

AutoCAD 2006 VBA
A Programmer’s
Reference

Joe Sutphin

5793fm_final.qxd 8/24/05 12:01 AM Page i

AutoCAD 2006 VBA: A Programmer’s Reference

Copyright © 2005 by Joe Sutphin

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN: 1-59059-579-3

Library of Congress Cataloging-in-Publication data is available upon request.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis
Technical Reviewers: Phillip Ash, Steve Johnson
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editors: Candace English, Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Janet Vail
Compositor: Linda Weidemann, Wolf Creek Press
Proofreaders: Linda Seifert and Sue Boshers
Indexer: Broccoli Information Management
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

5793fm_final.qxd 8/24/05 12:01 AM Page ii

This book is dedicated to my wife, Grace.
Without her, I would not be able to

accomplish the task of writing a book.

5793fm_final.qxd 8/24/05 12:01 AM Page iii

5793fm_final.qxd 8/24/05 12:01 AM Page iv

Contents at a Glance

About the Author . xxv

About the Technical Reviewers . xxvii

Acknowledgments . xxix

Introduction . xxxi

■CHAPTER 1 The VBA Integrated Development Environment (VBAIDE) 1

■CHAPTER 2 Introduction to Visual Basic Programming . 23

■CHAPTER 3 Application Elements . 55

■CHAPTER 4 AutoCAD Events . 67

■CHAPTER 5 User Preferences . 75

■CHAPTER 6 Controlling Layers and Linetypes . 87

■CHAPTER 7 User Interaction and the Utility Object . 111

■CHAPTER 8 Drawing Objects . 143

■CHAPTER 9 Creating 3-D Objects . 173

■CHAPTER 10 Editing Objects . 205

■CHAPTER 11 Dimensions and Annotations . 231

■CHAPTER 12 Selection Sets and Groups . 259

■CHAPTER 13 Blocks, Attributes, and External References 285

■CHAPTER 14 Views and Viewports. 321

■CHAPTER 15 Layout and Plot Configurations . 337

■CHAPTER 16 Controlling Menus and Toolbars . 355

■CHAPTER 17 Drawing Security . 383

■CHAPTER 18 Using the Windows API. 391

■CHAPTER 19 Connecting to External Applications . 403

■CHAPTER 20 Creating Tables . 415

■CHAPTER 21 The SummaryInfo Object . 427

■CHAPTER 22 An Illustrative VBA Application . 437

■APPENDIX A AutoCAD Object Summary . 447

■APPENDIX B AutoCAD Constants Reference . 631

■APPENDIX C System Variables . 671

■INDEX . 697 v

5793fm_final.qxd 8/24/05 12:01 AM Page v

5793fm_final.qxd 8/24/05 12:01 AM Page vi

Contents

About the Author . xxv

About the Technical Reviewers . xxvii

Acknowledgments . xxix

Introduction . xxxi

■CHAPTER 1 The VBA Integrated Development Environment
(VBAIDE) . 1

Visual Basic Concepts . 1

Windows, Events, and Messages . 1

Event-Driven vs. Procedural Programming . 2

Developing Your Applications Interactively . 3

Starting the Editor . 3

Exploring the User Interface . 4

The Project Explorer . 5

The Code Window . 5

The Properties Window. 6

The Object and Procedure Boxes . 6

The Immediate Window . 7

The Options Dialog Box. 8

Managing Projects. 9

Project Structure . 9

Creating, Opening, and Saving Projects. 10

Adding, Saving, and Removing Files. 12

Adding ActiveX Controls and Code Components 13

The Object Browser . 15

VBARUN and the Macros Dialog Box . 17

Overview of AutoCAD VBA Commands . 22

Summary . 22

vii

5793fm_final.qxd 8/24/05 12:01 AM Page vii

■CHAPTER 2 Introduction to Visual Basic Programming 23

Variables . 23

Declaring Variables . 23

Variable Scope and Lifetime . 25

Constants . 27

Data Types . 27

Introduction to Arrays . 29

Modules . 31

UserForm . 31

Procedures . 32

Calling Procedures . 34

Passing Arguments to Procedures . 34

Control Structures . 34

Decision Structures . 34

If ... Then . 35

If ... Then ... Else . 35

Select Case . 36

Loop Structures . 37

Do While ... Loop . 37

Do ... Loop While . 38

Do Until ... Loop and Do Loop ... Until 38

For ... Next . 39

For ... Each ... Next . 40

Nested Control Structures . 40

Exiting a Control Structure . 41

Exiting a Sub or Function Procedure . 42

With ... End With . 42

Application Writing Techniques . 43

Writing Statements on Multiple Lines . 43

Combining Statements on a Single Line . 43

Adding Comments to Your Code . 44

Overview of Object-Oriented Programming . 44

Objects and Classes . 44

Object Data . 45

Private Variables . 45

Public Variables . 45

An Object’s Behavior . 45

Debugging Basics . 46

Summary . 53

■CONTENTSviii

5793fm_final.qxd 8/24/05 12:01 AM Page viii

■CHAPTER 3 Application Elements . 55

Designing a UserForm . 55

Adding a UserForm to Your Application . 55

Setting UserForm Properties . 56

Adding a Control to a Form . 58

Visual Basic ActiveX Controls . 60

Label . 60

TextBox . 61

ComboBox . 61

ListBox . 62

CheckBox. 62

OptionButton . 63

ToggleButton . 63

Frame . 64

CommandButton. 64

Additional ActiveX Controls . 64

TabStrip. 64

MultiPage . 65

ScrollBar . 65

SpinButton . 65

Image . 65

Summary . 66

■CHAPTER 4 AutoCAD Events . 67

Application-Level Events . 67

Document-Level Events . 70

The BeginCommand and EndCommand Events 71

The BeginOpen and EndOpen Events . 72

The BeginClose and BeginDocClose Events. 72

The Activate and Deactivate Events . 73

The BeginSave and EndSave Events . 73

Object-Level Events . 73

Summary . 74

■CHAPTER 5 User Preferences . 75

Getting and Setting Support Path(s) . 77

Controlling Cursor Size . 78

Getting and Setting the AutoSaveInterval Property 78

Getting and Setting the Drawing Template File Path 79

■CONTENTS ix

5793fm_final.qxd 8/24/05 12:01 AM Page ix

Getting and Setting the Printer Support Path . 79

Getting and Setting the File SaveAs Type . 80

Enabling and Disabling the Startup Dialog Box . 82

Saving and Retrieving Personal Preferences . 83

User Preferences Changes in AutoCAD 2004 . 84

Summary . 85

■CHAPTER 6 Controlling Layers and Linetypes . 87

Layers . 87

Accessing Layers . 88

Iterating Layers . 88

Checking for Existing Layers . 89

Creating a New Layer . 91

Making a Layer Active . 92

Turning a Layer On/Off . 94

Setting a Layer to Be Frozen or Thawed . 95

Locking/Unlocking a Layer . 95

Making Layers Plottable . 96

Renaming a Layer . 96

Deleting a Layer . 97

Getting a Layer’s Handle. 98

Layer Colors . 98

Layer Linetypes . 99

Layer Lineweights . 100

Linetypes . 100

Accessing Linetypes . 101

Checking for Existing Linetypes . 102

Loading a Linetype . 103

Making a Linetype Active . 105

Renaming a Linetype . 106

Deleting a Linetype . 107

Getting a Linetype’s Handle . 108

Changing a Linetype’s Description . 108

Scaling Linetypes. 109

Summary . 110

■CONTENTSx

5793fm_final.qxd 8/24/05 12:01 AM Page x

■CHAPTER 7 User Interaction and the Utility Object 111

Interface Methods . 111

Input Methods and Dialogs . 111

The Prompt Method . 113

The InitializeUserInput Method . 113

The GetXXX Methods . 115

Handling Errors in User Input . 128

Conversion Methods . 129

The AngleToReal Method . 129

The AngleToString Method . 130

The DistanceToReal Method . 130

The RealToString Method. 131

The AngleFromXAxis Method . 132

The PolarPoint Method . 133

The TranslateCoordinates Method . 134

Internet Methods . 136

The IsURL Method . 136

The LaunchBrowserDialog Method . 137

The GetRemoteFile Method . 139

The IsRemoteFile Method. 140

The PutRemoteFile Method . 140

Summary . 141

■CHAPTER 8 Drawing Objects . 143

Controlling the Drawing Space . 143

The ModelSpace and PaperSpace Collections. 144

Creating Objects . 145

Circular Objects . 145

Line Objects . 150

Other Objects of Interest . 162

Summary . 172

■CONTENTS xi

5793fm_final.qxd 8/24/05 12:01 AM Page xi

■CHAPTER 9 Creating 3-D Objects . 173

Understanding the 3DSolid Object. 173

Creating Simple Solid Objects . 174

The Box . 174

The Cone . 176

The Cylinder . 177

The Sphere . 179

The Torus . 180

The Wedge . 181

Creating Elliptical 3-D Objects . 183

The Elliptical Cone . 183

The Elliptical Cylinder . 185

Creating Extruded and Revolved Objects . 186

The Extruded Solid . 187

The Extruded Solid Along a Path . 189

The Revolved Solid . 191

Editing Solids . 194

Boolean Operations . 194

Interference Operation . 196

Slicing Solids . 198

Sectioning Solids . 199

Analyzing Solids: Mass Properties . 201

Summary . 203

■CHAPTER 10 Editing Objects . 205

Editing with Methods . 205

Copying Objects . 206

Deleting Objects . 206

Exploding Objects . 207

Highlighting Entities . 208

Mirroring Objects . 209

Moving Objects . 212

Offsetting Objects . 213

Rotating Objects. 215

Scaling Objects . 218

Object Arrays . 219

■CONTENTSxii

5793fm_final.qxd 8/24/05 12:01 AM Page xii

Editing with Properties . 223

Changing an Object’s Color . 223

Changing an Object’s TrueColor Property 225

Changing an Object’s Color Properties. 226

Changing an Object’s Layer . 226

Changing an Object’s Linetype . 227

Changing an Object’s Visibility . 228

The Update Method . 229

Summary . 229

■CHAPTER 11 Dimensions and Annotations . 231

Working with Dimensions . 231

Using the DimStyle Object . 231

Setting Dimension Styles . 232

Using the CopyFrom Method . 232

Using Dimension Styles . 233

Creating Dimensions . 235

Using the Tolerance Object . 245

Working with Annotations . 248

Using the TextStyle Object . 248

Using a TextStyle . 254

Adding Annotations . 256

Using the Leader Object . 256

Summary . 258

■CHAPTER 12 Selection Sets and Groups . 259

Selection Sets . 259

Adding a SelectionSet Object . 259

Accessing and Iterating Selection Sets . 260

Selecting Entities . 261

Adding and Removing Items . 273

The Clear, Delete, and Erase Methods . 276

The PickFirstSelectionSet Property . 277

Groups . 278

Adding a Group Object . 279

Accessing and Iterating Groups . 279

Adding and Removing Items . 280

The Delete Method . 282

Summary . 283

■CONTENTS xiii

5793fm_final.qxd 8/24/05 12:01 AM Page xiii

■CHAPTER 13 Blocks, Attributes, and External References 285

Blocks and Block References . 286

Accessing Block Objects . 288

Creating Blocks . 289

Defining and Manipulating Blocks . 294

Using MInsertBlock Objects . 301

Using External References . 305

Attributes . 310

Creating Attributes. 310

Manipulating Attribute References . 315

Summary . 320

■CHAPTER 14 Views and Viewports . 321

Views . 321

Creating a View . 322

Setting a View as Current . 324

Deleting a View . 324

Viewports . 325

The Model-Space Viewport . 325

The Paper-Space Viewport . 331

Summary . 336

■CHAPTER 15 Layout and Plot Configurations . 337

The Plot Object . 337

Plotting Your Drawing . 338

Plot Configurations . 343

Controlling Plot Parameters . 347

Summary . 354

■CHAPTER 16 Controlling Menus and Toolbars . 355

The MenuGroups Collection . 356

Loading Menu Groups . 356

■CONTENTSxiv

5793fm_final.qxd 8/24/05 12:01 AM Page xiv

The MenuGroup Object . 359

Saving Menu Groups . 361

Unloading Menu Groups . 362

Accelerator Keys . 362

Changing the Menu Bar . 362

Editing Menus . 369

Editing Toolbars . 376

Summary . 382

■CHAPTER 17 Drawing Security . 383

Digital Signatures . 383

The Action Property . 384

The Algorithm Property . 385

The Issuer Property . 385

The ProviderName Property . 386

The SerialNumber Property . 386

The Subject Property . 386

The TimeServer Property . 387

Password Protection . 387

Summary . 389

■CHAPTER 18 Using the Windows API . 391

Declarations . 391

Windows Data Structures . 392

Visual Basic-to-DLL Calling Conventions . 392

Specifying the Library. 393

The Major Windows DLLs . 394

Working with Windows API Procedures That Use Strings. 394

Passing Arguments by Value or by Reference . 395

Learning by Example . 395

OpenFile Common Control Dialog Replacement for VBA. 395

SaveAsFile Common Control Dialog Replacement for VBA 398

Retrieving the Status of the Caps Lock, Num Lock,
and Scroll Lock Keys . 400

Summary . 402

■CONTENTS xv

5793fm_final.qxd 8/24/05 12:01 AM Page xv

■CHAPTER 19 Connecting to External Applications . 403

Making the Connection . 403

Connecting to Microsoft Excel . 405

Creating a New Workbook . 405

Creating a New Worksheet . 405

Accessing a Worksheet . 406

Writing and Reading Cells . 406

Saving and Exiting Excel . 406

Connecting to Microsoft Word . 407

Creating a New Document . 407

Adding Text to the Document . 407

Setting Page Orientation . 407

Setting Margins . 407

Setting the Document Header and Footer . 408

Saving and Exiting Word . 408

Connecting to a Microsoft Access Database . 408

Connecting to a Database File . 408

Retrieving a Set of Records . 409

Writing Values to the Database File . 410

Closing the Connection . 410

Working with Other Databases . 410

Connectivity Automation Objects . 411

Advanced Database Issues . 411

Working with Services and Other APIs . 411

Summary . 413

■CHAPTER 20 Creating Tables . 415

The AddTable Method . 415

The RegenerateTableSuppressed Property . 416

The GetText Method . 416

The SetText Method . 417

The GetTextHeight Method . 418

The SetTextHeight Method . 419

The InsertRows Method . 420

The InsertColumns Method . 421

Putting It All Together . 423

Summary . 426

■CONTENTSxvi

5793fm_final.qxd 8/24/05 12:01 AM Page xvi

■CHAPTER 21 The SummaryInfo Object . 427

Overview . 428

Properties . 428

The Author Property . 428

The RevisionNumber Property . 429

The Subject Property . 429

The Title Property . 430

Adding Custom SummaryInfo . 430

The AddCustomInfo Method . 430

The GetCustomByKey Method . 431

The NumCustomInfo Method . 432

The GetCustomByIndex Method . 432

The RemoveCustomByKey Method. 433

The RemoveCustomByIndex Method . 433

The SetCustomByKey Method . 434

The SetCustomByIndex Method . 434

Summary . 435

■CHAPTER 22 An Illustrative VBA Application . 437

Start Building the Application . 438

Writing the Code . 438

Initial Declarations . 438

Create a Session of Microsoft Word . 439

Create a New Document in Word . 440

Create a Table with the Word Document . 440

Create Column Headings . 440

Populate the Table with AutoCAD Layer Data 441

Helper Functions . 442

Adjust the Fonts . 444

Sort the Table . 444

Autofit Column Text . 445

Add Page Header and Footer . 445

Print the Report . 446

Summary . 446

■CONTENTS xvii

5793fm_final.qxd 8/24/05 12:01 AM Page xvii

■APPENDIX A AutoCAD Object Summary . 447

AutoCAD Collections . 447

The Application Property . 448

The AcadObject Object . 448

The AcadEntity Object . 451

AcadDimension Object . 454

AutoCAD Object Reference . 457

Acad3DFace Object . 457

Acad3DPolyline Object . 459

Acad3DSolid Object . 460

AcadApplication Object . 461

AcadArc Object . 465

AcadAttribute Object . 466

AcadAttributeReference Object . 468

AcadBlock Object . 469

AcadBlockReference Object . 476

AcadBlocks Collection . 477

AcadCircle Object . 478

AcadDatabase Object. 479

AcadDatabasePreferences Object . 480

AcadDictionaries Collection. 482

AcadDictionary Object . 483

AcadDim3PointAngular Object . 484

AcadDimAligned Object . 486

AcadDimAngular Object . 491

AcadDimArcLength Object . 492

AcadDimDiametric Object . 497

AcadDimOrdinate Object . 501

AcadDimRadial Object . 504

AcadDimRadialLarge Object . 508

AcadDimRotated Object . 513

AcadDimStyle Object . 517

AcadDimStyles Collection . 518

AcadDocument Object. 519

AcadDocuments Collection . 525

AcadDynamicBlockReferenceProperty Object 526

AcadEllipse Object . 527

AcadExternalReference Object. 528

AcadFileDependency Object . 529

AcadFileDependencies Object . 529

■CONTENTSxviii

5793fm_final.qxd 8/24/05 12:01 AM Page xviii

AcadGroup Object . 530

AcadGroups Collection . 531

AcadHatch Object . 531

AcadHyperlink Object . 534

AcadHyperlinks Collection . 535

AcadIDPair Object . 535

AcadLayer Object . 536

AcadLayers Collection . 537

AcadLayout and AcadPlotConfiguration Objects 538

AcadLayouts and AcadPlotConfigurations Collections 541

AcadLeader Object . 542

AcadLine Object . 544

AcadLineType Object . 545

AcadLineTypes Collection . 546

AcadLWPolyline Object . 547

AcadMenuBar Collection . 548

AcadMenuGroup Object . 549

AcadMenuGroups Collection . 550

AcadMInsertBlock Object . 551

AcadMLine Object . 552

AcadModelSpace Collection . 553

AcadMText Object . 553

AcadPaperSpace Collection . 555

AcadPlot Object . 555

AcadPlotConfiguration Object. 557

AcadPlotConfigurations Collection . 557

AcadPoint Object . 557

AcadPolyfaceMesh Object . 558

AcadPolygonMesh Object . 559

AcadPolyline Object . 561

AcadPopupMenu Object . 563

AcadPopupMenuItem Object . 565

AcadPopupMenus Collection . 566

AcadPreferences Object . 567

AcadPreferencesDisplay Object . 568

AcadPreferencesDrafting Object . 570

AcadPreferencesFiles Object . 572

AcadPreferencesOpenSave Object . 574

AcadPreferencesOutput Object. 575

AcadPreferencesProfiles Object . 576

■CONTENTS xix

5793fm_final.qxd 8/24/05 12:01 AM Page xix

AcadPreferencesSelection Object . 577

AcadPreferencesSystem Object. 578

AcadPreferencesUser Object . 579

AcadPViewport Object . 580

AcadRasterImage Object . 583

AcadRay Object. 585

AcadRegion Object . 586

AcadRegisteredApplication Object . 587

AcadRegisteredApplications Collection. 587

AcadSelectionSet Object . 588

AcadSelectionSets Collection . 590

AcadShape Object . 590

AcadSolid Object . 591

AcadSortEntsTable Object . 592

AcadSpline Object . 593

AcadState Object . 595

AcadSummaryInfo Object . 596

AcadTable Object . 597

AcadTableStyle Object . 604

AcadText Object . 606

AcadTextStyle Object . 607

AcadTextStyles Collection . 609

AcadTolerance Object . 609

AcadToolbar Object . 611

AcadToolbarItem Object . 613

AcadToolbars Collection . 614

AcadTrace Object . 615

AcadUCS Object. 616

AcadUCSs Collection . 617

AcadUtility Object . 618

AcadView Object . 621

AcadViewport Object . 622

AcadViewports Collection . 624

AcadViews Collection . 625

AcadXline Object . 626

AcadXRecord Object . 626

SecurityParams Object . 627

AcCmColor Object . 628

LayerStateManager Object . 629

■CONTENTSxx

5793fm_final.qxd 8/24/05 12:01 AM Page xx

■APPENDIX B AutoCAD Constants Reference . 631

Ac3DPolylineType . 631

AcActiveSpace . 631

ACAD_LWEIGHT. 631

AcAlignment . 632

AcAlignmentPointAcquisition. 633

AcAngleUnits. 633

AcARXDemandLoad . 634

AcAttachmentPoint. 634

AcAttributeMode . 634

AcBlockScaling . 635

AcBooleanType . 635

AcCellAlignment . 635

AcCellEdgeMask . 636

AcCellType . 636

AcColor. 637

AcColorMethod . 638

AcCoordinateSystem . 638

AcDimArcLengthSymbol . 639

AcDimArrowheadType . 639

AcDimCenterType . 640

AcDimFit . 640

AcDimFractionType. 640

AcDimHorizontalJustification . 641

AcDimLUnits . 641

AcDimPrecision . 641

AcDimTextMovement. 642

AcDimToleranceJustify . 642

AcDimToleranceMethod . 642

AcDimUnits . 643

AcDimVerticalJustification . 643

AcDrawingAreaSCMCommand . 644

AcDrawingAreaSCMDefault . 644

AcDrawingAreaSCMEdit . 644

AcDrawingDirection . 645

AcDynamicBlockReferenceProperty . 645

AcEntityName. 645

AcExtendOption . 646

AcGradientPatternType . 647

AcGridLineType . 647

■CONTENTS xxi

5793fm_final.qxd 8/24/05 12:01 AM Page xxi

AcHatchObjectType. 647

AcHatchStyle. 648

AcHorizontalAlignment . 648

AcInsertUnits . 648

AcISOPenWidth . 649

AcKeyboardAccelerator . 650

AcKeyboardPriority . 650

AcLeaderType. 650

AcLineSpacingStyle . 650

AcLineWeight. 651

AcLoopType . 652

AcMenuFileType . 652

AcMenuGroupType . 652

AcMenuItemType . 652

AcMLineJustification . 653

AcOleQuality. 653

AcPatternType . 653

AcPlotPaperUnits . 654

AcPlotPolicy. 654

AcPlotRotation . 654

AcPlotScale . 654

AcPlotType . 656

AcPolylineType . 656

AcPolymeshType . 656

AcPreviewMode . 657

AcPrinterSpoolAlert . 657

AcProxyImage. 657

AcRegenType . 657

AcRotationAngle . 658

AcRowType . 658

AcSaveAsType. 659

AcSelect . 659

AcSelectType. 660

AcShadePlot . 660

AcTableDirection . 661

AcTableStyleOverrides . 661

AcTextFontStyle . 665

AcTextGenerationFlag . 665

AcToolbarDockStatus . 666

AcToolbarItemType. 666

■CONTENTSxxii

5793fm_final.qxd 8/24/05 12:01 AM Page xxii

AcUnits. 666

AcVerticalAlignment . 667

AcViewportScale . 667

AcViewportSplitType . 668

AcWindowState . 669

AcXRefDemandLoad . 669

AcZoomScaleType . 669

■APPENDIX C System Variables. 671

The GetVariable Method. 671

The SetVariable Method. 672

■INDEX . 697

■CONTENTS xxiii

5793fm_final.qxd 8/24/05 12:01 AM Page xxiii

5793fm_final.qxd 8/24/05 12:01 AM Page xxiv

About the Author

■JOE SUTPHIN’s background includes more than 25 years in the machinery
manufacturing industry. He has more than 18 years of CAD experience with
12+ years of AutoCAD-specific experience. Joe is an Autodesk-registered
developer, and his work has appeared in the pages of Cadence and Cadalyst
magazines. He has been programming for nearly 20 years, with the last
15 years being Visual Basic–specific experience. In 1998 he collaborated
with Microsoft on a Visual Basic application case study. He is the author
of the best-selling book AutoCAD 2000 VBA Programmer’s Reference.

xxv

5793fm_final.qxd 8/24/05 12:01 AM Page xxv

5793fm_final.qxd 8/24/05 12:01 AM Page xxvi

About the Technical Reviewers

■PHILLIP ASH began programming in the early 80s when public schools had either Apple IIs or
TRS-80s. DOS was loaded from a cassette player, and BASIC was the lingua franca of the tyro
programming set. He got involved in computer-aided design as a hobby in the late 80s, and
after a few semesters in an architectural design and drafting curriculum, he took a job as an
AutoCAD drafter/designer at a naval architecture firm in Portsmouth, Virginia. It was there he
was introduced to AutoLISP.

