = (s+0.01) °

The resulting performance_ is summarized in Table 10.1.

Table 10.1 Compensator Design Results.

Controller Gain, K | Lead | Lag
Step overshoot |1 70% 8% | 13%
Settling time (sec) 8 1 4
Steady-state error for ramp 10% 20% | 10%
K, ' 10 5 10

10.4. Example: Rotor Winder Control System
10 - T lI
"5k
z
A
Y
B

147

Real Axis

._L°L9!'_'L
numg—[1] deng=[1 15 50 0],
axis([-15,1,-10,101);

clg; riocus(numg deng); hold on
%

zeta=0.5912; wn=2.2555; |
?(6—[10:0.1:-zeta*wn]; y=-(sqrt(1-zetaAZ)/ieta)*x;
xc=[-10:0.1:-zeta*wn]; c=sqrt(wnA2-xc.A2);

% 1.0 1.0
plot(x,y,':‘,x,-y,':',xc.c, ' xc,-C,"t')

Figure 10.11 Lag Compensator: Uncompensated Root Locus.

148

10

Imag. Axis

-10

-15

rotorlagl.m

Chapter 10. Control System Design :

\N

NN

Real Axis

numg=[1]; deng=[1 15 50 0Q];

numgc=[1 0.1]; denge=[1 0.01];
[num,den]=series(numgc,dengc,numg,deng);
axis([-15,1,-10,10));

clg; rlocus{num,den); hold on

%

zeta=0.5912; wn=2.2555;

x=[-10:0.1:-zeta*wn]; y=-(sqrt(1-zetaAr2)/zeta)*x;
xc=[-10:0.1:-zeta*wn];c=sqrt(wnA2-xc.A2);
plot{x,y,":',x,~y,":" xc,c,":" xc,~c,":')

Figure 10.12 Lag Compensator: Compensated Root Locus.

10.4. Example: Rotor Winder Control System

0 2 4 6 8

149

10 12 14 16
Time (sec)

rotorlag2.m

K=100;

%

numg=[1]; deng=[1 15 50 OJ;
numgc=K*[1 0.1]; dengc=[1 0.01];
%

[nums,dens]=series(numgc,dengc,numg.deng);

[num,den]=cloop(nums,dens};
%
step(num,den)

Figure 10.13 Lag Compensator: Step Response.

150

Chapter 10. Control System Design

Notes

Chapter 11

Robust Control Systems

11.1 Introduction

Designing a highly accurate control system in the presence of plant
uncertainty is a classical design problem. In the previous chapters,
we have generally assumed that the plant parameters are well known
and designed our control system accordingly. In practice, the plant
parameters are never precisely known and may vary slowly over time.
Tt is desirable to design a control system that performs adequately
over a range of plant parameters. A control system is robust when
it maintains a satisfactory level of stability and performance over a
range of plant parameters and disturbances.

In this chapter, we begin to investigate robust control systems. In
particular we consider the commonly used proportional plus deriva-

D(s)
R(s) + + c
—— Gp(s) Ge(s) G (s} ‘(’5)
- +

Figure 11.1 Feedback Control System with Reference and Distur-
bance Inputs and a Prefilter.

151

Chapter 11. Robust Control System: 11.2. Robust PID Cont.rolfed. Systems o

L;vc plus mtcgml'(l"]-,!-}) coniroller. Our feedback control system ha: and the nominal value of ¢ is
i..m [orm shown in I'igure 11.1. Notice that the system has a pv‘ti
filter Gp(s). The role of the prefilter in contributing to optimur}

performance is discussed in MCS, pp. 594-595.

=1
We will design a compensator based on cp = 1 and check robustness
by simulation. Our design specifications are as follows:

11.2 Robust PID Controlled Systems
(i) settling time T, < 0.5 seconds, and

The PID controller has the form
(i1} optimum ITAE performance for a step input (see MCS, pp.

176-185).

In our design, we will not utilize a prefilter to meet specifica-
tion (ii) but will instead show that acceptable performance (i.e., low
overshoot) can be obtained by increasing the system gain.

The closed-loop transfer functionis-

_ K52+ Kis+ K,
p ;

G.(s)

. Notice that the PID controller is not a rational function (i.e., the
d of _th?_l:lu__r;’_l?_f?gtt_)_r_. polyqomial_is greater than the degre >
al). You wi experien e difficulty if v

154

20

Imag. Axis

»a=16; b=70; num=[1 a b); den=[1 00 O] rl '

Figure 11.2 Root
Coitroller. o Lopus for the PID Compensated Temperatur

wy. For the point we have chosen we find that
K*=118.

Then, with K*, a, and b we can solve for the PID coefficients as

Chapter 11. Robust Control Systems

11.2. Robust PID Controlled Systems 155

follows:
K3 = K*—2=116,

K1 = 0(2 + K3) —-1= 1187,
K3 = b(2 + K3) = 8260.

To meet the overshoot performance requirements for a step input we
will utilize a cascade gain K that will be chosen by iterative methods
using the step function. This is illustrated in Figure 11.3. The step
response corresponding to K = 5 has an acceptable overshoot of
9%, With the addition of the gain K = 5, the final PID controller
is

2 2
G’c(s) K Kis* + Kis+ K, =5 1165 + 118'?3 +8260-

S 8

(11.2)

We did not used the prefilter as is done in the design Example 11.5 in
MCS, pp. 594-595. Instead we increased the system gain to obtain
satisfactory transient response. Now we can consider the question
of robustness to changes in the plant parameter co.