For the next few years, Phill wrote code exclusively in AutoLISP. He began dabbling with
Visual Lisp shortly after its inception and, at about the same time, started writing macros for
Excel in Visual Basic for Applications. When Autodesk included VBA in AutoCAD, everything
came together.

Eight years later, Phill is a senior developer of ShipWorks, the only shipbuilding AutoCAD
add-on used by Northrop Grumman Newport News in the design of next-generation aircraft
carriers.

Phill lives in Virginia Beach, Virginia, with his wife, Amy; sons, Alex and Rowan; and
daughter, Morgan.

■STEVE JOHNSON was born in England but has lived in Perth, Western Australia, since 1984. He
is married with two children and has a bachelor’s degree in applied science (information sci-
ence). Steve has been an AutoCAD specialist since 1985. His company, cad nauseam, provides
AutoCAD-based consulting, development, support, training, and technical writing services.
His software for AutoCAD is used by hundreds of clients around the world.

Steve is a contributing editor of Cadalyst magazine and has written the monthly column
Bug Watch since 1995. He is also the vice president, Asia Pacific, of Cadlock and a past president
of the Western Australian AutoCAD User Group (WAAUG). As a former committee member on
the Applications Programming Special Interest Group of the North American Autodesk User
Group, he contributed to the NAAUG newsletter. NAAUG is now known as Autodesk User Group
International (AUGI). Steve was part of the AUGI Benchmark Committee, which assisted in the
development of the AUGI Gauge, a comprehensive AutoCAD benchmark.

xxvii

5793fm_final.qxd 8/24/05 12:01 AM Page xxvii

5793fm_final.qxd 8/24/05 12:01 AM Page xxviii

Acknowledgments

I have many, many people to thank on this project. Please forgive me if I miss mentioning
your name. First, the people at Apress: without them I would not have had the opportunity
to create this work. Thanks to Gary Cornell for his initial acceptance and input, Kylie Johnston
for coordinating things, and Tony Davis for getting it all started.

A great big thank you to the editorial and production staff: Candace English and
Kim Wimpsett, my copy editors; Janet Vail, production editor; Nancy Wright, formatter;
Linda Weidemann, compositor; Linda Seifert, proofreader; and Kevin Broccoli, indexer.
I enjoyed working with each of you.

Second, a special thanks to my technical reviewers, Phillip Ash and Steve Johnson.
A special thank you to my children—Stephen, Clair, David, and Emily—for understanding

when Daddy had to work.
Lastly, thanks to those who helped and whose names I forgot to include here. To everyone

in the AutoCAD community with whom I’ve had the pleasure of crossing paths, from the bot-
tom of my heart, thanks!

xxix

5793fm_final.qxd 8/24/05 12:01 AM Page xxix

5793fm_final.qxd 8/24/05 12:01 AM Page xxx

Introduction

This book provides a concise guide to the kind of customization programmers can achieve
with AutoCAD 2006. It demonstrates how to use AutoCAD through short code examples writ-
ten in Visual Basic for Applications (VBA). It also includes a complete quick reference that lists
all the events, methods, and properties available with AutoCAD. Finally, it describes all the
constants and system variables.

What Is AutoCAD?
So, what is AutoCAD? First released in 1982 under the name MicroCAD, AutoCAD has become a
powerful tool for drafting and design purposes. AutoCAD 2006 incorporates many new features
to enhance flexibility and drawing control. To reflect this extra functionality, many new ActiveX
objects, properties, methods, and events have been included for improved programmability.

What Is This Book About?
This book is about AutoCAD 2006 and how to use AutoCAD VBA in your applications to han-
dle all your drawing tasks more efficiently. It shows you how to programmatically control the
creation and editing of individual drawing objects, manipulate linetypes and layers, control
text and dimension styles, and do much more. As you encounter each of these topics, you’ll
learn all about the associated objects, including their properties, methods, and events.

By interfacing with AutoCAD, you can exploit all of AutoCAD’s functionality that would
have taken you a long time to write yourself. This book will first help you learn how to use this
functionality. Then it will become a handy reference later, when you have a question that you
just can’t answer.

This book splits topics into neat and intuitive segments and makes it easy to find specific
information when you need it (that is, when you’re coding real-world applications).

This book is divided into three main parts:

• Chapters 1 through 3 provide a rapid introduction to Visual Basic and explain the nota-
tion and commands particular to AutoCAD VBA projects.

• Chapters 4 through 22 supply a detailed breakdown of most of the AutoCAD object
model, covering common tasks complete with several varied code examples demon-
strating how to use the relevant objects’ methods and properties.

• Finally, the quick-reference appendixes describe all the members of all the AutoCAD
objects at a glance. Appendix D, on Object Model Cross-Reference, can be found on the
Apress website (www.apress.com).

xxxi

5793fm_final.qxd 8/24/05 12:01 AM Page xxxi

Who Is This Book For?
The book is a reference guide for AutoCAD programmers, and it’s primarily designed to
explain and demonstrate the features of AutoCAD 2006. As such, this isn’t a beginner’s guide;
however, if you’ve programmed in any language that can interface with other COM objects,
you should be able to easily understand and use this book.

In particular, the book is aimed at programmers who use AutoCAD for daily tasks and can
see the benefits of customizing and automating these tasks. I present programming techniques
needed to create and modify AutoCAD drawings, customize preferences, query and set system
variables, and so on, using the built-in VBA.

You can customize AutoCAD to any degree of sophistication. If you can think it up, then
I bet you can use AutoCAD VBA and this book to help you achieve your goal.

Tell Us What You Think
I’ve worked hard on this book to make it enjoyable and useful. My best reward would be to
hear from you that you liked it and that it was worth the money you paid for it. I’ve done my
best to try to understand and match your expectations.

Apress and I would like to know what you think about it. Tell us what you liked best, and
what we could have done better. If you think this is just a marketing gimmick, then test us—
drop us a line! We’ll answer, and we’ll take whatever you say under consideration for future
editions. The easiest way to do so is to send e-mail to feedback@apress.com.

You can also find more details about Apress on the Web site at http://www.apress.com.
There you’ll find the code from the latest Apress books, sneak previews of forthcoming titles,
and information about the authors and editors. You can order Apress titles directly from the
site or find out where your nearest local bookstore with Apress titles is located.

Customer Support
If you find a mistake in the book, your first port of call should be the errata page for this book
on the Web site at http://www.apress.com. You can see any errata already posted there or sub-
mit your own.

If you can’t find an answer there, send an e-mail to support@apress.com telling us about
the problem. We’ll do everything we can to answer promptly. Please remember to let us know
the book title your query relates to and, if possible, the page number. This will help us reply to
you quickly.

■INTRODUCTIONxxxii

5793fm_final.qxd 8/24/05 12:01 AM Page xxxii

The VBA Integrated
Development Environment
(VBAIDE)

Within AutoCAD, you develop VBA programs in the Visual Basic for Applications (VBA) Inte-
grated Development Environment (IDE). As it does with the Visual LISP IDE, Autodesk provides
the VBAIDE as an integral part of many of its products, including AutoCAD. Unlike the Visual
LISP IDE, however, Microsoft licenses the VBAIDE to Autodesk for inclusion in its products.
Therefore, its features are from Microsoft, not Autodesk.

This chapter explores the VBAIDE environment’s facets and shows you how to take
advantage of its tools. It covers these topics:

• Visual Basic concepts

• Starting the editor

• Exploring the user interface

• Managing projects

• Using the text editor

• The Object Browser

Visual Basic Concepts
Since VBA is a Microsoft Windows development environment, you’ll find developing in
VBA easiest if you have some knowledge of Windows. If you are new to Windows, you’ll
find fundamental differences between programming in Windows and programming in
other environments, such as Visual LISP. The next sections outline concepts of Windows
programming that may be new to you.

Windows, Events, and Messages
Explaining the inner workings of Windows requires much more space than is available in this
book. But you don’t need an extensive knowledge of the Windows workings to create useful

1

C H A P T E R 1

■ ■ ■

5793c01_final.qxd 8/22/05 2:41 AM Page 1

applications. The Windows operating system can be simplified to three basic concepts: win-
dows, events, and messages.

A window is a rectangular region on the screen that has its own border. The AutoCAD
drawing window, Notepad, a Word document, and the place where you compose an e-mail
are all windows.

Windows can have hierarchy. A dialog form, which is a window within a distinct appli-
cation, contains relevant ActiveX components and code. A drawing window is the parent of
a dialog form window, and AutoCAD is the parent of the drawing windows within it. The oper-
ating system is the parent “window” of all applications running in it, including AutoCAD.

Each window recognizes and controls the programs that execute inside them or their sub-
ordinate windows. To manage windows, Windows assigns a unique ID known as a handle, or
hWnd in programming jargon, to each window. Windows uses events to constantly monitor
each window for signs of activity. Events change the application environment or system state.
They occur when a user acts, such as by clicking the mouse or pressing a key; programmati-
cally; or by another window through system processes.

Each time an event is triggered, Windows sends a message to the hosting application.
Windows processes the message and broadcasts it to the windows. Then, based on its own
instructions, each window can take appropriate action such as repainting itself when uncov-
ered by another window. In the case of VBA in AutoCAD, the VBA work space intercepts event
messages. VBA programs can then respond directly or pass the event up to AutoCAD or to
Windows if necessary. VBA provides a controlling environment within AutoCAD in which to
execute and respond to events, either directly or by allowing AutoCAD or Windows to respond.

Although this seems like a lot of work, VBA hides most of the low-level details from you
and exposes event procedures, which are routines that execute when a particular event occurs,
for your convenience. You can quickly create very powerful applications without being con-
cerned with low-level details.

Event-Driven vs. Procedural Programming
When a traditional procedural application runs, it follows a predetermined path that con-
trols the portions and sequence of code executed. It starts with the first line of code and
progresses from the top down, calling each procedure when needed, until reaching the end
of the code. This predetermined path is the major difference between procedural and event-
driven applications.

Event-driven applications do not have a predetermined destiny. Different sections of
code are executed based upon the events triggered in whatever order they occur. Depending
on what events occur when the application runs, some sections of code may not get executed
at all.

You can’t predict the sequence of events, so you must make assumptions about the
application’s “state” at any moment. This seems like it would be difficult, but it’s really not.
Typically, you have a set of possibilities to work with, such as the Click, DblClick, KeyPress,
and LostFocus events. For example, you might require the user to type a value in a TextBox
before enabling a CommandButton that allows further processing. The TextBox control’s Change
event would contain code that enables the CommandButton control, as shown in this sample
code:

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)2

5793c01_final.qxd 8/22/05 2:41 AM Page 2

Private Sub TextBox1_Change()

If Len(TextBox1.Text) > 0 Then

CommandButton1.Enabled = True

Else

CommandButton1.Enabled = False

End If

End Sub

Each time you add or delete text from the TextBox control, the program executes this
event procedure. The code checks the length of the text and if it is greater than zero, meaning
there is something in the TextBox, it enables the CommandButton. Otherwise, it disables the
CommandButton.

Programmatically changing the text in the TextBox triggers the Change event. If you allow
for this occurrence, you might get unexpected results. Using events is very powerful, but you
must know what each event might trigger elsewhere in your application.

Developing Your Applications Interactively
In more-traditional development environments, most developers follow a distinct three-step
process: writing, compiling, and testing. However, VBA uses a more interactive approach to
development that makes it easier for both beginning and experienced developers.

Languages such as C++ require you to write all the code then compile it. During the com-
pile, you may uncover numerous errors, from simple typing errors to more-complex syntax
errors. The Visual Basic programming environment, on the other hand, interprets your code
every line of the way, alerting you to potential problems now instead of during a lengthy com-
pile cycle.

Because Visual Basic is partially compiling your code as you type it, it takes very little time
to finish compiling the code and execute your application. Unlike with other languages, you
will find that you are constantly writing, executing, and refining your application. In addition,
the Visual Basic environment employs a graphical environment. You most often work in the
graphical interface first and on the code second. This lets you spend more time creating and
less time compiling and recompiling.

Starting the Editor
One of the first questions that you will face is “How do I enter source code (structured com-
mands) or develop a user interface (forms or dialog boxes)?” The answer is the IDE, a
graphical user interface you use to develop applications. It is similar to development environ-
ments provided in other applications, such as Microsoft Access and Microsoft Excel.

To display the VBAIDE, choose Tools ➤ Macro ➤ Visual Basic Editor or press Alt+F11.
Alternatively, you can start the editor by typing VBAIDE at the AutoCAD command prompt, as
shown in Figure 1-1.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 3

5793c01_final.qxd 8/22/05 2:41 AM Page 3

■Note AutoCAD includes a Visual Basic menu and toolbar. You can load it by copying ACAD.DVB from
\Sample\VBA\VBAIDEMenu (in the AutoCAD folder) to a directory in your support path. The toolbar will then
autoload when the first VB command is launched. If you already have an ACAD.DVB, you can cut and paste
from the provided ACAD.DVB to your own. This provides an AutoCAD toolbar for the following commands:
VBAIDE, VBAPREF, VBAMAN, VBALOAD, and VBARUN. This also adds New, Open, and Close to the File pull-
down on the VBAIDE toolbar.

Exploring the User Interface
The editor is composed of several different windows. The first time you open it, it looks like
Figure 1-2. Use the View menu to control which windows are visible. To get context-sensitive
help on any window, click in it and press F1.

The rest of this section discusses the most frequently used windows.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)4

Figure 1-1. The AutoCAD command prompt

Figure 1-2. The AutoCAD VBAIDE

5793c01_final.qxd 8/22/05 2:41 AM Page 4

The Project Explorer
The Project Explorer window displays a hierarchical view called a treeview of your project’s
components that are loaded in the IDE. The view lists all of the UserForms, code, and class
modules associated with each project. Use this window
to keep track of and move components between projects.
Figure 1-3 shows what a typical Project Explorer window
looks like.

As you add, create, and remove files, the Project Ex-
plorer reflects those changes. You can save each project
with a .dvb extension or you can embed it directly into
a drawing file. You can’t delete the required ThisDrawing
object, which represents the active drawing, but nothing
requires you to place code in this module.

You can close the Project Explorer window to gain
more space in the IDE. To reopen it, choose View ➤
Project Explorer or press Ctrl+R.

The Code Window
The Code window is where you’ll do most of your development work to manipulate AutoCAD.
You can have a window open for each module in the project, as shown in Figure 1-4.

Alternatively, you can see one window at a time by clicking the window’s maximize button,
shown in Figure 1-5, which is in its upper-right corner.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 5

Figure 1-3. Project properties

Figure 1-4. Cascaded VBAIDE windows

Figure 1-5. Click the maximize button to see one window at a time.

5793c01_final.qxd 8/22/05 2:41 AM Page 5

Later, this chapter discusses features such as Auto List Members and Auto Quick Info that
make writing code easier and less prone to common typing errors.

The Properties Window
Properties control an object’s behavior. You can query or control properties of AutoCAD enti-
ties, such as the color or linetype of a Line object, using the Color or Linetype properties.

The Properties window displays an object’s design-time prop-
erties. You can change design-time properties while you develop
your application. Changing properties during development has
no effect on what you do in the IDE. However, any of these prop-
erty changes could affect how well (and sometimes whether) your
application will run. Figure 1-6 shows the properties of a typical
UserForm object.

■Note Design time is when you develop your application in the IDE,
writing code and adding forms and controls.

If you need to set a particular property once, set it at design
time in the Properties window. But you will sometimes need to
set a property’s value at run time. Additionally, some properties
are read-only and some are available only at run time. Each situ-

ation requires that you set the property value programmatically (using code).
You can close the Properties window to gain more space in the IDE. To reopen the Proper-

ties window, choose View ➤ Properties Window or press F4.

The Object and Procedure Boxes
The Object box (the left half of Figure 1-7) lists all the objects and controls in your project. The
Procedure box (the right half of Figure 1-7) lists all the procedures and events implemented in
your application.

When you select an object from the Object box, the procedures associated with that
object appear in the Procedure box. Figure 1-8 shows that after you choose a procedure, the
IDE adds its basic framework to your code window, where you write your source code.

When a procedure or event does not appear in bold type in the Procedure box, it contains
no code. Incidentally, when you choose an object, the IDE adds its default event procedure to
the Code window. You may or may not choose to use the default procedure.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)6

Figure 1-6. The Properties
dialog box for a typical
UserForm object

5793c01_final.qxd 8/22/05 2:41 AM Page 6

The Immediate Window
The Immediate window serves as a convenient place to send output from a running appli-
cation during development. Alternatively, you can use it to set variables when you run an
application, or to check a variable’s value, such as the path to the AutoCAD executable file
as shown in Figure 1-9.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 7

Figure 1-7. Object and Procedure boxes

Figure 1-8. A VBAIDE procedure example

Figure 1-9. Executing in the Immediate window

5793c01_final.qxd 8/22/05 2:41 AM Page 7

In this example, use a question mark (?) to ask the VBAIDE to tell you a variable’s value.
To set a variable’s value in the Immediate window, type the statement just as you would in the
Code window. Figure 1-10 shows how it’s done.

■Note You can’t declare variables in the Immediate window. Also, a variable’s scope and valid VBA
commands in the Immediate window are equally important. Chapter 2 covers variable scope.

The Options Dialog Box
The Options dialog box, shown in Figure 1-11, lets you customize the IDE’s look and feel, in-
cluding syntax color scheme, source code font, and tab spacing. To open the Options dialog
box, choose Tools ➤ Options. This section covers the most commonly used options.

For most developers, the default settings are fine. However, you should consider changing
two settings on the Editor tab: Auto Syntax Check and Require Variable Declaration.

When the Auto Syntax Check option is checked, syntax errors in your code generate an
error message similar to Figure 1-12.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)8

Figure 1-10. Setting a variable in Immediate window

Figure 1-11. The Options dialog box

5793c01_final.qxd 8/22/05 2:41 AM Page 8

As you begin to develop more complex applications and
reuse lines of code from other places in your application, these
error messages will become a nuisance. Any time you move the
cursor off the offending line of code, you get one of these error
messages. But if you uncheck Auto Syntax Check, the VBAIDE
notifies you of errors by changing the color of the offending
line of code to red.

The Require Variable Declaration option is unchecked by
default, meaning that the VBAIDE does not require that you
properly declare your variables before you use them. This isn’t
much of a concern when you write a simple macro, but when you start developing larger and
more complex applications, you’ll find this option indispensable. Checking this option forces
you to think about each variable and its data type. When you check this option, the VBAIDE
adds a line of code to the start of each module, as shown in Figure 1-13.

After you check this option, exit and restart AutoCAD to make it take effect.
By declaring variables to be a specific data type, you save memory resources. Undeclared

variables are, by default, assigned the variant data type. This data type uses the most memory
and could lead to memory resource problems when users run your application. As a rule of
thumb, always declare each variable you use in your application, and choose the data type that
uses the least possible memory. Chapter 2 discusses data types and memory in more detail.

Managing Projects
Managing your code components is critical to successfully developing applications. This
section discusses adding components to your project, saving your project, and loading and
executing an application.

Project Structure
A VBA project contains several different types of files, including the following:

• UserForm module

• Standard module

• Class module

• Reference .dvb file

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 9

Figure 1-12. The error-
message dialog box

Figure 1-13. An example of the checked Require Variable Declaration

5793c01_final.qxd 8/22/05 2:41 AM Page 9

UserForm Module
UserForm modules (files with a .frm extension) contain a text description of your form, controls
placement, and property settings. They also include UserForm-level declarations of constants,
variables, and procedures; and event procedures.

Standard Module
Standard modules (files with a .bas extension) contain module-level declarations of programmer-
defined data types, constants, variables, and public procedures. A standard module typically
contains routines that don’t fit nicely into a class definition.

Class Module
Use class modules (files with a .cls extension) to create your own objects, including methods,
properties, and events. Class modules are similar to UserForm modules except that they have
a visible user interface. Class modules are very versatile and vital to VBA and AutoCAD. As you
progress through this book, you’ll see that classes and objects are everywhere.

Reference .dvb File
You can reference the code of another .dvb file in your current project. This feature lets you
easily reuse code among several projects. You can’t create a circular reference, which is a refer-
ence to one project and a reference in that project to the current project. If you accidentally
create a circular reference, AutoCAD tells you of the error. You have to undo the reference
before you can continue.

Creating, Opening, and Saving Projects
To extract, embed, create, save, load, and unload VBA projects, open the VBA Manager dialog
box, shown in Figure 1-14. To open it, either type VBAMAN at the AutoCAD command prompt
or choose Tools ➤ Macros ➤ VBA Manager.

You must explicitly load all .dvb projects. AutoCAD loads embedded projects automatically
when the drawing containing them is opened, depending upon how you configure AutoCAD’s
security options. Clicking New creates a new project in the VBAIDE that you can access by
clicking the Visual Basic Editor button. To load an existing project, click the Load button. The
Open VBA Project dialog box in Figure 1-15 appears, letting you choose the project to load.

■Tip Embedding VBA macros within drawings is fine for drawings that remain within your organization.
Avoid embedding macros when you’ll deliver the drawings to outside users or customers as it imposes
a security risk on their part to trust your macros in their environment.

This dialog box is similar to the standard File Open dialog box in Windows. Similar to cre-
ating a new project, when you choose the .dvb project you want, click the Visual Basic Editor
button to start working on your project.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)10

5793c01_final.qxd 8/22/05 2:41 AM Page 10

There are two other ways to create and load DVB project files:

• Type VBAIDE at the AutoCAD command prompt or press Alt+F11 to open or create a
DVB project file.

• Type VBALOAD at the AutoCAD command prompt to open the Open VBA Project dia-
log box so you can choose a project to load.

To save your project, choose File ➤ Save or press Ctrl+S. If you have not previously saved
your project, the standard Save As dialog box appears, as shown in Figure 1-16.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 11

Figure 1-14. The VBA Manager dialog box

Figure 1-15. The Open VBA Project dialog box

5793c01_final.qxd 8/22/05 2:41 AM Page 11

Unlike in Visual Basic, you don’t need to save each project module separately. AutoCAD
saves them all in a .dvb file. However, as the next section illustrates, you can export each mod-
ule to a separate file.

■Tip Avoid saving your custom program files under the AutoCAD installation folder tree. Instead, create
a separate folder tree for them. This prevents AutoCAD installations and updates from affecting your
program files.

Adding, Saving, and Removing Files
You will sometimes want to add to your VBA project a file such as a common UserForm module
or a collection of routines in a standard module. To do this, choose File ➤ Insert File or press
Ctrl+M. The Import File dialog box appears, as shown in Figure 1-17.

To export a module to a separate file, highlight the module name in the Project Explorer
window, and then either choose File ➤ Export File or press Ctrl+E. A Save As dialog box
appears for the type of file to export. Alternatively, you can highlight the module name in the
Project Explorer window, right-click to invoke the pop-up menu, and choose Export File.

To remove a file from your project, highlight the module name in the Project Explorer dia-
log. Then choose File ➤ Remove (you will be offered the option of exporting the file prior to
removal). You can also highlight the module name, right-click to invoke the pop-up menu in
Figure 1-18, and then choose Remove.

Notice that this menu also includes the Export File option.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)12

Figure 1-16. Save As dialog box

5793c01_final.qxd 8/22/05 2:41 AM Page 12

Adding ActiveX Controls and Code Components
When you start a project and add a UserForm module, a common Toolbox appears. It contains a
standard collection of ActiveX controls called intrinsic controls. Chapter 3 covers intrinsic con-
trols in more detail. If you want to insert an ActiveX control that is not in the Toolbox, choose
Tools ➤ Additional Controls or right-click in the Toolbox window and choose Additional Con-
trols. The Additional Controls dialog box shown in Figure 1-19 appears.

This dialog box lists all the ActiveX controls that are properly registered on your machine.
However, if you want to use a particular ActiveX control, check its End User License Agree-
ment (EULA) to determine whether you have a license to use it in a VBA host application.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 13

Figure 1-17. The Import File dialog box

Figure 1-18. The
Remove Module
pop-up menu

Figure 1-19. The Additional Controls dialog box

5793c01_final.qxd 8/22/05 2:41 AM Page 13

Many ActiveX controls installed with Microsoft Visual Basic, including TreeView, ListView,
File, Directory, and Drive, are not licensed for use in a VBA host application. However, Chap-
ter 19 explains some easy ways you can use the Windows application programming interface
(API) to get around this dilemma.

You can add more than ActiveX controls—code components are perhaps even more com-
mon. This is the means by which your application can gain access to other ActiveX automation
applications such as Microsoft Excel, Access, and Word. ActiveX automation is your key to
building powerful applications that take advantage of objects exposed by other applications.

To use the objects, methods, properties, and events that other applications expose, first
add a reference to that application. Choose Tools ➤ References to open the References dialog
box, shown in Figure 1-20.

Check the reference you want to add. The dialog box contains an alphabetical list of the
references your application doesn’t use. Later, when you write your own objects using Class
modules, this is where you’ll add them to your project.

To improve performance, deselect any references your application doesn’t use. Each refer-
ence must be resolved before your project loads. Depending on your project’s size, this could
greatly decrease how long your user waits for the application to load and run.

■Note If your application uses an object of another application, you can’t remove the reference to it
without first removing the object.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)14

Figure 1-20. The References dialog box

5793c01_final.qxd 8/22/05 2:41 AM Page 14

The Object Browser
When you set a reference to an application’s object library, the Object Browser lists all the objects,
methods, properties, constants, and events that application exposes. To open the Object Browser,
choose View ➤ Object Browser or press F2. By default, the Object Browser lists all libraries your
project currently references. To view just the AutoCAD library, for example, click AutoCAD in the
drop-down list in the Object Browser, as shown in Figure 1-21. The Object Browser gives you a
perspective of the objects an application exposes and the methods, properties, events, and con-
stants those objects expose for your application to manipulate.

Loading and Running Applications
You can load and subsequently execute your VBA applications in many different ways. This
section explains the most common ways.

Acad.dvb

AutoCAD searches the support file search path for the file acad.dvb. If AutoCAD finds this file,
it loads it into the current session. The following example illustrates how to implement this
feature.

Public Sub Start()

Application.ActiveDocument.SetVariable "OSMODE", 35

End Sub

Place this code in the ThisDrawing module and save the file as acad.dvb. Save this file in
any subdirectory specified in the support file search path. Now each time you start an AutoCAD
session, AutoCAD loads this file. Also, if you include a routine called AcadStartup, AutoCAD exe-
cutes it when it loads acad.dvb.

The example in Figure 1-22 shows how to use the macros that you have stored in the
acad.dvb file.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 15

Figure 1-21. The Object Browser dialog box

5793c01_final.qxd 8/22/05 2:41 AM Page 15

Type –vbarun then the name of the macro to run (Start in this instance). In this example,
the value of the system variable OSMODE is set to 35. This is a convenient way to store macros
that will invoke AutoCAD with a particular setup.

Acaddoc.lsp

AutoCAD automatically searches the default search path (a combination of the support/file path
list, the current working folder, and the shortcut’s startup folder) for a file named acaddoc.lsp. If
AutoCAD finds this file, it loads it into the current drawing. Unlike with acad.dvb, which loads
only when you start a new AutoCAD session, AutoCAD loads acaddoc.lsp each time you open or
create a drawing.

■Tip To verify the actual search-path list, go to the command prompt, type -insert, enter a meaningless
string of characters such as sdfsdfsdf (keep it less than 31 characters, though), and press Enter. AutoCAD
displays a list of folders in which it tried to find your file when it failed.

AutoCAD provides a special programmer-defined function called S::STARTUP that, if
included in acaddoc.lsp or any default startup LISP file, is automatically executed when you
open or create a drawing. You can define S::STARTUP in acaddoc.lsp to perform setup opera-
tions for each drawing.

You can define an S::STARTUP function in several different places, including acad.lsp,
acaddoc.lsp, a .mnl file, or any AutoLISP file loaded from any of these files. You can overwrite
a previously defined S::STARTUP function—which means that another definition can over-
write your S::STARTUP routine.

■Note Never modify or replace the files acad2006.lsp or acad2006doc.lsp, as they may be overwritten
by a service pack installation without warning. It is also a good idea to append the S::STARTUP function in-
stead of defining it, as many third-party products rely upon S::STARTUP to initialize their environments. If you
define a new S::STARTUP, you could disable some or all of another loaded product in the process.

The following example shows how to ensure that your startup function works with other
functions.

(defun-q Startup ()

(command "-vbarun" "Start")

)

(setq S::STARTUP (append S::STARTUP Startup))

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)16

Figure 1-22. The AutoCAD command prompt

5793c01_final.qxd 8/22/05 2:41 AM Page 16

This code appends your startup function to any existing S::STARTUP function, and then
redefines the S::STARTUP function to include your startup code. This works regardless of any
other existence of an S::STARTUP function.

■Note In AutoLISP, you must use defun-q as opposed to defun for this example to work properly. Visual
LISP constructs functions differently from AutoLISP between defun and defun-q.

Embedded Projects
AutoCAD lets you embed a VBA project into a drawing. Each time the drawing is loaded, AutoCAD
also loads the VBA project embedded in the drawing. Of all the options to load VBA projects auto-
matically, this is the worst one. It stores the VBA project with the drawing, making your drawing
file that much bigger. If you copy the drawing file to create a new drawing, you also copy its VBA
project. If you want to change the VBA project, you need to change each VBA project in every
drawing file that you created from the original. In addition, delivering drawings with embedded
macros to customers imposes a serious potential security risk on their part. Well, you get the pic-
ture of why this is the worst option to choose!

VBARUN and the Macros Dialog Box
The dialog-box version of the VBARUN command features several options that extend how you
create and execute a VBA macro.

You can execute a VBA macro at the AutoCAD command prompt. To execute a macro
from the AutoCAD command prompt, type –VBARUN, press Enter, and type the macro name,
similar to the example in Figure 1-23.

In this example, AutoCAD would execute the Start macro.
If the macro you wish to execute is unique among all the VBA projects loaded, then just

specify the macro name after the –VBARUN command. However, if you have multiple macros
loaded with the same name, specify the macro to execute using either of these syntaxes:

ProjectName.ModuleName.MacroName

or

ModuleName.MacroName

How far down inside your project and modules your macro is placed, and whether you
have multiple projects loaded determine which syntax is appropriate.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 17

Figure 1-23. The AutoCAD command prompt

5793c01_final.qxd 8/22/05 2:41 AM Page 17

You can also execute a macro through the Macros dialog box, shown in Figure 1-24. To
open this dialog box, type VBARUN at the AutoCAD command prompt. You can also choose
Tools ➤ Macro ➤ Macros or press Alt+F8. For the beginner or end user, this is an excellent way
to execute macros.

Macros
Tasks that occur frequently or are of a complex nature are ideal candidates for a macro. Using
a macro gives you a more consistent and convenient way to accomplish these tasks. Macros
let you create this process once and then reuse it multiple times.

You can create macros in one of two places, in either the ThisDrawing module or in a stan-
dard module. In either case, always declare them as Public subprocedures and not functions
that return a value and can’t receive arguments. Despite these limitations, macros are a power-
ful tool for increasing AutoCAD end-user productivity.

An example of where you might want to use a macro is in initializing user preferences
whenever a drawing is created or opened, as in the following code:

Public Sub Setup()

Application.Preferences.OpenSave.AutoSaveInterval = 15

End Sub

In this example, AutoCAD will save the user’s work every 15 minutes. You might consider
using a macro similar to this to set various system variables for each drawing that you work on
or perhaps for when each AutoCAD session begins. The previous section explained how to make
VBA routines execute automatically for the start of either an AutoCAD session or a drawing.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)18

Figure 1-24. The Macros dialog box

5793c01_final.qxd 8/22/05 2:41 AM Page 18

The Macros Dialog Box
Use the Macros dialog box to create, run, debug, edit, and delete macros. You can also control
how a macro runs using several options. This section explains each button in this dialog box.

Run

This button executes your macro. You can also execute your macro from within the VBAIDE
by choosing Run ➤ Run or by pressing F5.

Step Into

This button lets you step line by line through the code of the macro you select. It enters the
VBAIDE in step (or debug) mode at the beginning of the selected macro. You can also start
Step Into from within the VBAIDE by choosing Debug ➤ Step Into or by pressing F8.

Edit

This button lets you edit your macro’s code. It opens the VBAIDE in edit mode at the begin-
ning of the selected macro. This is identical to typing VBAIDE at the AutoCAD command
prompt and navigating to the appropriate project, module, and macro.

Create

To create a macro, enter a name in the Macros dialog box
and press the Create button. This opens a dialog box that
lets you choose where you want to create your macro. You
can also specify the project in which to create the macro. If
you do not specify a project name, the Select Project dialog
box, shown in Figure 1-25, appears. Choose from the list of
loaded projects.

Delete

To delete a macro from the project file, select the Delete
button. If you accidentally delete a macro, retrieve it by
immediately switching to the VBA editor, bring the mod-
ule that contained your source code into focus, and
either choose Edit ➤ Undo or press Ctrl+Z.

■Caution This command deletes the source code associated with the macro. Be careful!

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 19

Figure 1-25. The Select Project
dialog box

5793c01_final.qxd 8/22/05 2:41 AM Page 19

VBA Manager
This button opens the VBA Manager dialog box, which lets you create, edit, load, unload,
close, embed, and extract your VBA projects.

■Note For more about this dialog box, see “Creating, Opening, and Saving Projects,” earlier in this chapter.

Options
AutoCAD VBA provides three options for controlling how AutoCAD handles VBA projects by
default. Table 1-1 explains these options.

Table 1-1. VBA Options in AutoCAD

Option Meaning Default Value

Enable Auto Embedding Determines whether a VBA project will False or unchecked
be embedded in the current drawing

Allow Break on Errors Determines whether VBA is instructed True or checked
to enter Break mode when an error
occurs in your application

Enable Macro Virus Protection Determines whether macro virus True or checked
protection is enabled

Using the Text Editor
Fortunately, the VBA text editor is not just a plain old text editor. It has some pretty nice features
that make your application-development efforts more efficient. This section tells you how to
take advantage of their usefulness.

Auto List Members

When you type a valid object name in your code and then type a period (.), VBA drops down
a list of properties and methods available for that object, as shown in Figure 1-26. Typing the
first few letters of the property or method name moves you to that selection in the list. Press-
ing the Tab key completes the typing for you. You can also press the Complete Word button on
the Edit toolbar. This option is also helpful when you aren’t sure which properties are available
for an object.

Visual Basic 6 and VB.NET programmers know this feature by its other name: IntelliSense.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)20

5793c01_final.qxd 8/22/05 2:41 AM Page 20

■Tip If you disable the Auto List feature, you can still access it by pressing Ctrl+J.

Auto Quick Info

Auto Quick Info displays the syntax of statements, procedures, and functions that are early-
bound (there is a reference set to the object library you’re using). This feature is not available
for late-bound objects (no reference set to the object library). When you type the name of a
valid Visual Basic statement, procedure, or function, the IDE shows the syntax immediately
below the current line, with the first argument in boldface, as shown in Figure 1-27. After
entering the first argument value, the second argument appears in boldface, and so on.

■Tip If you disable the Auto Quick Info feature, you can still access it by pressing Ctrl+I.

You may have noticed that this feature also provides you with a function’s return value,
which can be very helpful when you use an unfamiliar function for the first time.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE) 21

Figure 1-26. An Auto List Members example

Figure 1-27. An Auto Quick Info example

5793c01_final.qxd 8/22/05 2:41 AM Page 21

Overview of AutoCAD VBA Commands
AutoCAD provides a number of commands to access the VBA editor and execute VBA code.
Table 1-2 summarizes the commands that you can enter at the AutoCAD command prompt.

Table 1-2. VBA Editor Commands

Command Description

VBALOAD Loads a VBA (.dvb) project file into AutoCAD memory. If you are going to edit your
project, you may want to click the Visual Basic Editor option. This puts you inside
the VBA editor for immediate editing.

VBAIDE Opens the VBAIDE. If you have loaded a project, this opens the VBA editor so you
can begin editing.

VBAUNLOAD Unloads the current project. If you made changes without saving them, AutoCAD
asks you to save your VBA project first.

VBARUN Opens a dialog box from which you can choose a VBA macro to run. This option has
a number of features you may choose.

-VBARUN Runs a VBA macro from the AutoCAD command prompt. If you have macros with
the same name in more than one module file, then you must use the
<modulename.macroname> syntax.

VBAMAN Invokes the VBA Manager dialog box, which lets you view, create, load, close, embed,
and extract projects.

VBASTMT Executes a VBA expression from the AutoCAD command prompt.

Summary
This chapter covered a tremendous amount of information about the Visual Basic for Appli-
cations Integrated Development Environment, or VBAIDE. While this is sufficient for most of
your AutoCAD VBA development needs, you can get more help from the AutoCAD help files.
The next chapter introduces you to the Visual Basic programming language and its variables,
constants, control structures, and more. It also introduces you to the basics of object-oriented
programming.

CHAPTER 1 ■ THE VBA INTEGRATED DEVELOPMENT ENVIRONMENT (VBAIDE)22

5793c01_final.qxd 8/22/05 2:41 AM Page 22

Introduction to Visual Basic
Programming

AVisual Basic application contains several components:

• UserForm modules, which contain an application’s visual interface, including ActiveX
controls and the form’s Visual Basic code

• Standard (.bas) and Class (.cls) modules, which contain customized routines and
classes

• Intrinsic and custom ActiveX controls (.ocx) and code components in ActiveX DLLs
(.dll)

By default, an AutoCAD VBA project contains a single module called ThisDrawing. You
can then add UserForm, Standard and Class modules, and ActiveX controls as needed. Chap-
ter 3 describes how to add these elements to an application. If you are an experienced VBA
developer in AutoCAD 2000 or 2002, read the documentation in AutoCAD 2006 for new,
changed, and removed features for ActiveX, VBA, system variables, and drawing data classes.
Each new release brings considerable changes that often affect program development in good
and bad ways.

Variables
Variables let you retain values for use locally in a procedure or globally in your entire appli-
cation. For example, you might retrieve user input for drawing a Line entity, saving the
coordinates the user selected. You might also ask the user to select a color for an entity using
a drop-down combo box or a list box.

Visual Basic refers to variables by name, such as InsertionPoint or LayerName. It’s best to
avoid using variable names that coincide with predefined property or event names. Variables
are known by their data type, that is, the kind of data that they can store. The data type deter-
mines the amount of memory required to store the variable’s value.

Declaring Variables
Use the Dim statement in a procedure to declare a variable. Here’s the syntax:

Dim <VariableName> [As DataType]
23

C H A P T E R 2

■ ■ ■

5793c02_final.qxd 8/22/05 2:36 AM Page 23

Declare the variable’s data type in the optional As DataType clause in the Dim statement.
A variable’s data type determines the kind of information a variable holds, such as String,
Integer, or Object. See the “Data Types” section later in this chapter for more information.

Implicit Declaration
You don’t have to declare variables as a specific data type before you use them. If you use
a variable without explicitly declaring it, Visual Basic creates a variable with that name and
assigns it the Variant data type. This is the largest data type available in terms of memory
usage and could lead to memory resource problems. When you use an undeclared variable,
accidentally misspelling the variable name creates another undeclared variable. These kinds
of errors can lead to poor performance and a lot of wasted time debugging your code.

Explicit Declaration
To avoid the hazards mentioned, force Visual Basic to require that you declare all variables
before you use them. To do so, place the following line at the top of your code module:

Option Explicit

Alternatively, you can turn on explicit data type checking by choosing Tools ➤ Options
and checking the Require Variable Declaration box, as shown in Figure 2-1.

Variable Names
You can name variables almost any way you want, but some restrictions exist. Follow these
rules in variable names:

• You must use a letter as the first character.

• You can’t use a space; a period (.); an exclamation mark (!); or the characters @, &, $, or #

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING24

Figure 2-1. Setting explicit data type checking in the Options dialog box

5793c02_final.qxd 8/22/05 2:36 AM Page 24

• The name can’t be longer than 255 characters.

• Generally, don’t use names that are the same as Visual Basic’s functions, statements, and
methods. To use an intrinsic language function, statement, or method that conflicts with
an assigned name, explicitly identify it. Precede the intrinsic function, statement, or
method name with the name of the associated type library. For example, if you have
a variable called Left, you can invoke the Left function only by using VBA.Left.

• You can’t repeat names in the same scope. For example, you can’t declare two variables
named age in the same procedure. However, you can declare a private variable named
age and a procedure-level variable named age in the same module.

■Note Visual Basic isn’t case-sensitive, but it preserves a variable’s capitalization in the statement where
you declare it.

In addition to restrictions and requirements, there are widely accepted best practices for
naming variables to ensure consistency and ease of reading. Begin each variable’s name with
a prefix that indicates its data type. For example, a String variable named FirstName should be
instead named strFirstName. Table 2-1 lists some commonly used prefixes. Not only does this
book use this convention but so does most sample code elsewhere.

Table 2-1. Commonly Used Variable Prefixes

Data Type Prefix Example

String str strFirstName

Label lbl lblProperties

Double dbl dblXcoordinate

Integer int intFloorLevel

ListBox lst lstSystemNames

ComboBox cbo cboElecSystems

Button btn btnChoice

CheckBox chk chkSaveBackup

OptionButton opt optSaveFormat

Frame frm frmSaveOptions

Variable Scope and Lifetime
If you declare a variable in a procedure, only code in that procedure can access it. This is known
as local scope. But sometimes you’ll want procedures throughout a module or throughout the
application to access one of your variables. Visual Basic lets you specify this broader scope when
you declare your variables.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 25

5793c02_final.qxd 8/22/05 2:36 AM Page 25

All procedures, variables, constants, and so on, have a scope, also called a lifetime. Where
you declare them determines when and from where you can access them. You can declare vari-
ables as procedure (local) or module variables, as Table 2-2 explains.

Table 2-2. Variable Scope

Scope Private Public

Procedure The variable is accessible only in the You cannot declare variables as Public
procedure where you declared it. in a procedure.

Module The variable is accessible only in the The variable is accessible by all
module where you declared it. procedures in the module.

Procedure Variables
Procedure variables, also called local variables, are available only in the procedure in which
you declare them. Declare them using either the Dim keyword, as in this example:

Dim Line As AcadLine

or the Static keyword, as in this example:

Static Count As Integer

Variables that you declare in a procedure using the Dim keyword have scope only while
you’re inside that procedure. When you leave the procedure, the variable’s value is gone. On
the other hand, a variable declared in a procedure using the Static keyword lives as long as
your application runs, much like a global variable but with local scope (that is, you can access
it only when you are in that procedure).

Local variables are used for calculations pertinent to the procedure. Declare a local vari-
able as Static only when you need to keep a running count, such as in a procedure, and don’t
want other procedures in the application to have access to the variable.

Module Variables
By default, variables that you create in a UserForm, Standard, or Class module are available
only to procedures in that module. At the module level, the Private and Dim keywords are
equal. However, it’s better to use the Private keyword to make your code more understand-
able and easily distinguishable from variables declared using the Public keyword.