Our investigation into the robustness of our design consists of a
step response analysis using the PID controller given in Eq. (11.2)
for a range of plant parameter variations of ¢ € [0.1,10]. The results
are displayed in Figure 11.4. The script is written to compute the
step response for a given co. It might be a good idea to place the
input of ¢o at the command prompt level to make the script more
interactive. '

The simulation results indicate that the PID design is robust
with respect to changes in ¢o. The differences in the step responses
for ¢p € [0.1,10] are barely discernible on the plot. If the results
showed otherwise, it would be possible to iterate on the design until
an acceptable performance was achieved.

There exist various control design methods that incorporate ro-
bustness directly into the design process, but their presentation
here is outside the scope of this text. The interactive capability of
MATLARB allows us to check our robustness by simulation, although
this is clearly not the most desirable approach to design.

156 (’hapter 11. Robust Control Systems

1 .2 T T
Kel.
o :
£
= N
g
<
0
0 0.05 0.1 0.15 02 025 03 }
Time (sec) ;
tempstep.m

Ks=118; =]

a=16; b=70; __
K=5; -a-———o/ Inc
K3=Ks-2, K1=a*(
numgc=K*[K3 K1 K2]; dengc=[1 0];
numg=[1]; deng=[1 2 1];
%
nums=conv(numgc,numg); ,
&ens=conv(dengc,deng); - |
[num,den]=cloop(nums,dens);
step{num,den)

Figure 11.3 Step Response for the PID Temperature Controller,

11.2. Robust PID Controlled Systemns 157

L
)
2
= i
g
< : : :

02l -

% 0.05 0.1 0.15 02 025 03
Time (sec)
robustPID.m

c0=10;
numg=[1]; deng=[1 2*c0 c0A2];

numgc=5*[116 1187 8260]; dengc=[1 0];

% :
numa=conv(numg,numgc); dena=conv(deng,dengc);
%

[num,den]=cloop(numa,dena);

%

step(num,den)

Figure 11.4 Robust PID Controller Analysis with Variations in co.

158 Chapter 11. Robust Control Systems

Notes

Index/Glossary

axis Controls the manual axis
scaling on plots; 105

bode Computes a Bode frequency
response plot; 92-93, 107, 110,
122

clear Removes variables and
functions from memory; 6, 9
clg Clears plots from the graph
window; 16

cloop Computes the closed-loop
system with unity feedback; 26,
37-40, 122

conv Multiplies two polynomi-

als via convolution; 26, 31-32,
152

end Terminates a for function;
75 '

expm Computes the matrix ex-
ponential function; 130

feedback Computes the feed-
back interconnection of two sys-
tems; 26, 37-40, 49, 122

for Repeats a group of state-

ments a specific number of times;
71, 75

159

format Controls the output for-
mat; 9

grid Draws grid lines on the
current plot; 17

help Invokes the help facility;
22

impulse Computes the unit im-
pulse response of a system; 61,

63, 122

loglog Generates an z-y plot
using log-log scales; 17-18, 20
logspace Generates a logarith-
mically spaced frequency vec-
tor for frequency response anal-
ysis; 92-95

lsim Computes the time response
of a system to an arbitrary in-
put and initial conditions; 61,
66, 68, 122, 130

margin Computes the gain mar-
gin, phase margin, and associ-
ated crossover frequencies from
frequency response data; 103,
107-110

160

minreal Transfer function pole-
zero cancellation; 26, 44, 122

ngrid Draws grid lines on a
Nichols chart; 103, 110

nichols Computes a Nichols fre-
quency response plot; 103, 110,
122

nyquist Computes a Nyquist
frequency response plot; 103,
105-106, 122

pade Computes an n-th order
Padé approximation to a time
delay; 103, 112

parallel Computes a parallel
system connection; 26, 36-37,
122

plot Generates a linear z-y plot;
16-19, 45, 93, 105, 110

poly Returns the characteris-
tic equation when the input is
a matrix and returns a polyno-
mial when the input is a vec-
tor containing the roots of the
polynomial; 26, 31, 125-126
polyval Polynomial evaluation;
26, 32

printsys Prints state-space and
transfer function representations
of linear systems in a readable
form; 26, 34, 39, 40, 44, 46,
122-124

pzmap Plots the pole-zero map
of a linear system; 26, 32, 122

residue Computes the residues,

Index/Glossary

poles, and direct terms of a partiali §
fraction expansion; 82, 84-86, :
88, 122 |
rlocus Computes the root lo-
cus of a linear system; 82-83, 3
122 ﬁ
rlocfind Finds the gain asso- |
ciated with a given set of roots |
on a root locus plot; 82-83, 122, |
129, 146, 153 f
roots Computes the roots of a
polynomial; 26, 31, 72-73, 125 |
rootsl Same as the roots func- |
tion, but gives more accurate j
answers when there are repeated }
roots; 26, 31, 33

shg Shows the graph window;
16 .

series Computes a series sys-
tem connection; 26, 35-38, 40,
122, 152

semilogx Generates an z-y plot
using semilog scales with the 2-
axis logyp and the y-axis linear;
17-18, 20

semilogy Generates an z-yplot
using semilog scales with the
y-axis log)o and the z-axis lin-
ear; 17-18, 20 _
ss2tf Converts a state-space sys- |
tem representation to a trans- |
fer function representation; 122-
123 ' _
step Computes the unit step
response of a system; 26, 45-
46, 63, 87, 122, 155

Index/Glossary

subplot Subdivides the graph
display into sub-windows; 17,

20

tfes Converts a transfer func-
tion system representation to a
state-space representation; 122-

123
title Puts a title on the cur-

rent plot; 17

who Lists the variables in the
workspace; 7, 9-10

whos Lists the variables in the
workspace including their size
and type; 7,9

xlabel Puts an z-axis label on
the current plot; 17

ylabel Puts a y-axis label on
the current plot; 17

161