In the declarations section at the top of your module, declare Private module variables
like this:

Private LayerOn As Boolean

Global Variables
If you want to access module variables anywhere in your application, use the Public keyword
as follows:

Public LayerOn As Boolean

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING26

5793c02_final.qxd 8/22/05 2:36 AM Page 26

When you do this, the variable is available to every module and procedure in your appli-
cation. You can’t declare Public variables in a procedure.

■Tip When you declare a variable, declare it as locally as possible. Then as you find that particular variable
needs to be accessible more globally, move its declaration out one level at a time.

Constants
Constants are values that never change. If you will use a value frequently in your application
and its value will never change, declare it as a constant. For example:

'declare any constants used throughout applications

Public Const SAVETIME = 15 'public constant for default automatic save time

The following scope rules apply to constants:

• If you want a constant to be accessible in a procedure, you must declare it in that
procedure.

• To make a constant accessible only in a module in the module’s declaration section,
be sure to declare the constant as Private.

• You can declare constants as Private or Public, but they are most often Public.

• To make constants accessible to any module or procedure in your application, declare
them in the module’s declaration section using the Public keyword.

■Tip Typically, constant names are all capitals to distinguish them from variables.

Data Types
If you don’t specify a variable’s data type using the As keyword, as the following example
shows, Visual Basic makes it a Variant data type:

Dim Variable

Although you can create variables this way, you should instead assign a data type to every
variable you create. This makes your code more readable and removes ambiguity about what
your intentions are in your application.

Dim InsertionPoint As Variant

Dim Counter As Integer

VBA provides a number of data types. Each data type has a specific purpose that you
should consider when you choose which one to use. Table 2-3 explains VBA’s data types.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 27

5793c02_final.qxd 8/22/05 2:36 AM Page 27

■Note Data type properties have been modified in Visual Basic .NET and Visual Studio for Applications.
If you plan to work in a mixed environment where your VBA programs may interface with .NET programs,
be sure to research the differences carefully!

Table 2-3. Visual Basic Data Types

Data Type Range of Values Purpose

Integer –32768 to +32767 Relatively small positive and negative
whole numbers

Long –2,147,483,648 to +2,147,483,647 Relatively large positive and negative
whole numbers

Single Approximately 1.4E-45 to 3.4E+48 Single-precision floating-point
numbers that use 4 bytes of data

Double Approximately 4.94E-324 to 1.8E+308 Double-precision floating-point
numbers that use 8 bytes of data

Currency –922,337,203,685,477.5808 to Money calculations where accuracy is
+922,337,203,685,477.5807 important, giving 15 digits to the left of

the decimal and 4 digits to the right of
the decimal

String Approximately 0 to 2 billion characters Text characters

Boolean 1 or 0 True/False, Yes/No, On/Off values

Byte 0 to 255 A finite group of positive integers,
usually used for character or color
code values

Date 1/1/100 to 12/31/9999 and 0:00:00 to General date and time
23:59:59

Variant Anything The default data type if you don’t
specify one

Exchanging Numbers and Strings
You can assign string values that represent a numeric value to a numeric variable. You can also
assign a numeric value to a String variable. The following code illustrates this:

Public Sub MyMacro()

Dim Count As Integer

Dim NumericString As String

Count = 100

NumericString = "555"

MsgBox "Integer: " & Count & vbCrLf & _

"String: " & NumericString

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING28

5793c02_final.qxd 8/22/05 2:36 AM Page 28

Count = NumericString

MsgBox "Integer: " & Count

End Sub

Place this code in a Standard module file, and run it from the AutoCAD command prompt.
Caution should be the rule when using this strategy. Assigning a String data type that does not
represent a valid number to a numeric variable causes a run-time error. The next section out-
lines the Visual Basic functions that check the values being converted and give you feedback
about their validity.

Converting Data Types
To help you convert one data type to another, Visual Basic provides the conversion functions
shown in Table 2-4.

Table 2-4. Data Type Conversion Functions

Function Name Converts To

CBool Boolean

CByte Byte

CCur Currency

CDate Date

CDbl Double

CInt Integer

CLng Long

CSng Single

CStr String

CVar Variant

CVErr Error

Using these conversion functions ensures that you assign appropriate values to the differ-
ent variables. The value that you convert must fit in the target data type’s value range. If you
try to convert to a smaller data type, you may encounter errors or your program may behave
strangely.

Introduction to Arrays
An array is a variable that can hold multiple values of the same data type, each value placed
into a separate compartment. In contrast, a normal variable can hold only one value.

■Tip If you need to store an array of different kinds of values, create an array of Variants.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 29

5793c02_final.qxd 8/22/05 2:36 AM Page 29

You can work with arrays as a whole or by using an index value to access each element.
AutoCAD uses arrays for 3-D WCS coordinates. Arrays are nothing more than a collection of
values treated as a single unit, analogous to a List in Visual LISP.

Fixed-Length Arrays
If you know how many elements your array will contain, then declare it with that many elements.
The following example, typical of an AutoCAD VBA application, creates a three-element array:

Dim StartPoint(0 to 2) As Double

This example populates each element of the array with a value:

StartPoint(0) = 0

StartPoint(1) = 0

StartPoint(2) = 0

Detecting an Array’s Bounds
When you use an array to control a looping operation, you need to know the array’s lower and
upper bounds, or dimension. Going beyond an array’s lower and upper bounds generates a
run-time error. Visual Basic provides two functions, LBound and UBound, that tell you these two
values. The following example uses an array of unknown size to control a For ... Next loop:

Dim Index As Integer

For Index = LBound(GivenArray) To UBound(GivenArray)

.

.

.

Next Index

Dynamic Arrays
Sometimes you don’t know how many elements will be needed, and sometimes you just don’t
want to create more elements than you need. Visual Basic lets you create an array whose size
you can change as your application runs. To do so, declare your array variable without specify-
ing its dimensions in the parentheses, as in this example:

Dim Index() As Integer

When you define the array in your source code, use the ReDim statement:

ReDim Index(10)

ReDim can appear only in a procedure because it executes an action at run time, unlike
the Dim and Static statements.

Whenever you redimension an array, the array’s contents are erased. You can keep this
from happening by using the Preserve keyword, as follows:

ReDim Preserve Index(UBound(Index) + 1)

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING30

5793c02_final.qxd 8/22/05 2:36 AM Page 30

This example uses UBound to find the current array’s size and then adds one more element
to it. Using ReDim imposes some performance issues (such as speed) because it copies the
array in the background. Each time you change the array’s dimensions, Visual Basic makes
a new array, copies the contents into it, and then replaces the original array with the new
array. The performance issues become evident when manipulating large arrays that contain
large elements.

Modules
VBA applications may consist of any number of UserForms and Standard and/or Class mod-
ules. This section briefly explains each component you can use in a project.

UserForm

Although not contained in separate files as in a stand-alone Visual Basic application, the
UserForm module is an integral part of your project. The UserForm module contains the proce-
dures you write to react to the UserForm’s events and the controls you place on your UserForm.
The UserForm module contains UserForm-level procedures, variables, and constants specific to
the project. Also, if you were to export the UserForm module to a file and look at it with a text
editor, you would see descriptions of the UserForm and all the controls and their property settings.

To import a UserForm module file (.frm), choose File ➤ Import File or press Ctrl+M. The
UserForm module file must have been created by AutoCAD or a similar VBA-enabled applica-
tion, such as Microsoft Word. If you create the UserForm module file in Visual Basic using the
Microsoft Forms 2.0 form add-in, you can import them too. You can’t, however, import a .frm
file created by Visual Basic.

■Note UserForm modules in earlier versions of VBA are modal, meaning that you can’t click away from
them to other applications that might be running. To let the user access the AutoCAD window, you must first
hide your application window. In AutoCAD 2006 with VBA 6.3, set the form window’s ShowModal property at
design time to make UserForm modules modal (True) or modeless (False).

Standard

The Standard module file (.bas) generally contains procedures and declarations that other
modules in your application can access. The Standard module can contain global (available to
the entire application) or module-level declarations of procedures, variables, constants, and
programmer-defined data types. Your application does not have to use the code that you write
in a Standard module. The Standard module gives you a place to put code that may be used
frequently and that you would like to have handy when the need arises. Code modules may
also include subroutines or functions that you will use frequently throughout your programs.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 31

5793c02_final.qxd 8/22/05 2:36 AM Page 31

Class

The foundation of object-oriented programming in Visual Basic is the Class module. You can
create new objects by writing code in Class modules that implement their own properties,
methods, and events. They support the same features as the UserForm module but allow a new
level of functionality such as creating ActiveX controls, ActiveX documents, and so on. Auto-
CAD VBA can create only code components. To create components such as ActiveX controls
and ActiveX documents, you need Visual Basic.

Class modules hold the key to creating new objects. These objects may contain their own
properties and methods and may be instantiated more than once. Class modules let you com-
bine functionality into a single source. Tasks such as API function calls and common database
activities are prime candidates for Class modules.

Procedures
Procedures are blocks of code that have a specific purpose. You will use three kinds of procedures
in most of your applications: Sub, Function, and Event. Each of these has a specific purpose.

Sub

Sub procedures are blocks of code that another procedure in your application explicitly calls.
They may contain parameters when called, but they do not return a value.

The syntax of a Sub procedure is

[Private|Public|Static] Sub ProcedureName([argumentlist])

<... block of statements ...>

End Sub

The statements between Sub and End Sub are executed each time the Sub procedure is
called. By default, Sub procedures are Public and therefore may be called from a UserForm,
Class, or Standard module unless specified otherwise using the Private keyword.

The argument list is similar to the variables declared in a Sub procedure. These are variables
that the calling procedure passes to the Sub procedure when it is executed. For more details on
passing arguments to procedures, see the “Passing Arguments to Procedures” section later in
this chapter.

The following example illustrates a typical Sub procedure. In this example, the Layers col-
lection displays the name of each layer in the currently active document.

Public Sub IterateLayers()

Dim Layer As AcadLayer

For Each Layer In ThisDrawing.Layers

Debug.Print Layer.Name

Next Layer

End Sub

Function

Function procedures are similar to Sub procedures, except that they can return a value to the
calling procedure.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING32

5793c02_final.qxd 8/22/05 2:36 AM Page 32

The syntax of a Function procedure is

[Private|Public|Static] Function ProcedureName([argumentlist]) [As VariableType]

<... block of statements ...>

End Function

This example illustrates calling a Function procedure and assigning the return value to
a variable of the appropriate type:

ReturnValue = FunctionName([argumentlist])

The Function procedure’s return value has a data type. If the data type is not specified, it
is Variant by default.

FunctionName is used to return the Function procedure’s value. The value becomes part of
the function expression that called the Function procedure:

Public FunctionName(arguments) As DataType

<... statements ...>

FunctionName = ReturnValue

End Function

Event

Event procedures are executed when events occur in an object. You can declare Event proce-
dures in a Class module or, more typically, as part of a UserForm module either attached to the
UserForm itself or on ActiveX controls placed on the UserForm.

Event procedures use a unique naming convention that distinguishes them from other
procedures:

ObjectVariable_EventName

This example shows the default event procedure for a typical UserForm:

Private Sub UserForm_Click()

End Sub

VBA passes arguments to some events when they occur, such as

Private Sub AcadDocument_BeginSave(ByVal FileName As String)

End Sub

This event is called just prior to AutoCAD saving the current drawing. VBA passes the cur-
rent drawing’s name as a string to the Event procedure. This may be useful if you have several
drawings open and want to save only a particular drawing by checking the FileName parame-
ter for that name.

Use Event procedures only when you must since they impose performance overhead by
executing every time the event occurs. Overusing them can bring AutoCAD to a crawl or even
crash it entirely.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 33

5793c02_final.qxd 8/22/05 2:36 AM Page 33

Calling Procedures
You can’t call a Sub procedure in a Visual Basic expression, which means you can’t use one in an
If ... Then statement in an assignment or in a comparative statement. You call a Sub procedure
as a stand-alone statement, similar to the following:

CreateLayer Name

However, a Function procedure is typically part of an expression, as in the following:

If CheckForLayer("Layer1") Then

A Sub or Function procedure can modify the values of the arguments passed.

Passing Arguments to Procedures
There are two methods of passing arguments to procedures: by value and by reference.

By value: When you pass arguments by value (ByVal), only a copy of the variable is passed
to the procedure. If the procedure modifies the variable’s value, only the copy is changed.
The original variable still contains its original value. Calling a procedure using the ByVal
keyword lets you pass a value to the procedure as follows:

Public Sub ProcedureName(ByVal Variable)

.

.

.

End Sub

By reference: Passing arguments by reference (ByRef) is the Visual Basic default. Variables
passed by reference let you change the original variable’s value. Since ByRef is the default,
you don’t need to explicitly declare it as such when you call procedures.

■Note Newer programming languages, such as VB .NET, C#, and VSA, have made ByVal the default.

Control Structures
Control structures control your application’s flow and execution. Without control structures,
your application would run from top to bottom. This may be suitable for the simplest of appli-
cations, but the power of Visual Basic lets you control the flow and execution and effectively
change its order.

Decision Structures
Decision structures let you test the condition, value, or state of a variable and perform opera-
tions based on the test’s result.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING34

5793c02_final.qxd 8/22/05 2:36 AM Page 34

If ... Then

Use an If ... Then statement to conditionally execute one or more other statements. The
If ... Then statement is used either in this way:

If <condition> Then <statement>

or in this way:

If <condition> Then

<statements>

End If

The <condition> can be an expression that evaluates to a numeric value. Visual Basic
interprets the numeric value as either True (nonzero) or False (zero).

When the <condition> evaluates to True, then Visual Basic executes the <statement(s)>
following the Then keyword, as in the following single-line If ... Then statement:

If Count < 20 Then Count = Count + 1

To execute more than one statement after the conditional test, write it like this:

If Count < 20 Then

Count = Count + 1

Application.Visible = False

End If

The multiple-line version of the If ... Then statement requires that you end the state-
ment with the End If keywords.

If ... Then ... Else

To test several conditions, define several blocks of statements where a statement is executed
only when its condition is met. For example:

If <condition1> Then

<statement block 1>

Else If

<statement block 2>

Else

<statement block 3>

End If

If <condition1> returns True, Visual Basic executes the statements following the Then key-
word. Visual Basic ignores the statements in <statement block 2> and <statement block 3>,
continuing execution with the statements following the End If keywords.

If <condition1> returns False, Visual Basic executes the statements following the Else If
keywords, if supplied. Visual Basic ignores the statements in <statement block 1> and <statement
block 3>, continuing execution with the statements following the End If keywords.

You may use any number of Else If statements, but only one Else statement, in an
If ... Then ... Else statement.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 35

5793c02_final.qxd 8/22/05 2:36 AM Page 35

Select Case

When you evaluate more than two conditions, it often makes more sense to use the Select Case
control structure.

When you want to selectively execute a block of statements from a choice of many, use
the Select Case structure, as in this example:

Select Case <TestExpression>

Case <ExpressionList>

<statements>

.

.

.

Case Else

<statements>

End Select

The Select Case structure begins with a single test expression. Visual Basic evaluates it
once and compares it with each Case statement in the structure. When Visual Basic finds a
match, it executes the associated block of statements.

The <ExpressionList> may contain one or more values separated by commas. The state-
ment may contain zero or more statements. Visual Basic executes only <statements> associated
with the first match to the <TestExpression>. After those <statements> are completed, execu-
tion continues with any statements following the End Select keywords.

You can include an optional Case Else statement that Visual Basic executes if it finds no
Case matches.

This example shows how the Select Case structure works:

Select Case UCase(ColorName)

Case "RED"

Layer.Color = acRed

Case "YELLOW"

Layer.Color = acYellow

Case "GREEN"

Layer.Color = acGreen

Case "CYAN"

Layer.Color = acCyan

Case "BLUE"

Layer.Color = acBlue

Case "MAGENTA"

Layer.Color = acMagenta

Case "WHITE"

Layer.Color = acWhite

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING36

5793c02_final.qxd 8/22/05 2:36 AM Page 36

Case Else

If CInt(ColorName) > 0 And CInt(ColorName) < 256 Then

Layer.Color = CInt(ColorName)

Else

MsgBox UCase(ColorName) & " is an invalid color name", _

vbCritical, "Invalid Color Selected"

End If

End Select

Another way to format Select Case is to put the return statements on the same line as the
Case statements. This keeps the code format simpler when you have a small set of cases. Type
a colon (:) after the Case statement to separate it from the return statement code:

Select Case Ucase(ColorName)

Case RED: Layer.Color = acRed

Case BLUE: Layer.Color = acBlue

End Select

While the Select Case evaluates a single test expression at the top of the structure, the
If ... Then ... Else structure evaluates a different expression for each Else ... If state-
ment. Therefore, you replace an If ... Then ... Else structure with a Select Case statement
if each Else If statement evaluates the same expression but looks for different values.

Loop Structures
Use loop structures to execute a series of statements repeatedly. Loops execute based on con-
ditions. Depending on their structure, they can stop executing at their beginning or end.

Do While ... Loop

You can use a Do While ... Loop to execute a block of statements an infinite number of times.
This loop first evaluates a numeric value. If it’s True (nonzero), Visual Basic executes each state-
ment in the loop. At the end of the loop, Visual Basic then reevaluates the condition and keeps
executing the loop’s statements until the condition is False (zero). When the condition is False,
the loop skips over all its statements. Visual Basic executes the statements after the Loop key-
word. Here’s a Do While ... Loop’s syntax:

Do While <condition>

<statements>

Loop

The following example first tests the Index value against a string’s Length, then executes
each statement, and finally increments the Index variable at the end of the loop. Execution
continues until it evaluates the entire string or detects an illegal value.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 37

5793c02_final.qxd 8/22/05 2:36 AM Page 37

Do While Index - 1 < Length

Character = Asc(Mid(Name, Index, 1))

Select Case Character

Case 36, 45, 48 To 57, 65 To 90, 95

IsOK = True

Case Else

IsOK = False

Exit Sub

End Select

Index = Index + 1

Loop

In the Do While ... Loop, evaluation takes place at the top of the loop. If the condition is
False (zero), then Visual Basic executes none of the loop’s statements.

Do ... Loop While

Use the Do ... Loop While to execute the loop’s statements at least one time before evaluating
the condition. If the condition evaluates to True (nonzero), execution continues at the top of
the loop. Otherwise, the condition is False (zero), and the loop stops. This loop has the follow-
ing syntax:

Do

<statements>

Loop While <condition>

Do Until ... Loop and Do Loop ... Until
There are two other loop structures: Do Until ... Loop and Do Loop ... Until. These loops
run while the condition is False (zero) rather than True (nonzero). Do Until ... Loop has the
following syntax:

Do Until <condition>

<statements>

Loop

Do Loop ... Until has the following syntax:

Do

<statements>

Loop Until <condition>

This example compares Do While ... Loop to Do Until ... Loop, iterating an ADO data-
base recordset collection until they reach the recordset’s end of file (EOF) marker. This is the
result for Do While ... Loop:

Do While Not Recordset.EOF

Debug.Print Recordset.Fields("layername").Value

Recordset.MoveNext

Loop

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING38

5793c02_final.qxd 8/22/05 2:36 AM Page 38

This is the result for Do Until ... Loop:

Do Until Recordset.EOF

Debug.Print Recordset.Fields("layername").Value

Recordset.MoveNext

Loop

For ... Next

Use a For ... Next loop when you know how many times you want to execute a block of state-
ments. It uses a counter variable that you can either increase or decrease to control the number
of cycles or times Visual Basic executes the loop. The For ... Next loop has this syntax:

For <counter> = <StartingValue> To <EndingValue> [Step <increment>]

<statements>

Next [<counter>]

■Note The optional <increment> value can be positive or negative. If it’s positive, then <StartingValue>
must be less than or equal to <EndingValue>. Otherwise, the statements in the loop never execute. If it’s
negative, then <StartingValue> must be greater than or equal to <EndingValue>. If you don’t set a step,
it defaults to 1.

When a For ... Next loop executes, the following sequence of events occurs:

1. The <counter> variable is set to <StartingValue>.

2. If <counter> is greater than <EndingValue>, Visual Basic exits the loop. If the
<increment> variable is negative, Visual Basic tests whether <counter> is less than
<EndingValue>.

3. Visual Basic executes each statement in the loop.

4. Visual Basic increments or decrements the <counter> variable by 1 or by the
[Step <increment>] value, if you specified one.

5. Visual Basic repeats steps 2 through 4 until the <condition> in step 2 is met, when
it exits the loop.

The following example illustrates using the For ... Next loop:

Dim Point(0 To 2) As Double

Dim Index As Integer

For Index = 0 To 2

Point(Index) = 0

Next Index

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 39

5793c02_final.qxd 8/22/05 2:36 AM Page 39

For ... Each ... Next

Use a For ... Each ... Next structure to iterate through an object collection’s elements or
through an array, executing a block of statements for each element. This structure iterates
through each element of the collection or array regardless of how many elements the collec-
tion or array contains. For ... Each ... Next has this syntax:

For Each <element> In <collection>

<statements>

Next <element>

The following restrictions apply when using For ... Each ... Next:

• For collection objects, the element data type can be Variant, generic (late-bound
object), or a specific (early-bound) object type.

• Arrays must contain only Variant data types.

• You can’t use For ... Each ... Next with an array of programmer-defined data types.
This is because the Variant data type can’t contain user-defined data types.

The following example illustrates using this structure:

Public Sub DisplayLayers()

Dim Layer As AcadLayer

For Each Layer In ThisDrawing.Layers

Debug.Print Layer.Name

Next Layer

End Sub

Nested Control Structures
Placing one control structure in another is called nesting. You can nest control structures to
any level you want, but indent each level for readability. The following example demonstrates
nesting control structures:

Public Sub WhatColor()

Dim Layer As AcadLayer

Dim Answer As String

For Each Layer In ThisDrawing.Layers

Answer = InputBox("Enter color name: ")

'user pressed cancel

If Answer = "" Then Exit Sub

Select Case UCase(Answer)

Case "RED"

Layer.Color = acRed

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING40

5793c02_final.qxd 8/22/05 2:36 AM Page 40

Case "YELLOW"

Layer.Color = acYellow

Case "GREEN"

Layer.Color = acGreen

Case "CYAN"

Layer.Color = acCyan

Case "BLUE"

Layer.Color = acBlue

Case "MAGENTA"

Layer.Color = acMagenta

Case "WHITE"

Layer.Color = acWhite

Case Else

If CInt(Answer) > 0 And CInt(Answer) < 256 Then

Layer.Color = CInt(Answer)

Else

MsgBox UCase(Answer) & " is an invalid color name", _

vbCritical, "Invalid Color Selected"

End If

End Select

Next Layer

End Sub

Exiting a Control Structure
Using the Exit statement immediately exits a For or Do loop. The syntax to exit a loop is as
follows:

Do While <condition>

<statements>

Exit Do

Loop

or as follows:

For Count = 0 To 5

<statements>

Exit For

Next Count

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 41

5793c02_final.qxd 8/22/05 2:36 AM Page 41

Exiting a Sub or Function Procedure
Using the Exit statement immediately exits a Sub or Function procedure. The syntax is simple:

Public Sub SubName()

.

Exit Sub

.

End Sub

The syntax can also be as follows:

Public Function FunctionName() As Object

.

Exit Function

.

End Function

It is useful to exit a Sub or Function procedure when a condition has been met and you
don’t want to execute any remaining code. This provides a means of exiting the procedure as
soon as the condition is met.

With ... End With

The With ... End With statement lets you shorten your coding work by telling the compiler
to repeatedly use an implicit reference to a named object without having to restate the object
each time you use it. Use this feature anywhere in a procedure that you repeatedly refer to an
object. Consider the following example:

Dim mylayer As AcadLayer

mylayer = ThisDrawing.ActiveLayer

mylayer.Color = acBlue

mylayer.Linetype = "continuous"

mylayer.Lineweight = acLnWtByLwDefault

mylayer.Freeze = False

mylayer.LayerOn = True

mylayer.Lock = False

Using the With ... End With statement, you do less typing:

Dim mylayer As AcadLayer

mylayer = ThisDrawing.ActiveLayer

With mylayer

.Color = acBlue

.Linetype = "continuous"

.Lineweight = acLnWtByLwDefault

.Freeze = False

.LayerOn = True

.Lock = False

End With

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING42

5793c02_final.qxd 8/22/05 2:36 AM Page 42

Application Writing Techniques
This section presents techniques for writing readable code. Failing to implement any of these
techniques has no effect on your code’s execution.

Writing Statements on Multiple Lines
To write a long statement on more than one line, use the line continuation character, which is
a space followed by an underscore (_). Writing your code this way makes it more readable
both in print and on the screen. This example shows the line continuation character in action:

'create the solid

Set AcadSolid = ThisDrawing.ModelSpace.AddExtrudedSolidAlongPath _

(AcadRegion(0), AcadSpline)

'concatenate a long string value

Mypath = Application.Path & "\My Custom Folders\VBA Programs" & _

"\Program 1\DVB Files"

■Note Don’t place comments after the line continuation character on the same line of code. There are also
some restrictions as to where you can place a line continuation character, such as in the middle of an object
or procedure name.

Using this feature lets you format your code for easier reading. However, do not overuse
this feature because too much of it can make your code unreadable.

Combining Statements on a Single Line
Typically, you place only one statement on a line of source code. But sometimes combining
more than one statement on a single line can make your code more readable, especially in
AutoCAD. Consider these six lines of code:

StartPoint(0) = 0

StartPoint(1) = 0

StartPoint(2) = 0

EndPoint(0) = 1

EndPoint(1) = 1

EndPoint(2) = 0

You can make them more readable by placing similar statements on the same line:

StartPoint(0) = 0: StartPoint(1) = 0: StartPoint(2) = 0

EndPoint(0) = 1: EndPoint(1) = 1: EndPoint(2) = 0

Each statement is separated by a colon (:). The colon appears only between statements
and not at the end of the line.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 43

5793c02_final.qxd 8/22/05 2:36 AM Page 43

Adding Comments to Your Code
Making notes about how your code sections function is more a necessity than an option.
Comments explain the purpose of the code not only to you but to other developers. When you
return to a section of code months later, if you have properly commented it, you won’t have to
guess or waste time trying to determine what is being executed.

Just as important as commenting functions and code blocks, always provide a comment
for files themselves, usually at the top. This comment block explains what the file is for, who
wrote it, and when it was written. You can also include notes about related files and depend-
ent and specific requirements for using the program. The following example is just one way
you could comment your program files:

"***

" Filename: myProgramFile.dvb

" Author: Joe Sutphin

" Date: September 12, 2003

" Purpose: This program inspires awe in my customers!

"***

All comments begin with an apostrophe ('), called the comment character. Visual Basic
ignores all text you type after the comment character to the end of the line.

The following example shows how you can use comments to document your program
statements:

'define the Start and End point

StartPoint(0) = 0: StartPoint(1) = 0: StartPoint(2) = 0

EndPoint(0) = 1: EndPoint(1) = 1: EndPoint(2) = 0

Overview of Object-Oriented Programming
When you create an application in VBA, you use objects whether you realize it or not. Both
AutoCAD and VBA are objects. This section examines the fundamentals of object-oriented
programming.

Objects and Classes
An object is the creation, or instantiation, of a class. A class is a template, or definition, of a
potential object. This template is used to create as many objects as needed based on a single
class definition. Each object is an instance of the class. The action of creating a new object
instance is referred to as instantiation.

The word class refers to classifying objects. For example, the entity objects Line and Circle
are instances of the AcadLine and AcadCircle classes, respectively.

Visual Basic and VBA use Class modules to define classes. An object, which is an instance
of the class, is created based on the Class module definition. Class modules consist of a decla-
ration section followed by a series of Sub, Function, and Property subroutines similar to the
UserForm and Standard modules. Variables and code in the Class module can be used only by
creating an object, which is an instance of the class.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING44

5793c02_final.qxd 8/22/05 2:36 AM Page 44

Object Data
An object contains data about itself. For example, an AcadLine object contains data about its
starting and ending points, color, and thickness. The object also knows its linetype and the layer
it sits on. These values are properties of the object. There may be many AcadLine objects, each
having its own set of similar property values but each created from the same AcadLine class.

Instance variables store data values for each object instance. Each object instance contains
its own set of variables, which were created from the same class. This is possible because each
instance of the class, although created from the same class, must have a unique name. The Name
property accesses each object and its properties. Each instance of a particular class has a unique
name identifier.

Variables used in a Class module are declared at the module level, as the following
pseudocode shows:

Private StartPoint(0 To 2) As Double

Private EndPoint(0 To 2) As Double

You can declare variables in a Class module as either Private or Public similar to UserForm
and Standard modules.

Private Variables
You can access variables you declare as Private only in the module in which you declare them.
Their main use in the Class module is to manage code specific to the object. Client programs
can access class code only through the class interface. This adds a layer of security around your
objects so that external applications can’t circumvent the rules, haphazardly changing values
without using the interface that you provide for accessing your object.

Public Variables
You can access variables you declare as Public from within your Class module and from a
client application. It’s generally bad practice to use Public variables in Class modules. When
you declare a variable as Public, you grant unrestricted access to it, trusting that the client
application will not change them inappropriately or provide incorrect data. Using Public
variables also means that there is no code to force control over how the client application
manipulates the object.

One primary reason for using object-oriented programming techniques is that they hide
or encapsulate the class’s inner workings, exposing a client application’s interface only for
changing your objects.

Variables declared as Private force the client application to use the object’s code to change
the object’s data, letting you change how the code is implemented with little or no change on
the client application’s part. Variables declared as Public directly break the concept of encapsu-
lation, providing a client with direct and uncontrolled access to the object’s data.

An Object’s Behavior
The concept behind objects is to let applications interact with them. If the object’s data is
encapsulated in the object, then you must provide a means for a client application to access
the object’s data.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 45

5793c02_final.qxd 8/22/05 2:36 AM Page 45

■Note Autodesk makes a clear distinction between an entity and an object in terms of an entity being
a graphical instance. For example, a Line object is the database representation of the Line entity, which
is the selectable item in the drawing editor window. In general, Autodesk calls a graphic an entity and calls
the entity’s programmatic aspects an object.

An object provides an interface that allows client applications to access its data. Methods,
properties, and events provide a client application with this access to the object.

The object’s interface contains Property, Sub, and Function routines and any events
implemented in the object. Declaring any of these as Public makes them part of the object’s
interface. An object can contain multiple interfaces, just as in the real world, letting the client
application access the object’s data.

Properties
Properties generally describe an object’s characteristics such as height, width, length, and color
or the object’s state such as On/Off or Thaw/Freeze. An object typically contains many proper-
ties that provide the client application with access to most, if not all, of its characteristics.

Methods
Methods are Sub procedures or functions that act on the object, such as rotating, offsetting,
or moving it. Most AutoCAD objects contain a small number of methods. Also, many of the
methods are the same for similar objects, such as all the graphical objects or all the non-
graphical objects.

Events
Events are actions that the end user can perform while the application runs, including clicking
the mouse button or pressing a key. No preset actions happen—you must provide the code to
perform whatever tasks you want when an event occurs. This is perhaps the trickiest part of
programming—several events can occur rapidly, and it is challenging to decide which event
to supply code to in order to respond to the event.

Debugging Basics
This section discusses the basics of debugging your application. Debugging is more an art
form than a science, and as such you’ll need to decide what works best for you. These tech-
niques give you a good understanding of the available tools and how to use them.

The Immediate Window

Use the Immediate window to display the results of statements in your code. Sometimes
referred to as the Debug window, its main purpose is to display debugging information. To
open the Immediate window, choose View ➤ Immediate Window or press Ctrl+G.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING46

5793c02_final.qxd 8/22/05 2:36 AM Page 46

To execute code in the Immediate window, type the statement into it and press the Enter
key. To see the statement’s return value, precede the statement with a question mark (?), as
shown in Figure 2-2.

You typically use the Immediate window for these tasks:

• Testing new code

• Querying and/or changing a variable’s value while your application is running

• Querying and/or changing a property value while your application is running

• Calling procedures similarly to calling them in code

• Viewing your program’s debugging information while it runs

To can get help on syntax for functions, statements, properties, or methods in the Imme-
diate window, select the keyword, property name, or method name and press F1.

Adding a Watch

Adding a watch lets you observe the value of any valid Visual Basic expression. To create a
watch, choose Debug ➤ Add Watch. The dialog box in Figure 2-3 appears.

If you have watches already defined in your code, the Watch window appears when the
program’s execution hits that watch. If a watch expression is out of scope, the Watch window
contains no value. To display the Watch window, choose View ➤ Watch Window.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 47

Figure 2-2. Viewing the Application.Path statement’s return value

Figure 2-3. Creating a watch using the Add Watch dialog box

5793c02_final.qxd 8/22/05 2:36 AM Page 47

The Call Stack

The Call Stack window, shown in Figure 2-4, lists started procedures that have not completed.
This feature is available only in break mode, which is when program execution pauses. When
the current procedure’s code is executed, VBA adds the procedure to a list of active procedures.
VBA also adds each Sub, Function, or Property procedure that the procedure calls. As execution
returns to the calling procedure, each procedure is removed from the list. The Immediate win-
dow procedures you execute are added to the Call Stack as well. To open the Call Stack window,
when in break mode, click View ➤ Call Stack or press Ctrl+L.

The Locals Window

The Locals window, shown in Figure 2-5, is similar to the Watch window, except that it displays
local values—that is, variables declared in the current procedure. To open the Locals window,
choose View ➤ Locals Window.

Breakpoints

You use breakpoints to stop program execution at a statement in a procedure where you think
a problem may exist. Breakpoints are cleared when they are no longer needed.

To set a breakpoint, follow these steps:

1. Place the insertion point somewhere on the line of code where you want to stop execution.

2. Choose Debug ➤ Toggle Breakpoint, press F9, or click next to the statement in the
margin indicator bar if it’s visible.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING48

Figure 2-4. Viewing unfinished procedures in the Call Stack window

Figure 2-5. Viewing local values in the Locals window

5793c02_final.qxd 8/22/05 2:36 AM Page 48

VBA adds the breakpoint and highlights the line using the breakpoint color defined on the
Editor tab in the VBAIDE’s Options dialog box.

■Note Setting a breakpoint on a line that contains several statements separated by colons (:) breaks at
the first statement on the line.

To clear a breakpoint, follow these steps:

1. Place the insertion point somewhere on the line of code containing the breakpoint.

2. Choose Debug ➤ Toggle Breakpoint, press F9, or click next to the statement in the
margin indicator bar if it’s visible.

VBA clears the breakpoint and removes the highlighting.
To clear all the breakpoints in your application, choose Debug ➤ Clear All Breakpoints or

press Ctrl+Shift+F9.

■Note Breakpoints are not saved when you save your code.

Stepping Through Your Code

You can step through your code, which executes it one line at a time. Using this feature lets
you monitor the effects of code on system and application variables.

VBA gives you four methods to step through your code: Step Into, Step Over, Step Out,
and Run to Cursor (see Table 2-5).

Table 2-5. Methods for Stepping Through Code

Method Function

Step Into Executes your code one statement at a time. To use this method, choose
Debug ➤ Step Into or press F8.

Step Over Executes a procedure as a whole unit, and then returns and steps to the next
statement in the current procedure. To use this method, choose Debug ➤
Step Over or press Shift+F8.

Step Out Executes the remaining code of a Sub or Function, and then displays the state-
ment following the procedure call. This feature is available in break mode only.
To use this method, choose Debug ➤ Step Out or press Ctrl+Shift+F8.

Run to Cursor Executes from the current statement in design mode to where you place the
cursor. To use this method, click Debug ➤ Run to Cursor or press Ctrl+F8.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 49

5793c02_final.qxd 8/22/05 2:36 AM Page 49

The On Error Statements
If you don’t use an On Error statement, any run-time error is fatal—that is, an error message
appears and execution stops.

■Note An error-handling routine is a section of code marked by a line label such as HandleError: or
a line number.

On Error initiates error handling, which lets the application decide whether an error is
fatal. It provides a structured means of controlling how execution will continue for nonfatal
errors and stops execution for fatal errors.

Error-handling routines typically rely on the value in the Err object’s Number property. The
error-handling routine should test or save relevant property values in the Err object before any
other error can occur or before the program calls a procedure that might cause an error. The Err
object’s property values reflect only the most recent error. Err.Description contains the error
message associated with Err.Number.

■Note VBA, VBScript, Visual Basic, and Visual Basic .NET are significantly different from each other in their
error-handling features and capabilities.

On Error Resume Next

The On Error Resume Next statement allows execution to continue despite a run-time error.
Execution can continue either with the statement right after the statement that caused the
run-time error or with the statement right after the most recent call out of the procedure that
contains the On Error Resume Next statement. You can place the error-handling routine inline
with where the error would occur, rather than transferring control to another location in the
procedure:

Dim oLayer As AcadLayer

On Error Resume Next

Set oLayer = Application.ActiveDocument.Layers.Add(Name)

If Err = 0 Then

Set CreateLayer = oLayer

End If

The On Error Resume Next statement becomes inactive when another procedure is called,
so use an On Error Resume Next statement in each called routine if you want inline error han-
dling in that routine.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING50

5793c02_final.qxd 8/22/05 2:36 AM Page 50

■Note The On Error Resume Next structure may be preferable to On Error GoTo when handling
errors generated during access to other objects. Checking Err after each interaction with an object removes
ambiguity about which object the code accessed, which object placed the error code in Err.Number, and
which object originally generated the error (specified in Err.Source).

On Error GoTo 0

On Error GoTo 0 disables the current procedure’s error handling. It doesn’t specify line 0 as the
start of the error-handling code, even if the procedure contains a line numbered 0. Without an
On Error GoTo 0 statement, Visual Basic disables error handling when it exits the procedure.

Exit Sub, Exit Function, and Exit Property

To prevent error-handling code from running when no error has occurred, place an Exit Sub,
Exit Function, or Exit Property statement immediately before the error-handling routine, as
in this example:

Public Function ConnectToAutoCAD(WindowState As AcWindowState) As AcadApplication

On Error GoTo HandleError

. . .

Exit Function

ExitHere:

Exit Function

HandleError:

. . .

Resume ExitHere

End Function

In this example, the error-handling code follows the Exit Function statement and precedes
the End Function statement to separate it from the procedure flow. You can place error-handling
code anywhere in a procedure, but you typically place it at the end for easy maintenance.

The Err Object
The Err object contains information about run-time errors. You will use the Err object quite
a bit to keep your applications from crashing on the end user at run time. Typically, you’ll most
frequently use the Err object’s Description and Number properties and its Clear method.

The Description Property

The Description property is a string describing the error. Users will appreciate you displaying
this property in a MsgBox control instead of crashing the program.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 51

5793c02_final.qxd 8/22/05 2:36 AM Page 51

The Number Property

The Number property is the error’s number. Some errors give you only a number to use. All of
this book’s examples list both the Description and Number properties.

To use the Err object, include the following statement in your procedure, which executes
if an error should occur:

On Error GoTo HandleError

If an error occurs, execution goes directly to the error handler, as shown in this example:

ExitHere:

Exit Sub

HandleError:

MsgBox Error: & Err.Description & (& Err.Number &)

Resume ExitHere

If an error should happen, this example successfully traps the error and lets your applica-
tion exit gracefully. Include this construct where the user is likely to make an error. The Resume
statement tells Visual Basic where to continue execution after handling the error.

■Note For a more detailed list of Number property values and their meanings, search for the phrase
trappable errors in AutoCAD VBA’s online help. Most OLE objects return errors whose numbers are in
a unique range; you usually have to convert them to get their descriptions.

The Clear Property

The Clear property clears any error’s Err object. The most common use of this property is
when VB programmers try to connect or start an instance of AutoCAD, as in this example:

Dim Application As AcadApplication

On Error Resume Next

Set Application = GetObject(Class:="AutoCAD.Application")

If Err Then

Err.Clear

Set Application = CreateObject(Class:="AutoCAD.Application")

If Err Then

MsgBox "Error connecting to AutoCAD", vbCritical, "AutoCAD Fatal Error"

Exit Sub

End If

End If

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING52

5793c02_final.qxd 8/22/05 2:36 AM Page 52

In this example, the On Error Resume Next statement tells Visual Basic to keep executing
code should an error occur. This lets you gracefully handle the error. This example first tries to
connect to an already running instance of AutoCAD. If that attempt fails, then the Err object
holds the error code. The Err object’s Clear method then clears the error. It then tries to start
AutoCAD. If that attempt fails, then the application can’t continue.

Summary
This chapter presented the essence of the Visual Basic programming language. It also discussed
common techniques for debugging your applications. The next chapter covers your application’s
user interface, including graphical elements such as using ActiveX controls and designing and
handling your application’s visual aspects.

CHAPTER 2 ■ INTRODUCTION TO VISUAL BASIC PROGRAMMING 53

5793c02_final.qxd 8/22/05 2:36 AM Page 53

5793c02_final.qxd 8/22/05 2:36 AM Page 54

Application Elements

AutoCAD VBA provides support for creating complete applications, including dialog box
interfaces. This chapter examines how to create and manipulate these dialog boxes and how
to place and manipulate ActiveX control components such as text boxes and list boxes.

Designing a UserForm
The UserForm object is the canvas upon which you visually design your application, and it pro-
vides the windows your users interact with when they run the application. UserForms have their
own properties, methods, and events you can use to control their appearance and behavior.

The first step in designing a UserForm is to set its properties, such as width and height. You
may set a UserForm’s properties at design time or at run time using code.

Adding a UserForm to Your Application
If your application requires a user interface or dialog with the user, you need to add a UserForm.
A UserForm, or dialog box, is a window in which several bits of information can be gathered or
displayed at once. A login dialog box is a simple example of a form, whereas the AutoCAD Select
File dialog box in Figure 3-1 represents a more complex application example.

55

C H A P T E R 3

■ ■ ■

Figure 3-1. The Select File dialog box

5793c03_final.qxd 8/22/05 2:34 AM Page 55

To add a UserForm to your project, select Insert UserForm. Alternatively, you can use a
drop-down toolbar button, shown in Figure 3-2, that enables you to add these four basic com-
ponents: UserForm, Module, Class Module, and Procedure.

Once you’ve chosen to add a UserForm to your project, your project should look some-
thing like Figure 3-3.

Setting UserForm Properties
UserForm properties control a form’s physical appearance. The UserForm.Caption property de-
fines the text that appears on the left-hand side of the UserForm title bar, as shown in Figure 3-4.

UserForms in AutoCAD 2000 VBA are modal and
therefore don’t contain a minimize or maximize but-
ton on the right side of the UserForm title bar.
UserForms in AutoCAD 2002 through 2006 VBA (VBA
6.3), however, can be either modal or modeless.

CHAPTER 3 ■ APPLICATION ELEMENTS56

Figure 3-2. The drop-down toolbar button showing various modules

Figure 3-3. The AutoCAD VBAIDE

Figure 3-4. The Caption property of UserForm

5793c03_final.qxd 8/22/05 2:34 AM Page 56

■Note When the ShowModal property is set to False, you may work outside the UserForm at run time.
Normally, the UserForm focus remains off even while you work in the UserForm. By setting a Reference
to the AutoCAD Focus Control for VBA Type Library (acFocusCtrl16.dll in the AutoCAD folder) and then
adding acFocusCtrl (a transparent Control that will appear on the Control Toolbox) to the UserForm, focus
will remain on the UserForm until you click outside of it.

The UserForm.Height and UserForm.Width properties control the initial UserForm height
and width, respectively, as shown in Figure 3-5.

However, you may change these properties at run time as demonstrated in the following
example:

Private Sub UserForm_Activate()

UserForm1.Width = 200

UserForm1.Height = 150

End Sub

In this example, the UserForm’s Width and Height properties change when the UserForm is
activated through the Activate method.

As you can see in Figure 3-6, the UserForm.Left and UserForm.Top properties control the
initial UserForm position relative to the upper-left corner of the screen.

CHAPTER 3 ■ APPLICATION ELEMENTS 57

Figure 3-5. The Width and Height properties of UserForm

5793c03_final.qxd 8/22/05 2:34 AM Page 57

Adding a Control to a Form
When you add a UserForm to your project, another window immediately appears. This window,
called the Toolbox, is where you’ll find the intrinsic, or default, ActiveX controls that are avail-
able for you to design your user interface (see Figure 3-7).

Placing an ActiveX control on a form is simply a matter of clicking the control in the Tool-
box and then clicking the area of the UserForm where you want to place the control. Each time
you drop a new control onto a form, VBA automatically provides a default name and index
number for the control. For example, the first TextBox control will be named TextBox1 by
default. You can rename controls by modifying their Name property.

When you click the ActiveX control you want, the cursor becomes a plus (+) sign, and the
icon of the control appears to the lower right of the plus sign when the cursor is moved over the
UserForm. The middle of the plus sign signifies the upper-left corner (the Left and Top proper-
ties) of the control. By default, the control will snap to the closest grid point displayed on your
UserForm. Grid density can be controlled in the General tab of the Tools/Options dialog.

For example, pick the TextBox control, as shown in Figure 3-8. Place the control in the
upper-left corner of the UserForm, similar to what you see in Figure 3-9.

CHAPTER 3 ■ APPLICATION ELEMENTS58

Figure 3-7. The
ActiveX Toolbox

Figure 3-8. The Toolbox
with IntelliSense displayed Figure 3-9. A UserForm with a

TextBox control

Figure 3-6. The Top and Left properties of UserForm

5793c03_final.qxd 8/22/05 2:34 AM Page 58

Now create a dialog box interface that looks something like the example depicted in Fig-
ure 3-10. (Don’t worry about making it look exactly like the figure; you just need to have the
same controls on a form for this example.) Table 3-1 lists the controls and their respective
property settings.

Table 3-1. Class Controls and Their Property Settings

Control Class Name Caption

Label Label1 X Coordinate

Label Label2 Y Coordinate

Label Label3 Z Coordinate

CommandButton cmdPick < Pick …

CommandButton cmdOK OK

TextBox txtX

TextBox txtY

TextBox txtZ

Next you’ll enter some code and see how to make this dialog box interface work. First, you
need to open the UserForm code module by selecting View ➤ Code or pressing F7. Or you may
start by double-clicking the < Pick … command button and entering the code listed here:

Private Sub cmdPick_Click()

Dim Point As Variant

On Error Resume Next

'hide the UserForm

UserForm1.Hide

'ask user to select a point

Point = ThisDrawing.Utility.GetPoint(, "Select a point")

If Err Then Exit Sub

'assign values to appropriate textbox

txtX = Point(0): txtY = Point(1): txtZ = Point(2)

'redisplay the UserForm

UserForm1.Show

End Sub

CHAPTER 3 ■ APPLICATION ELEMENTS 59

Figure 3-10. A completed UserForm

5793c03_final.qxd 8/22/05 2:34 AM Page 59

This is all the code you need to make this example work. Execute
this example by selecting Run ➤ Run Sub/UserForm or by pressing F5.
Alternatively, you can run the example by clicking the Run toolbar
button as shown in Figure 3-11.

This final bit of code allows you to exit your application gracefully:

Private Sub cmdOK_Click()

Unload Me

End Sub

Visual Basic ActiveX Controls
In this section, you’ll be presented with each of the ActiveX controls
that are available for use by default. You’ll take a look at code examples
demonstrating how you might use each of these controls within your
own application.

The AutoCAD VBA environment provides you with 14 ActiveX
controls. In this section I briefly explain what the most commonly
used ActiveX controls do and how you may use them. Each of the con-
trols appears in the Toolbox, shown in Figure 3-12, that is displayed
whenever you have a UserForm active.

You can close the Toolbox window if needed. To redisplay it, select
View ➤ Toolbox.

Label

Used to convey information back to the user, the Label control looks similar to what you see
in Figure 3-13 when you place it on a UserForm.

Typically, you use this type of control to display error messages, entity counts, etc. Labels
prove most useful when you control them at run time by changing the Caption property, as in
the following snippet:

Private Sub UserForm_Activate()

Label1.Caption = "# of Blocks = " & ThisDrawing.Blocks.Count

End Sub

Executing this bit of code produces the dialog box output shown in Figure 3-14.
When you use

a Label control,
you may need
to adjust the
Label1.Width

and/or
Label1.Height

properties to com-
pensate for the
amount of text to
be displayed.

CHAPTER 3 ■ APPLICATION ELEMENTS60

Figure 3-11. The
VBAIDE Run, Pause,
and Stop buttons

Figure 3-12. The
Toolbox window

Figure 3-13. A UserForm with a
Label control

Figure 3-14. A UserForm at run
time with a Label control

5793c03_final.qxd 8/22/05 2:34 AM Page 60

TextBox

You use TextBox controls for data entry by the user (see
Figure 3-15). Usually these controls enable the user to
enter a single line of text, but you can change them to
allow multiline text entry.

Typically, you’ll trap the KeyDown, KeyUp, and Key-
Press events for a TextBox control. The KeyDown and
KeyUp events occur in sequence when any key is pressed.

A KeyPress event may occur when any of the follow-
ing keys or key combinations are pressed:

• Any printable keyboard character

• Ctrl combined with a character from the standard
alphabet

• Ctrl combined with any special character

• Backspace

• Esc

A KeyPress event won’t occur under any of the following situations:

• Pressing the Tab key

• Pressing the Enter key

• Pressing an arrow key

• When a keystroke causes the focus to move from one control to another

■Note Backspace is part of the ANSI character set, but Delete isn’t. Deleting a character in a control using
Backspace causes a KeyPress event; deleting a character using Delete doesn’t trigger a KeyPress event.

The following example waits until the user presses the Enter key, and then prints the text
entered in a standard Visual Basic MsgBox dialog box:

Private Sub TextBox1_KeyUp(ByVal KeyCode As MSForms.ReturnInteger, _

ByVal Shift As Integer)

If KeyCode = 13 Then

MsgBox "You entered: " & TextBox1.Text

End If

End Sub

ComboBox

The ComboBox control, an example of which appears in Figure 3-16, allows a selection from a
standard group of possible responses presented in a drop-down list. The DropDown List style

CHAPTER 3 ■ APPLICATION ELEMENTS 61

Figure 3-15. A UserForm with a
TextBox control

5793c03_final.qxd 8/22/05 2:34 AM Page 61

is very useful in controlling what the user enters. This style of ComboBox doesn’t allow the user to
enter any response; the user may only pick from the list. This means you don’t need to check for
invalid values in your code. Conversely, the DropDown Combo style allows users to enter a value
if what they want isn’t in the list. As the programmer, you’ll have to decide which style to use.

Here’s an example of populating a drop-down list
with values and then responding to the user’s choice by
displaying what was picked in a standard Visual Basic
MsgBox dialog box:

Private Sub UserForm_Activate()

With ComboBox1

.AddItem "Item 1"

.AddItem "Item 2"

.AddItem "Item 3"

End With

End Sub

Private Sub ComboBox1_Click()

MsgBox "You choose: " & ComboBox1.List(ComboBox1.ListIndex)

End Sub

ListBox

The ListBox control, shown in Figure 3-17, allows a selection from a standard group of possi-
ble responses. The difference between the ListBox control and the ComboBox control is the
ListBox control displays more than a single choice at a
time in a list format. Also, you can’t type values into a
ListBox control.

The following example illustrates how to populate
a ListBox control and then respond to the Click event:

Private Sub UserForm_Activate()

With ListBox1

.AddItem "Item 1"

.AddItem "Item 2"

.AddItem "Item 3"

End With

End Sub

Private Sub ListBox1_Click()

MsgBox "You clicked on: " & ListBox1.List(ListBox1.ListIndex)

End Sub

CheckBox

Use the CheckBox control to determine if an item is selected (see Figure 3-18). If the box is
unchecked, then the item isn’t selected. If the box is checked, then the user has selected that
item. You may have any number of CheckBox controls on a UserForm; each CheckBox control’s
checked state is independent of any other CheckBox control.

CHAPTER 3 ■ APPLICATION ELEMENTS62

Figure 3-16. A UserForm with a
ComboBox control

Figure 3-17. A UserForm with a
ListBox control

5793c03_final.qxd 8/22/05 2:34 AM Page 62

The following example uses the Click event of the
CheckBox control to determine the current state of the
control:

Private Sub CheckBox1_Click()

If CheckBox1.Value Then

MsgBox "Checked"

Else

MsgBox "Unchecked"

End If

End Sub

OptionButton

The OptionButton control is ideal for situations in which you want your user to choose just one
item. Most AutoCAD users know these as radio buttons. The OptionButton control is usually
placed inside a Frame control for grouping, as Figure 3-19
demonstrates. On a UserForm or within a Frame control,
only one OptionButton may be selected at a time.

In the following example, the Click event of each of
the OptionButton controls contains code that is executed
depending on which OptionButton is clicked:

Private Sub OptionButton1_Click()

MsgBox "OptionButton1"

End Sub

Private Sub OptionButton2_Click()

MsgBox "OptionButton2"

End Sub

ToggleButton

Use a ToggleButton control to enable an option and leave it that way until the user depresses the
button again (see Figure 3-20). This control presents an on/off switch whose appearance changes
depending on whether or not it the user has depressed it.
The ToggleButton control has a Picture property you
could change depending on the state of the button.

In the following example, the condition of the Tog-
gleButton control is tested using a Select ... Case
statement and an appropriate message is displayed:

Private Sub ToggleButton1_Click()

Select Case ToggleButton1.Value

Case False

MsgBox "ToggleButton1 is Off"

Case True

MsgBox "ToggleButton1 is On"

End Select

CHAPTER 3 ■ APPLICATION ELEMENTS 63

Figure 3-18. A UserForm with a
CheckBox control

Figure 3-19. A UserForm with
OptionButtons

Figure 3-20. A UserForm with
ToggleButtons

5793c03_final.qxd 8/22/05 2:34 AM Page 63

Frame

The Frame control, shown in Figure 3-21, is a container
for other controls, similar to the UserForm. Controls
placed within a Frame control will move when you move
the Frame control. Also, if you set the Frame control’s
Enabled property to False, then all the controls within
the Frame control are disabled. Coordinate placement
within the Frame is based on the Frame and not the User-
Form. The Frame control provides a means of grouping
related controls together for easier user selection.

CommandButton

Use CommandButton controls, shown in Figure 3-22, to
allow users to signify that they have made all the selec-
tions and text entries they want to make, and either want
to continue on with the application or want to cancel the
operation. The most common use of this control is for
OK and Cancel button operations.

The following is the most common method of end-
ing a running application:

Private Sub cmdOK_Click()

Unload Me

End Sub

Additional ActiveX Controls
This section briefly explains the remaining five ActiveX controls available by default. Because
these controls aren’t commonly used, I don’t cover them in as much detail as the previous
controls. You can get further details about each of these ActiveX controls by placing one on
a UserForm, highlighting it, and pressing F1.

TabStrip

Use TabStrip controls when the data format between
each tab is the same, but each tab represents a differ-
ent entity (see Figure 3-23). A good analogy would be
a custom control. All TextBox controls have the same
property definitions (the data that appears on every
tab selection). However, each instance of the control
must have a different name (the tab name). Controls
added to a TabStrip are actually added to the UserForm.
When you move the TabStrip, the other controls do
not move with it.

CHAPTER 3 ■ APPLICATION ELEMENTS64

Figure 3-21. A UserForm with a
Frame control

Figure 3-22. A UserForm with a
CommandButton control

Figure 3-23. A UserForm with a
TabStrip control

5793c03_final.qxd 8/22/05 2:34 AM Page 64

MultiPage

The MultiPage control, shown in Figure 3-24, is similar
to a UserForm. Each tab or page is separate from the
others. For example, if you add a control to Page1, the
same control doesn’t appear on any other page. Nor is
it a part of the UserForm. The MultiPage control is simi-
lar to a Frame control in that when you move the
MultiPage control, all the controls contained within
it move as well.

ScrollBar

Use ScrollBar controls to allow the user to easily
change values based on clicking the up and down
arrows of the control (see Figure 3-25). Typically a
ScrollBar increases or decreases counting values
within a TextBox control. This control contains a
slider bar indicating its relative position to the mini-
mum and maximum values. The slider also allows the
user to quickly make very large changes to the value.

SpinButton

A SpinButton control allows the user to change values
easily based on clicking the up and down arrows of
the control (see Figure 3-26). Typically, you use this
control to increase or decrease counting values with a
TextBox control. Values may be changed only by click-
ing the up and down arrows. Unlike ScrollBar
controls, SpinButton controls have no slider bar.

Image

The Image control, shown in Figure 3-27, enables you to
display pictures on your UserForm. The following types of
images are supported: *.bmp, *.cur, *.gif, *.ico, *.jpg,
and *.wmf. With the Image control’s default event being
Click, you could also use it as a fancy CommandButton
control with a picture. In addition to specifying the pic-
ture to be displayed, you can define the Image control’s
display properties such as clip, stretch, and zoom, as
well as apply 3-D border effects on the control itself,
such as Flat, Raised, and Sunken.

CHAPTER 3 ■ APPLICATION ELEMENTS 65

Figure 3-24. A UserForm with a
MultiPage control

Figure 3-25. A UserForm with a
ScrollBar control

Figure 3-26. A UserForm with a
SpinButton control

Figure 3-27. A UserForm with an
Image control

5793c03_final.qxd 8/22/05 2:34 AM Page 65

Summary
This chapter presented the essence of the visual portion of your application. The combina-
tions of the different ActiveX controls provided by AutoCAD VBA are practically endless, and
the right combination for you will depend on the needs of your application. You’re somewhat
forced to find your own way when creating your user interface. In this chapter I discussed
UserForms, how to add controls to a UserForm, and the various ActiveX controls available to
you. One thought you may want to bear in mind when designing your user interface: keep
it simple.

CHAPTER 3 ■ APPLICATION ELEMENTS66

5793c03_final.qxd 8/22/05 2:34 AM Page 66

AutoCAD Events

Events occur as a result of actions happening while your program is running, such as open-
ing or saving a drawing. They allow you to write source code that will execute whenever that
event occurs. Messages such as “Would you like to save changes?” are the common results of
a user action that has triggered an event.

AutoCAD 2006 supports three levels of events: application, document, and object. These
event levels correspond to the three major areas of AutoCAD. Event handlers are Sub proce-
dures that are executed automatically every time their associated event occurs. Some AutoCAD
events allow information to be passed to the event handlers through parameters.

Application-Level Events
Changes to the AutoCAD application environment result in application-level events. These
include the opening and saving of drawings, running of AutoCAD commands, changes to sys-
tem variables, and changes to the AutoCAD application window.

Application-level events aren’t enabled when you load a VBA project. The following exam-
ple illustrates the steps you need to take to enable application-level events.

First, insert a new class module by selecting Insert ➤ Class Module, and name the new
class module appropriately, for example clsApplicationEvents. Then declare an object of type
AcadApplication using the WithEvents keyword.

Public WithEvents objApp As AcadApplication

You should now see the new object objApp appear in the Object list box of the class mod-
ule and all its event procedures are available in the Procedure list box, as shown in Figure 4-1.

You can then go ahead and write the code within these procedures that you want to be
executed each time the events occur. However, these event handlers won’t be triggered unless
you’ve set the reference to correspond to the Application object.

67

C H A P T E R 4

■ ■ ■

5793c04_final.qxd 8/22/05 2:33 AM Page 67

You can do this as follows. In the ThisDrawing or any code module, declare a variable to be
a new instance of the class module you just created, and in a subroutine set this variable to hold
a reference to the Application object.

Option Explicit

Public objApp As New clsApplicationEvents

Public Sub InitializeEvents()

Set objApp.objApp = ThisDrawing.Application

End Sub

As soon as the InitializeEvents subroutine is called, in this case by running the
App_StartMacro macro shown next, the application-level events are enabled.

Public Sub App_StartMacro()

InitializeEvents

End Sub

The following examples illustrate writing code within the event procedures of the class
module to execute when those events occur. The first informs the user when a system variable
changes, and the second ensures that the AutoSave interval for a new drawing is always set to
30 minutes.

Private Sub objApp_SysVarChanged(ByVal SysvarName As String, _

ByVal newVal As Variant)

MsgBox "The System Variable: " & SysvarName & " has changed to " & newVal

End Sub

Private Sub objApp_NewDrawing()

ThisDrawing.SetVariable "SAVETIME", 30

MsgBox "The autosave interval is currently set to 30 mins"

End Sub

CHAPTER 4 ■ AUTOCAD EVENTS68

Figure 4-1. The Object and Procedure boxes

5793c04_final.qxd 8/22/05 2:33 AM Page 68

The following list summarizes the events available at the application level:

AppActivate

AppDeactivate

ARXLoaded

ARXUnloaded

BeginCommand

BeginFileDrop

BeginLisp

BeginModal

BeginOpen

BeginPlot

BeginQuit

BeginSave

EndCommand

EndLisp

EndModal

EndOpen

EndPlot

EndSave

LispCancelled

NewDrawing

SysVarChanged

WindowChanged

WindowMovedOrResized

■Note Unlike Visual LISP, VBA provides no CommandCancelled or CancelledCommand event to respond
to. When a user presses the Esc key, in most cases it won’t fire the EndCommand event.

CHAPTER 4 ■ AUTOCAD EVENTS 69

5793c04_final.qxd 8/22/05 2:33 AM Page 69

Document-Level Events
Changes to a document or its contents result in document-level events. Adding or editing
objects and regeneration of the drawing are just some examples of document-level events.
Unlike application-level events, document-level events are available by default in the
ThisDrawing module of an AutoCAD project. If you choose the AcadDocument object in the
Object list box of the ThisDrawing module, the document-level events are listed in the Pro-
cedure list box, as shown in Figure 4-2.

The following is a summary of events available at the document level:

Activate

BeginClose

BeginCommand

BeginDocClose

BeginDoubleClick

BeginLisp

BeginPlot

BeginOpen

BeginRightClick

BeginSave

BeginShortcutMenuCommand

BeginShortcutMenuDefault

CHAPTER 4 ■ AUTOCAD EVENTS70

Figure 4-2. The Procedure box showing document-level events

5793c04_final.qxd 8/22/05 2:33 AM Page 70

BeginShortcutMenuEdit

BeginShortcutMenuGrip

BeginShortcutMenuOsnap

Deactivate

EndCommand

EndLisp

EndOpen

EndPlot

EndSave

EndShortcutMenu

LayoutSwitched

LispCancelled

ObjectAdded

ObjectErased

ObjectModified

SelectionChanged

WindowChanged

WindowMovedOrResized

Next you’ll look at some of the document events and why you might want to add code to
execute when they occur.

The BeginCommand and EndCommand Events
When you issue an AutoCAD command such as LINE or DIM, the BeginCommand event is trig-
gered. Any code that you’ve written inside the BeginCommand event procedure is then executed.
Once the code associated with the BeginCommand event has finished executing and after the
command itself has finished, the EndCommand event is triggered. Now any code that you’ve writ-
ten inside the EndCommand event procedure executes. You may have code associated with either,
both, or neither of the events. If a command is canceled prior to completion, such as when a
user presses the Esc key, it doesn’t fire the EndCommand event.

The following BeginCommand event procedure illustrates creating a layer called Objects
(if it doesn’t exist) and making the layer active based on the user starting the LINE command:

Option Explicit

Public objCurrentLayer As AcadLayer

Public objPreviousLayer As AcadLayer

CHAPTER 4 ■ AUTOCAD EVENTS 71

5793c04_final.qxd 8/22/05 2:33 AM Page 71

Private Sub AcadDocument_BeginCommand(ByVal CommandName As String)

Set objPreviousLayer = ThisDrawing.ActiveLayer

Select Case CommandName

Case "LINE"

If Not ThisDrawing.ActiveLayer.Name = "OBJECTS" Then

Set objCurrentLayer = ThisDrawing.Layers.Add("OBJECTS")

ThisDrawing.ActiveLayer = objCurrentLayer

End If

End Select

End Sub

The corresponding EndCommand event procedure puts the user back to the layer he or she
was on if you had to change it in order to draw a line:

Private Sub AcadDocument_EndCommand(ByVal CommandName As String)

Select Case CommandName

Case "LINE"

ThisDrawing.ActiveLayer = objPreviousLayer

End Select

Set objCurrentLayer = Nothing

Set objPreviousLayer = Nothing

End Sub

The reason for using such code is that it brings continuity to your drawings. For example,
all lines will be on the Objects layer, and by adding further code, all text could be added auto-
matically to a Text layer.

The BeginOpen and EndOpen Events
When AutoCAD receives a request to open an existing drawing file, the BeginOpen event is trig-
gered. Once AutoCAD has finished loading the drawing file and it’s visible, an EndOpen event
occurs. One possible use of this event procedure would be to store all the current system vari-
ables before you open a drawing. Then once the drawing is opened, you restore the system
variables back to their previous values.

When AutoCAD receives a request to create a new drawing file, a slightly different sequence
of events occurs. The BeginOpen event occurs as before, and then the BeginSave event occurs
(see the section “The BeginSave and EndSave Events” for details). This is followed by an EndSave
event and finally an EndOpen event.

The BeginClose and BeginDocClose Events
The BeginClose event is triggered upon the closing of a drawing session within AutoCAD. Be
careful when you use this event! If you attempt to perform a lengthy task, it can frustrate users
due to slowness, or it could even result in serious problems with AutoCAD, causing it to become
unstable, lock up, or crash entirely. The BeginDocClose event is similar to the BeginClose event.
However, the BeginDocClose event allows you to cancel the Close command.

CHAPTER 4 ■ AUTOCAD EVENTS72

5793c04_final.qxd 8/22/05 2:33 AM Page 72

The Activate and Deactivate Events
The Activate event is triggered when a drawing window gains focus. When only one drawing
is opened in AutoCAD, it will always have focus. When multiple drawings are opened, this
event is triggered when switching between drawing windows. The drawing window that loses
focus triggers the Deactivate event. Normally, the Deactivate event is triggered just before the
Activate event as drawing window focus is switched.

Keep in mind that the Deactivate event indicates the drawing has lost focus. Firing off
a procedure as a result of this event might not be a good idea, as it may not complete its task
until the drawing regains focus (indicated by another Activate event). You can develop pro-
grams to work with what is called a zero document state, meaning there are no drawings
opened. Consult the Autodesk developer guide for more information on this topic.

The BeginSave and EndSave Events
Immediately before AutoCAD begins to save the current drawing, the BeginSave event is trig-
gered. Once AutoCAD has completed saving the drawing file, the EndSave event occurs. You
might use the BeginSave event to query whether or not the user wants to purge his or her
drawing before saving it. You could use the EndSave event to reinitialize standard layers, line-
types, and text styles that may have been purged because they weren’t currently being used.

As you can see, AutoCAD has provided some very useful events that greatly enhance its
controllability.

Object-Level Events
Object-level events occur when changes are made to a specific entity that you’ve declared as
having events. Modified is the only object-level event and, as you would expect, it occurs when
the specified object is modified.

To use object-level events, you must first create a new class module and declare a variable
to hold a reference to the object whose Modified event you want to code. You might call the new
class module something like clsObjectEvent. The new class module contains the declaration
of the object using the VBA keyword WithEvents, as in the following example:

Public WithEvents objLine As AcadLine

The new object then appears in the Object list box of the class module and the event pro-
cedure for the new object may now be written within the class module in the same way as for
other subroutines. For your event procedures to be triggered, you must associate the declared
object in the class module with the object of interest. For this Line object example, you could
do this by placing the following code in the ThisDrawing module or any code module:

Dim objLine As New clsObjectEvent

Public Sub InitializeEvent()

Dim dblStart(2) As Double

Dim dblEnd(2) As Double

dblEnd(0) = 1: dblEnd(1) = 1: dblEnd(2) = 0

Set objLine.objLine = ThisDrawing.ModelSpace.AddLine(dblStart, dblEnd)

End Sub

CHAPTER 4 ■ AUTOCAD EVENTS 73

5793c04_final.qxd 8/22/05 2:33 AM Page 73

You first declare your object to be a new instance of the class clsObjectEvent, and in the
initial event procedure set the objLine variable to hold a reference to a newly created Line
object. Now, as soon as this procedure is called, a new Line object is created that responds
to any changes made to the line in question by executing the code in the Modified event
procedure.

So if you put the following code in the clsObjectEvent class module, the new coordinates
of the Line object will be displayed to the user, whenever the line is moved, rotated, scaled, etc.:

Private Sub objLine_Modified(ByVal pObject As AutoCAD.IAcadObject)

Dim varStartPoint As Variant

Dim varEndPoint As Variant

varStartPoint = pObject.StartPoint

varEndPoint = pObject.EndPoint

MsgBox "New line runs from (" & varStartPoint(0) & ", " & _

varStartPoint(1) & ", " & varStartPoint(2) & ") to (" & _

varEndPoint(0) & ", " & varEndPoint(1) & ", " & varEndPoint(2) & ")."

End Sub

Summary
In this chapter you’ve seen how AutoCAD events can greatly increase programming flexibility.
The steps involved in initializing events may seem a little complex to those first encountering
events, but hopefully this won’t deter you from taking full advantage of the power and flexibil-
ity they provide.

CHAPTER 4 ■ AUTOCAD EVENTS74

5793c04_final.qxd 8/22/05 2:33 AM Page 74

User Preferences

There are actually two Preferences objects within AutoCAD: AcadPreferences and
DatabasePreferences. The AcadPreferences object is stored by AutoCAD and applies to all
drawing sessions. The DatabasePreferences object (also called the Document Preferences)
is stored with each drawing file and applies only to the drawing in which it was saved.

This chapter covers a few aspects of the AcadPreferences object. A quick way to discern
the differences between the AcadPreferences and DatabasePreferences objects is to look
through the Options dialog box tabs and note the features with a drawing icon beside them.
These indicate Document Preferences. All others are AcadPreferences features.

Users can set many different properties that affect the way they work with AutoCAD.
For example, users can set the paths that are searched to find support files and programs,
the properties affecting performance, and how the display is presented. You can view and set
these properties through the Options dialog box, which you can access through the Tools ➤
Options menu, as shown in Figure 5-1, or by typing Options at the command prompt.

75

C H A P T E R 5

■ ■ ■

Figure 5-1. The Options dialog box

5793c05_final.qxd 8/22/05 2:23 AM Page 75

The Preferences collection object contains nine objects representing the nine tabs
on the Options dialog box. These tabs roughly correspond to the objects contained within
the AcadPreferences collection object. From left to right, they relate to the following
AcadPreferences objects:

PreferencesFiles

PreferencesDisplay

PreferencesOpenSave

PreferencesOutput

PreferencesSystem

PreferencesUser

PreferencesDrafting

PreferencesSelection

PreferencesProfiles

AutoCAD 2000 and 2002 users will see a few new additions in AutoCAD 2004 and later,
such as color book locations, tool palette file settings, i-drop settings, hover grip colors, secu-
rity options, right-click options, hidden line options, and more. Accessing these objects may
seem a bit odd, as they’re called PreferencesFiles, but you request them from the Preferences
object using their short name, such as Files.

For example, the following code returns the PreferencesProfiles object used to save
a custom profile file for later use with each session:

Dim PrefProfiles As AcadPreferencesProfiles

Set PrefProfiles = ThisDrawing.Application.Preferences.Profiles

In this chapter, I cover the following aspects of the Preferences object:

• Getting and setting the support path(s)

• Controlling the cursor size

• Getting and setting the AutoSaveInterval property

• Getting and setting the drawing template file path

• Getting and setting the printer support path

• Getting and setting the file SaveAs type

• Enabling and disabling the Startup dialog box

• Saving and retrieving personal preferences

CHAPTER 5 ■ USER PREFERENCES76

5793c05_final.qxd 8/22/05 2:23 AM Page 76

Getting and Setting Support Path(s)
Controlling support paths can be important if you’re using custom applications during your
AutoCAD session. Generally speaking, the default paths set by AutoCAD are probably not ade-
quate because they don’t include any paths for customs applications, for example. AutoCAD’s
saving grace is that you can change the default paths to accommodate your program needs. If
you need to know the current path for your support files, you can read the SupportPath prop-
erty of the PreferencesFiles object:

strSetPaths = ThisDrawing.Application.Preferences.Files.SupportPath

You can also append the SupportPath property as follows:

Dim strNewPath As String, strSetPath As String

strNewPath = ;c:\cadfiles\apress\dvb

strSetPath = ThisDrawing.Application.Preferences.Files.SupportPath

If Len(strSetPath & strNewPath) < 256 Then

strNewPath = strSetPath & strNewPath

ThisDrawing.Application.Preferences.Files.SupportPath = strNewPath

End If

Note that there is a 255-character limit on the cumulative length of the support path collec-
tion. This includes the semicolon delimiter used to store the value internally (it’s actually stored
as a single string and shown as a list only through the Options dialog form). If you exceed the
limit, AutoCAD will truncate the paths, which may yield odd or unpredictable results.

In AutoCAD 2004 and later, the support path list changed, as did other default path behav-
iors. This is due to Microsoft Windows XP logo certification requirements that Autodesk sought
for its latest product releases. For example, you’ll see two new default path entries under sup-
port paths that refer to the user profile path, as shown in Figure 5-2.

CHAPTER 5 ■ USER PREFERENCES 77

Figure 5-2. Support File Search Path entries in the Options dialog box

5793c05_final.qxd 8/22/05 2:23 AM Page 77

Controlling Cursor Size
You may want to change the default cursor size to your particular preference. You can achieve
this by using the CursorSize property of the PreferencesDisplay object:

intCursorSize = ThisDrawing.Application.Preferences.Display.CursorSize

The value of the CursorSize property is a positive integer that represents the percentage of
the cursor size to the screen size. The default value is 5, the minimum is 1, and the maximum is
100. All other values will generate an error. The following example prompts the user to enter a
value for the cursor size, and if the returned value lies between 1 and 100, the size is changed.
Otherwise, the user is informed that he or she has entered an invalid value.

Dim intCursorSize As Integer

intCursorSize = ThisDrawing.Utility.GetInteger(vbCrLf & _

"Enter number for size of cursor proportional to screen size" & vbCrLf)

If intCursorSize < 1 Or intCursorSize > 100 Then

MsgBox "Cursor Size value must be between 1 and 100"

Else

ThisDrawing.Application.Preferences.Display.CursorSize = intCursorSize

End If

Getting and Setting the
AutoSaveInterval Property
The AutoSaveInterval property is a positive integer value representing the number of whole min-
utes between automatic saves. The timer for automatic saves starts as soon as you make a change
to the current drawing. Setting the AutoSaveInterval property to 0 (zero) means that you’ll never
get an automatic save operation. The maximum value allowed for the AutoSaveInterval property
is 600 minutes.

The default value that AutoCAD uses for the time between automatic saves is 120 minutes.
You can do a lot of work in two hours, all of which could potentially be lost if you don’t initiate
a save operation. Most users, then, will want to set the AutoSaveInterval property to a much
shorter interval.

The following example retrieves the current setting, and if the autosave interval isn’t set
to 15 minutes, it’s altered and the user is informed of the change:

If ThisDrawing.Application.Preferences.OpenSave.AutoSaveInterval <> 15 Then

ThisDrawing.Application.Preferences.OpenSave.AutoSaveInterval = 15

MsgBox "The autosave interval has been changed to 15 minutes."

End If

CHAPTER 5 ■ USER PREFERENCES78

5793c05_final.qxd 8/22/05 2:23 AM Page 78

■Tip Autodesk recommends setting IncrementalSavePercent to 0 if you experience problems saving
files across a network connection. This forces a full save at every automatic save, which may require a few
more milliseconds but ensures a complete disk-write at every save. This can also help you avoid the dreaded
automatic-save backup files when you lose your sessions prematurely.

Getting and Setting the Drawing Template
File Path
The TemplateDWGPath property is a string value specifying the path of template files used by
the start-up wizards. The following example illustrates how to retrieve the current template
files path:

strTemplatePath = ThisDrawing.Application.Preferences.Files.TemplateDwgPath

Setting the path to your specific value requires a fully qualified path, as shown here:

ThisDrawing.Application.Preferences.Files.TemplateDwgPath = _

"C:\Program " & "Files\AutoCAD 2006\Templates"

Manipulating the path settings can be helpful if you need to use various sets of templates
from different customers or vendors, or if your internal departments must use different stan-
dards, such as the metric system and English system of measurement or the ANSI and ISO
industry standards.

Getting and Setting the Printer Support Path
One of the most common uses of the Preferences object is to deal with printer or plotter con-
figuration aspects, as shown in Figure 5-3. Among these are the plotter configuration support
paths. These are displayed one way in the Options dialog form and somewhat differently in
the AcadPreferences.Files object.

Printer Configuration Search Path is where the PC3 configuration files are stored and
accessed. This is linked to the PrinterConfigPath property. This is normally the Plotters folder
in AutoCAD 2000 and 2002, but it has been moved in AutoCAD 2006.

Printer Description File Search Path is where the PMP paper size and plotter calibration
files are stored. This is normally the Drv folder in AutoCAD 2000 and 2002; however, it has
been moved in AutoCAD 2006 to PMP Files under the Plotters folder. It’s linked to the Printer-
DescPath property.

Plot Style Table Search Path is where the CTB and STB plot style files are stored and
accessed. This is normally the Plot Styles folder in AutoCAD 2000 and 2002, but it has also
been moved in AutoCAD 2004 and later. This is linked to the PrinterStyleSheetPath property.

CHAPTER 5 ■ USER PREFERENCES 79

5793c05_final.qxd 8/22/05 2:23 AM Page 79

The following example shows how to modify the Printer Configuration Search Path using
VBA and the AcadPreferences.File object:

Dim strPC3Path As String

strPC3Path = c:\cadfiles\plotconfigs

ThisDrawing.Application.Preferences.Files.PrinterConfigPath = strPC3Path

Getting and Setting the File SaveAs Type
The SaveAsType property controls the format used when AutoCAD saves the current drawing.
Table 5-1 shows the applicable values available for different formats supported by AutoCAD
2006 by using the acSaveAs enumeration. You can always explicitly override this setting either
from the SAVEAS command or programmatically from the SaveAs method of the Document
object in VBA.

Table 5-1. acSaveAs Enumerations

Name Value Description

acR12_dxf 1 AutoCAD Release12/LT2 DXF (*.dxf).

ac2000_dwg 12 AutoCAD 2000 DWG (*.dwg).

ac2000_dxf 13 AutoCAD 2000 DXF (*.dxf).

ac2000_Template 14 AutoCAD 2000 Drawing Template File (*.dwt).

ac2004_dwg 24 AutoCAD 2004 DWG (*.dwg).

CHAPTER 5 ■ USER PREFERENCES80

Figure 5-3. Printer Support File Path options in the Options dialog box

5793c05_final.qxd 8/22/05 2:23 AM Page 80

Name Value Description

ac2004_dxf 25 AutoCAD 2004 DXF (*.dxf).

ac2004_Template 26 AutoCAD 2004 Drawing Template File (*.dwt).

acNative 24 A synonym for the current drawing release format. If you want
your application to save the drawing in the format of whatever
version of AutoCAD the application is running on, then use the
acNative format.

■Note The values shown in Table 5-1 are the only valid values that you can use. Valid values from earlier
versions of AutoCAD are not shown in the table. Invalid values will generate an error.

The following example determines the current file format in which drawings will be saved:

Public Sub SaveAsType()

Dim iSaveAsType As Integer

iSaveAsType = ThisDrawing.Application.Preferences.OpenSave.SaveAsType

Select Case iSaveAsType

Case acR12_dxf

MsgBox "Current save as format is R12_DXF", vbInformation

Case ac2000_dwg

MsgBox "Current save as format is 2000_DWG", vbInformation

Case ac2000_dxf

MsgBox "Current save as format is 2000_DXF", vbInformation

Case ac2000_Template

MsgBox "Current save as format is 2000_Template", vbInformation

Case ac2004_dwg, acNative

MsgBox "Current save as format is 2004_DWG", vbInformation

Case ac2004_dxf

MsgBox "Current save as format is 2004_DXF", vbInformation

Case ac2004_Template

MsgBox "Current save as format is 2004_Template", vbInformation

Case acUnknown

MsgBox "Current save as format is Unknown or Read-Only", vbInformation

End Select

End Sub

You set the SaveAsType property by using the same enumerated types as shown in the fol-
lowing example:

ThisDrawing.Application.Preferences.OpenSave.SaveAsType = ac2000_dwg

The default value for the SaveAsType property for AutoCAD 2004 is ac2004_dwg.

CHAPTER 5 ■ USER PREFERENCES 81

5793c05_final.qxd 8/22/05 2:23 AM Page 81

■Tip In general, it’s best (and safest) to leave the default SaveAsType setting as the current version and
convert drawing files only at the end of the design phase, when you’re preparing to deliver them to whom-
ever requires the prior format. This eliminates the constant conversion process AutoCAD must do each time
you open a drawing and save it. The repetitive conversion processes can impact performance and increase
the risk of drawing database corruption. You can also batch-convert drawings using the Migration Assistance
Batch Drawing Converter to save time at the end of a major project.

Enabling and Disabling the Startup Dialog Box
Users may or may not want the Startup dialog box as shown in Figure 5-4 when they open an
existing drawing or start a new drawing. In AutoCAD 2004 and later, the Startup dialog box is
disabled by default.

You can control whether this dialog box is displayed using the EnableStartupDialog prop-
erty of the PreferencesSystem object, as in the following example:

ThisDrawing.Application.Preferences.System.EnableStartupDialog = False

The initial value of the EnableStartupDialog property is True for versions up to AutoCAD
2002 only. It is False for AutoCAD 2004 and later products.

An AutoCAD 2004 and later quirk is that although the command line setting has been
removed from the Display tab of the Options dialog box, the corresponding property is still
exposed under the Display object (DockedVisibleLines). However, modifying its value has
no effect whatsoever due to the command prompt being converted to a tool palette object.

CHAPTER 5 ■ USER PREFERENCES82

Figure 5-4. The Startup dialog box

5793c05_final.qxd 8/22/05 2:23 AM Page 82

Saving and Retrieving Personal Preferences
Profiles are named environment configurations that allow you to load and change your entire
desktop and support configurations at will. For example, you may create one for each project
you work on, you may create one for each user on a shared workstation, or you may create one
for each add-on application you use in AutoCAD.

Profiles are saved and recalled from the Windows Registry. You can save them and export
them to .arg files, but they are actually Registry export files, having the same internal content
and structure as a Windows .reg file. In fact, you can rename them as .reg files and double-
click them to import them directly into the registry. AutoCAD, however, provides API access
into the Profiles object to allow you to manage profiles from within AutoCAD.

Once you’ve settled on a standard for your preferences, you may want to save these set-
tings in a file that you can later import for your current session. You should make all necessary
changes to the preferences and then use the following code to export them to a file:

Dim strActiveProfile as String

strActiveProfile = ThisDrawing.Application.Preferences.Profiles.ActiveProfile

ThisDrawing.Application.Preferences.Profiles.ExportProfile _

strActiveProfile, "C:\MYPROFILE.ARG"

Now that you’ve exported your preferences to a file, the following code will allow you to
import these preferences into each of your AutoCAD sessions:

Dim strMyProfile As String

'name of profile

strMyProfile = "My Personal Profile"

ThisDrawing.Application.Preferences.Profiles.ImportProfile _

strMyProfile, "C:\MYPROFILE.ARG", True

ThisDrawing.Application.Preferences.Profiles.ActiveProfile = strMyProfile

The True argument at the end of the ImportProfile method tells AutoCAD to preserve the
path information from the .arg file and save this information into the Windows Registry. Also,
notice that at the end of the preceding code I set the newly imported profile to be active. You
must make your personal profile active for your settings to take effect.

If you attempt to import a profile from a .arg file, AutoCAD will always check to see if the
profile name already exists within AutoCAD. If it exists, AutoCAD ignores the .arg file entirely.
To force an import to take effect, you must either delete or rename the existing profile prior to
importing. You can’t delete the active profile, so it’s usually easiest to rename it, import the new
one, set it active, and delete the renamed profile, as shown in the following code:

Dim strActiveProfile As String

Dim strMyProfile As String

strMyProfile = "My Personal Profile"

strActiveProfile = ThisDrawing.Application.Preferences.Profiles.ActiveProfile

With ThisDrawing.Application.Preferences.Profiles

CHAPTER 5 ■ USER PREFERENCES 83

5793c05_final.qxd 8/22/05 2:23 AM Page 83

.RenameProfile strActiveProfile " MyBackupProfile"

.ImportProfile strMyProfile, "C:\MYPROFILE.ARG ",True

.ActiveProfile = strMyProfile

.DeleteProfile "MyBackupProfile"

End With

Obviously, the preceding example doesn’t verify whether the active profile is the one you
want to replace, so that’s something else you should check if you use this method. It’s interest-
ing to note that whereas the Profiles object contains a logical collection of profiles, there is no
Item or Count property. The ActiveProfile property returns a string name, not an object. The
methods also are string-based, not object-based. This means that you can’t access and manipu-
late profiles as objects. However, you can copy, delete, rename, import, export, and reset them.

User Preferences Changes in AutoCAD 2004
AutoCAD 2004 (and hence, 2006) adds, removes, and modifies quite a few Options dialog box
features, as well as many AcadPreferences objects. Be sure to read the online development
documentation for changes in AutoCAD 2004. There are some interesting things to note, in
addition to my comment earlier about changing the DockedVisibleLines property having no
effect on the number of lines displayed for the command prompt. For example, although
AutoCAD 2004 adds the new “hover grip” feature to the Options dialog box, the three color
options are not represented cohesively under the hood. Figure 5-5 shows the Selection tab.

CHAPTER 5 ■ USER PREFERENCES84

Figure 5-5. The Selection tab of the Options dialog box

5793c05_final.qxd 8/22/05 2:23 AM Page 84

The AcadPreferences.Selection object contains only GripColorSelected and
GripColorUnselected. The GRIPHOVER system variable is the only means to access and
modify the hover grip color. Another curious issue is that of tool palettes, which are new
to AutoCAD 2004. These aren’t exposed through the ActiveX model anywhere; they’re
actually stored as XML documents under the ToolPalettesPath property of the File
object. There currently is no means to configure their display properties from VBA with-
out invoking XML services.

Summary
There’s no way to cover every possible combination of preferences a typical user may use,
but I’ve covered a few of the most useful ones in this chapter. Please refer to Appendix A
for more details on preferences, including exact names and syntax.

CHAPTER 5 ■ USER PREFERENCES 85

5793c05_final.qxd 8/22/05 2:23 AM Page 85

5793c05_final.qxd 8/22/05 2:23 AM Page 86

Controlling Layers
and Linetypes

Effective use of layers and linetypes is the key to creating structured drawings and manipu-
lating AutoCAD in an efficient manner. In this chapter, you’ll see how to access the Layers and
Linetypes collections and their respective Layer and Linetype objects, and learn about their
methods and properties. The code samples throughout this chapter demonstrate how to con-
trol these objects through VBA.

Layers
A layer is a property of every AutoCAD drawing object. By using multiple layers, you may
organize drawing data into logical categories. For example, when you design an office layout,
you could use one layer to display the walls and other fixed structural objects, and you could
use other layers to show the potential furniture or electrical arrangements. Alternatively, you
could use a layer to hold dimensions (measurement annotations) or hidden lines. A Layer
object represents one of these logical groupings.

Manipulating the state of layers makes it easier to manage complex drawings. For example,
by making a layer visible or hidden, the user can choose to work with specific entity categories
without being overwhelmed by all the other drawing entities.

Creating layers and controlling their state is the subject of the first part of this chapter.
Later I discuss how to control linetypes.

The following list outlines the various actions that I cover with regard to layers:

• Accessing the Layers collection and Layer objects

• Checking for the existence of a specific layer

• Creating a new layer and making it the active layer

• Setting or returning the On/Off, Thawed/Frozen, Locked/Unlocked properties

• Renaming and deleting a layer

• Setting or returning a layer’s Color and Linetype properties

87

C H A P T E R 6

■ ■ ■

5793c06_final.qxd 8/22/05 2:22 AM Page 87

Accessing Layers
AutoCAD has a Layers collection that contains all the Layer objects in the drawing. You can
create as many layers as you want by adding new Layer objects to the Layers collection.

You access the Layers collection via a Document object. In the following code, ThisDrawing
is used as the active document:

Dim objLayers As AcadLayers

Set objLayers = ThisDrawing.Layers

To set a reference to an existing Layer object, use the Item method of the Layers collection
as follows:

Dim objLayer As AcadLayer

Set objLayer = objLayers.Item(2)

Set objLayer = objLayers.Item("My Layer")

The parameter of this method is either an integer representing the position of the desired
Layer object within the Layers collection or a string representing the name of the desired Layer
object. If you use an index number, it must be between 0 and the value of the Layers.Count
property minus 1.

Like in other AutoCAD collections, Item is the default method for Layers. This means that
the method name may be omitted, and the parameter passed straight to the Layers reference.
Some programmers prefer this, as it’s simpler to type and read. The following code does the
same thing as the prior example using the default method to specify the Layer object:

Dim objLayer As AcadLayer

Set objLayer = objLayers(2)

Set objLayer = objLayers("My Layer")

However, I recommend that you avoid using default methods and instead strive to use
explicit properties and methods. Microsoft is making a strong commitment to explicit coding
in all of its current and future programming technologies, such as .NET. In fact, .NET doesn’t
support default methods or implicit data types by default.

Iterating Layers
In some situations you’ll want your program to step through each item in a collection—
perhaps to check or alter some property of every element. This is termed iteration. Like all
collections in VBA, Layers has built-in support for iteration using a For ... Each loop. The
following example iterates the Layers collection, printing each Layer name to the Immediate
or Debug window:

Public Sub ListLayers()

Dim objLayer As AcadLayer

For Each objLayer In ThisDrawing.Layers

Debug.Print objLayer.Name

Next

End Sub

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES88

5793c06_final.qxd 8/22/05 2:22 AM Page 88

You may also iterate the collection manually using the Count property in conjunction with
the Item method. The Count property contains the total number of elements in the collection.

Remember, when you access a collection element using a number, the index must be
between 0 and the value of the Layers.Count property minus 1. This is because all collections
are by default zero-based. The following example prints each Layer name to the Debug win-
dow as before, but this time iterates the collection manually:

Public Sub ListLayersManually()

Dim objLayers As AcadLayers

Dim objLayer As AcadLayer

Dim intI As Integer

Set objLayers = ThisDrawing.Layers

For intI = 0 To objLayers.Count - 1

Set objLayer = objLayers(intI)

Debug.Print objLayer.name

Next

End Sub

You can see that the manual version is a bit more complex, with several variables involved.
For most purposes, the For ... Each version is preferred, but because the manual version gives
you full control over the iteration, it may be needed in some situations. For example, the follow-
ing sample prints the Layer names to the Debug window by iterating the collection in reverse
order:

Public Sub ListLayersBackwards()

Dim objLayers As AcadLayers

Dim objLayer As AcadLayer

Dim intI As Integer

Set objLayers = ThisDrawing.Layers

For intI = objLayers.Count - 1 To 0 Step -1

Set objLayer = objLayers(intI)

Debug.Print objLayer.name

Next

End Sub

Checking for Existing Layers
At times your program may need to determine if an element is present in the collection. One
way to do this is to search for the element while iterating the collection as described previously.
The following example gets a layer name from the user and then checks for its existence by
iterating the Layers collection:

Public Sub CheckForLayerByIteration()

Dim objLayer As AcadLayer

Dim strLayerName As String

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 89

5793c06_final.qxd 8/22/05 2:22 AM Page 89

strLayername = InputBox("Enter a Layer name to search for: ")

If "" = strLayername Then Exit Sub ' exit if no name entered

For Each objLayer In ThisDrawing.Layers ' iterate layers

If 0 = StrComp(objLayer.name, strLayername, vbTextCompare) Then

MsgBox "Layer '" & strLayername & "' exists"

Exit Sub ' exit after finding layer

End If

Next objLayer

MsgBox "Layer '" & strLayername & "' does not exist"

End Sub

Unlike prior releases in which layer names were converted to uppercase, AutoCAD 2000 and
higher allows the names to be mixed case. However, you can’t have two layers with the same
name but with a different combination of upper- and lowercase letters. For example, AutoCAD
will treat “Objects” and “objects” as the same layer. This sample uses a case-insensitive string
comparison of strLayerName and each Layer name to allow for capitalization differences.

A second technique is to let AutoCAD perform the search for you. This is quite a bit more
efficient because AutoCAD can internally determine if the element is present, and it eliminates
sending unneeded elements to your program. AutoCAD will also handle the case-insensitive
name comparison for you. To use this technique you must employ the VBA error handler.

Like many AutoCAD VBA objects, the Layers collection uses run-time errors to signal unex-
pected conditions. These run-time errors, also called exceptions, must be handled by the calling
program. If the exception isn’t handled, the calling program halts and displays an error mes-
sage to the user. In this case, Layers will raise an exception if you attempt to access an unknown
Layer name. By detecting this exception, or more correctly the lack of the exception, your pro-
gram is notified of the existence of the Layer. The following example gets a layer name from the
user and uses AutoCAD to check for its existence:

Public Sub CheckForLayerByException()

Dim strLayerName As String

Dim objLayer As AcadLayer

strLayerName = InputBox("Enter a Layer name to search for: ")

If "" = strLayerName Then Exit Sub ' exit if no name entered

On Error Resume Next ' handle exceptions inline

Set objLayer = ThisDrawing.Layers(strLayerName)

If objLayer Is Nothing Then ' check if obj has been set

MsgBox "Layer '" & strLayerName & "' does not exist"

Else

MsgBox "Layer '" & objLayer.Name & "' exists"

End If

End Sub

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES90

5793c06_final.qxd 8/22/05 2:22 AM Page 90

Creating a New Layer
You can create as many layers as needed using the criterion illustrated in Table 6-1. The Add
method is used to create a Layer object and to add it to the Layers collection.

Set LayerObject = LayerCollection.Add(LayerName)

Table 6-1. The LayerName Property

Name Data Type Description

LayerName String The name for the new layer. If the parameter isn’t a valid layer
name, an exception will be raised. If you attempt to add a new
layer with the same name as an existing layer, a reference to the
existing Layer is returned.

The following example retrieves a layer name from the user and attempts to add it to the
Layers collection:

Public Sub AddLayer()

Dim strLayerName As String

Dim objLayer As AcadLayer

strLayerName = InputBox("Name of Layer to add: ")

If "" = strLayerName Then Exit Sub ' exit if no name entered

On Error Resume Next ' handle exceptions inline

'check to see if layer already exists

Set objLayer = ThisDrawing.Layers(strLayerName)

If objLayer Is Nothing Then

Set objLayer = ThisDrawing.Layers.Add(strLayerName)

If objLayer Is Nothing Then ' check if obj has been set

MsgBox "Unable to Add '" & strLayerName & "'"

Else

MsgBox "Added Layer '" & objLayer.Name & "'"

End If

Else

MsgBox "Layer already existed"

End If

End Sub

In normal programming situations, it’s usually best to define entity- or object-creation rou-
tines as functions rather than subroutines. This way, you can return the object to other functions
or subroutines, making it possible to further manipulate the new object outside the function
that creates it.

When a layer is first created, its properties are set to certain default values. Figure 6-1
shows what you would see in the Layer Properties Manager dialog box when a new layer called
Room Shell is added with the preceding code.

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 91

5793c06_final.qxd 8/22/05 2:22 AM Page 91

Here you can see two layers. The first, layer 0, is created automatically by AutoCAD and
may not be deleted or renamed. The second is the layer that was just created through code.
The default attribute settings are shown.

We next examine how to change and retrieve the settings for some of these attributes and
how to rename and delete a Layer object.

Making a Layer Active
When you create new entities in AutoCAD, they’re placed on the current or active layer. There-
fore, to draw entities on a specific layer, you must first make that layer active.

■Note You can’t make a layer active if it’s frozen. However, you can check for this condition before you
attempt to make a layer active. For more details, see the section “Setting a Layer to Be Frozen or Thawed.”

The ActiveLayer property is a member of the Document object. To make a specific layer
active, assign the Layer object to the ActiveLayer.

DocumentObject.ActiveLayer = LayerObject

The following code makes the layer named “Walls” the active layer for the current Document:

ThisDrawing.ActiveLayer = ThisDrawing.Layers("Walls")

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES92

Figure 6-1. The Layer Properties Manager dialog box

5793c06_final.qxd 8/22/05 2:22 AM Page 92

New entities will now be placed on the “Walls” layer until another layer is made active.
You can change the layer of existing entities by altering the Layer property of that particular
entity. The Layer property is a string that corresponds to the name of a Layer object. The fol-
lowing example lets the user pick a drawing entity and specify a new layer name for that entity:

Public Sub ChangeEntityLayer()

On Error Resume Next ' handle exceptions inline

Dim objEntity As AcadEntity

Dim varPick As Variant

Dim strLayerName As String

Dim objLayer As AcadLayer

ThisDrawing.Utility.GetEntity objEntity, varPick, "Select an entity"

If objEntity Is Nothing Then

MsgBox "No entity was selected"

Exit Sub ' exit if no entity picked

End If

strLayerName = InputBox("Enter a new Layer name: ")

If "" = strLayerName Then Exit Sub ' exit if no name entered

Set objLayer = ThisDrawing.Layers(strLayerName)

If objLayer Is Nothing Then

MsgBox "Layer was not recognized"

Exit Sub ' exit if layer not found

End If

objEntity.Layer = strLayerName ' else change entity layer

End Sub

You can determine if a specific layer is active by comparing the string to the ActiveLayer.Name
property:

If ThisDrawing.ActiveLayer.Name = "Walls" Then ...

This is a pretty common operation, so make it a function. You’ll also want to allow for var-
ious combinations of upper- and lowercase letters, as AutoCAD does:

Public Function IsLayerActive(strLayerName As String) As Boolean

IsLayerActive = False 'assume failure

If 0 = StrComp(ThisDrawing.ActiveLayer.Name, strLayerName, _

vbTextCompare) Then

IsLayerActive = True

End If

End Function

This IsLayerActive function checks whether a particular string corresponds to the active
layer name. True will be returned if the layer is active, otherwise False will be returned. The
following gets a layer name from the user and employs the new function to see if it’s active:

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 93

5793c06_final.qxd 8/22/05 2:22 AM Page 93

Public Sub LayerActive()

Dim strLayerName As String

strLayerName = InputBox("Name of the Layer to check: ")

If IsLayerActive(strLayerName) Then

MsgBox "'" & strLayerName & "' is active"

Else

MsgBox "'" & strLayerName & "' is not active"

End If

End Sub

Turning a Layer On/Off
Turning a layer on or off allows you to control its visibility on the screen. This feature affects
only the layer being turned on/off and not the entire drawing. This can be useful if you want
to work on some aspect of a complex drawing. By making certain layers invisible, you can
ensure that the drawing entities on these layers don’t obscure your current work.

You can also hide a layer by freezing it. This is more suitable if you want to hide a layer for
a considerable length of time and is discussed later in this chapter in the section “Setting a
Layer to Be Frozen or Thawed.” Turning a layer on/off is more suited to situations in which the
visibility will be changed frequently.

Layers that are turned off are regenerated with the rest of the drawing but won’t be dis-
played or plotted. When a layer that’s currently off is turned back on, the entities on the layer
are redrawn but don’t require regeneration of the entire drawing. Setting the LayerOn property
will turn a layer on or off.

LayerObject.LayerOn = blnLayerOn

A value of True for this property will turn the layer on. Conversely, a value of False will
turn the layer off.

The following code turns off every layer except the one specified by the user:

Public Sub ShowOnlyLayer()

On Error Resume Next ' handle exceptions inline

Dim strLayerName As String

Dim objLayer As AcadLayer

strLayerName = InputBox("Enter a Layer name to show: ")

If "" = strLayerName Then Exit Sub ' exit if no name entered

For Each objLayer In ThisDrawing.Layers

objLayer.LayerOn = False ' turn off all the layers

Next objLayer

Set objLayer = ThisDrawing.Layers(strLayerName)

If objLayer Is Nothing Then

MsgBox "Layer does not exist"

Exit Sub ' exit if layer not found

End If

objLayer.LayerOn = True ' turn on the desired layer

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES94

5793c06_final.qxd 8/22/05 2:22 AM Page 94

You may sometimes want to execute a particular chunk of code depending on the value of
the LayerOn property, for example:

If objLayer.LayerOn Then ... 'executes if layer is On

Setting a Layer to Be Frozen or Thawed
Freezing a layer makes the entities on that layer invisible. This improves the speed of display and
reduces the amount of time needed to regenerate a drawing, because entities on frozen layers
aren’t regenerated with the rest of the drawing. Entities on frozen layers aren’t considered when
AutoCAD calculates the drawing extents, either. In AutoCAD 2004 and earlier versions, when a
frozen layer is thawed, AutoCAD forces a regeneration of the entire drawing.

■Note AutoCAD 2006 does not force a regeneration when the various states, such as Freeze and LayerOn,
of a layer change.

The amount of performance improvement in 2004 and earlier versions depends on the
number of entities on the frozen layers. Also, if your drawing is complex with a lot of detail on
different layers, freezing a layer that isn’t frequently used will make your drawing less cluttered
and improve entity selection.

Setting the Freeze property to True will freeze a layer, whereas setting it to False will thaw
the layer. For example, the following freezes a specific Layer object:

objLayer.Freeze = True

Check the value of the Freeze property to determine the current state of a Layer object:

If objLayer.Freeze Then ... 'executes if layer is Frozen

Because of the resulting drawing regeneration in 2004 and earlier versions, frequently
resetting the Freeze property can greatly decrease performance. Thus, you should use Freeze
only if you intend to hide a layer for an extended period. If you need to change the visibility of
a layer often, LayerOn, as described earlier, is a better alternative.

Locking/Unlocking a Layer
You can’t select or edit entities on locked layers. However, the objects are still visible as long as
the layer is on and thawed, and you can still use them in object snap selection, acting as an aid
to the creation and modification of entities on other layers. Although you can’t edit or select
entities on a locked layer, you may add new entities to it. This feature can be very useful when
you create an “overlay” or for reference data. Locking a layer doesn’t preclude you from alter-
ing its on/off, freeze/thaw, plot/noplot, color, linetype, or lineweight properties.

The Lock property holds a Boolean value, and setting it to True will lock a layer. A value of
False will unlock the layer, for example:

objLayer.Lock = False

Check the value of the Lock property to determine the current state of a Layer object:

If objLayer.Lock Then ... 'executes if layer is locked

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 95

5793c06_final.qxd 8/22/05 2:22 AM Page 95

Making Layers Plottable
You can control the ability to plot layers by manipulating the Plottable property of the Layer
object. Setting it to True enables it to be processed for plotting. Setting it to False treats it as
though it has been frozen with respect to plot output.

objlayer.Plottable = False

Note that some layers cannot be forced to plot even if you set their Plottable property to
True. Certain layers created by the ACIS or ShapeManager solid-modeling engine as well as
the layer DEFPOINTS are not plottable.

Renaming a Layer
To rename a layer, simply assign a new name to the Layer.Name property. Take care to address
the possible exceptions that may be raised: invalid name, existing name, etc.

■Note You can’t rename the AutoCAD-defined layer 0.

The following example renames a Layer object based on user input:

Public Sub RenameLayer()

On Error Resume Next ' handle exceptions inline

Dim strLayerName As String

Dim objLayer As AcadLayer

strLayerName = InputBox("Original Layer name: ")

If "" = strLayerName Then Exit Sub ' exit if no old name

Set objLayer = ThisDrawing.Layers(strLayerName)

If objLayer Is Nothing Then ' exit if not found

MsgBox "Layer '" & strLayerName & "' not found"

Exit Sub

End If

strLayerName = InputBox("New Layer name: ")

If "" = strLayerName Then Exit Sub ' exit if no new name

objLayer.Name = strLayerName ' try and change name

If Err Then ' check if it worked

MsgBox "Unable to rename layer: " & vbCr & Err.Description

Else

MsgBox "Layer renamed to '" & strLayerName & "'"

End If

End Sub

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES96

5793c06_final.qxd 8/22/05 2:22 AM Page 96

Deleting a Layer
The Layer.Delete method removes a Layer object from the Layers collection. This method
takes no parameters and has no return value:

LayerObject.Delete

Within certain restrictions appearing in the following list, it’s possible to delete a layer
whenever you choose. A layer may not be deleted if

• It is the active layer.

• It is layer 0 (zero).

• It contains entities.

• It is an Xref-dependent layer.

If a layer contains entities in model space, any paper space layout, or any block definition,
it can’t be deleted. There’s no definitive way to tell which entities are referenced by a specific
layer short of doing an exhaustive search of each of these collections. If all entities are moved
to another layer, you can then delete the layer.

Xref-dependent layers are created when an external reference file is attached and activated.
Entities in the current drawing can’t reside on Xref-dependent layers. Furthermore, these layers
are simply duplications of the layers in the external drawing and aren’t saved with the current
drawing, so there’s no need to delete them.

Remember, AutoCAD creates certain layers automatically for its own purposes. An exam-
ple of this is the special DEFPOINTS layer, which is created during dimensioning. I discuss
dimensions in Chapter 11.

The following example deletes a layer based on user input:

Public Sub DeleteLayer()

On Error Resume Next ' handle exceptions inline

Dim strLayerName As String

Dim objLayer As AcadLayer

strLayerName = InputBox("Layer name to delete: ")

If "" = strLayerName Then Exit Sub ' exit if no old name

Set objLayer = ThisDrawing.Layers(strLayerName)

If objLayer Is Nothing Then ' exit if not found

MsgBox "Layer '" & strLayerName & "' not found"

Exit Sub

End If

objLayer.Delete ' try to delete it

If Err Then ' check if it worked

MsgBox "Unable to delete layer: " & vbCr & Err.Description

Else

MsgBox "Layer '" & strLayerName & "' deleted"

End If

End Sub

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 97

5793c06_final.qxd 8/22/05 2:22 AM Page 97

■Tip Whenever you delete a collection member such as a layer, linetype, dimstyle, or text-style object, you
should consider executing a Purge method against the drawing object to clean up the database.

Getting a Layer’s Handle
AutoCAD assigns every object a unique handle or ID that remains constant for as long as the
object exists. You access object handles are using the Handle property:

Dim objLayer As AcadLayer

Dim strLayerHandle As String

Set objLayer = ThisDrawing.Layers("0")

strLayerHandle = objLayer.Handle

Handles are used extensively when working with extended entity data. Extended entity
data, or Xdata, is nongraphical information that can be attached to objects by application pro-
grams.

Layer Colors
Each layer has a Color property that provides the color for all entities drawn on the layer whose
Color property is set to ByLayer. Unless an entity is set to a specific color, it will take on the color
of the layer where it is drawn. This is very efficient—changing the layer color automatically
changes the color of all entities whose Color property is set to ByLayer.

By default, a new layer’s color will be white or black depending upon the drawing back-
ground color, and is represented by the number 7. You can change the layer color at any time,
and likewise you can assign individual entities their own color at any time.

A layer may take any one of 257 different color values; nine of these have associated
AutoCAD VBA constants, which are listed in Table 6-2. You set the Color property by specifying
either the constant or the AutoCAD color index number, ranging between 0 and 256. The fol-
lowing statements are equivalent:

objLayer.Color = acRed

or

objLayer.Color = 1

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES98

5793c06_final.qxd 8/22/05 2:22 AM Page 98

Table 6-2. AutoCAD-Defined Color Constants

Constant Color Index Color

acByBlock 0 ByBlock

acRed 1 Red

acYellow 2 Yellow

acGreen 3 Green

acCyan 4 Cyan

acBlue 5 Blue

acMagenta 6 Magenta

acWhite 7 White/Black (depending on the screen background color)

acByLayer 256 ByLayer

■Caution You shouldn’t set the Color property of a layer to ByBlock or ByLayer. The results are unpre-
dictable, and furthermore it doesn’t make sense to do so.

When you retrieve the value of the Color property, it’s returned as an integer:

intColor = objLayer.Color

Therefore, if the color were red, for example, the value of the variable intColor would be
equal to 1.

AutoCAD 2004 introduces support for RGB-based TrueColor properties as well as Pantone
color palettes and color books. Layer objects therefore expose a TrueColor property, which
employs a new enumeration class called AcadAcCmColor.

Layer Linetypes
Much like the color, each layer has a Linetype property that provides the default linetype of all
entities drawn on the layer whose Linetype property is set to ByLayer. Unless an entity is set to
a specific linetype, it will take on the linetype of the layer where it is drawn. Again, this is very
efficient—changing the layer linetype automatically changes all entities whose Linetype prop-
erty is set to ByLayer.

By default, a new layer’s linetype will be Continuous, which is a solid line. You can change
the layer’s linetype at any time, and in addition you can assign individual entities their own
linetypes at any time. The Layer.Linetype property is a string that you can access as follows:

Public Sub Layer0Linetype()

Dim objLayer As AcadLayer

Dim strLayerLinetype As String

Set objLayer = ThisDrawing.Layers("0")

objLayer.Linetype = "Continuous"

strLayerLinetype = objLayer.Linetype

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 99

5793c06_final.qxd 8/22/05 2:22 AM Page 99

Linetypes are generally loaded from files containing linetype definitions, which is demon-
strated later in the section “Loading a Linetype.”

Layer Lineweights
Lineweights control the visible and plottable widths of entities. You can apply them to individ-
ual objects, groups, block insertions, Xrefs, layers, and more. You can toggle their display on or
off, and you can scale them to suit viewport scales in paper space.

Lineweights themselves are somewhat of a unique animal. They’re a list of varying widths,
from thinnest to thickest; however, they’re actually constructed from a mapping of an index
list to a corresponding collection of explicit metric (millimeter) values. The index values are
enumerations with integer values beginning with acLnWt, but the index simply points to an
explicit value, such as 0.04 millimeters. This works very well, unless the default values are
edited. So although acLnWt040 by default refers to a 0.04-millimeter thickness, it can’t be guar-
anteed to be so in all cases. Refer to Appendix B for more information on lineweight values.

The initial value for this property is acLnWtByBlock.
Lineweight values consist of standard enumeration including ByLayer (acLnWtByLayer),

ByBlock (acLnWtByBLock), and DEFAULT (acLnWtByLwDefault). The DEFAULT value is set by the
LWDEFAULT system variable and defaults to a value of 0.01 in. or 0.25 mm. All new objects and
layers have a default setting of DEFAULT. The lineweight value of 0 plots at the thinnest
lineweight available on the specified plotting device and is displayed at 1 pixel wide in model
space.

Public Sub GetLwt()

Dim objLayer As AcadLayer

Dim lwtLweight As Integer

Set objLayer = ThisDrawing.ActiveLayer

lwtLweight = objLayer.Lineweight

Debug.Print "Lineweight is " & lwtLweight

End Sub

Linetypes
As you would expect, linetypes characterize the different appearances that a line within a
drawing may adopt. Linetypes are arranged in alternate patterns of dashes, dots, etc. to repre-
sent something specific to the user, such as process pipelines or railroad tracks, as shown in
Figure 6-2.

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES100

Figure 6-2. Linetype examples

5793c06_final.qxd 8/22/05 2:22 AM Page 100

You have a great deal of flexibility when it comes to linetypes—in fact, your imagination
is virtually the only limit.

Although it’s possible to create new Linetype objects through VBA, it isn’t possible to con-
trol the line pattern directly through code. However, VBA provides the Load method to load
existing linetypes into your drawing. I discuss most of the methods and properties that Auto-
CAD provides for working with the Linetypes collection and Linetype objects.

You’ll learn how to

• Access the Linetypes collection and Linetype objects.

• Check for the existence of a specific linetype.

• Load linetypes and make a specific linetype active.

• Rename and delete a linetype.

• Set or return a linetype’s scale properties and description.

Accessing Linetypes
Much like layers, AutoCAD has a Linetypes collection that contains all of the Linetype objects
in the drawing. You can create as many Linetype objects as you want by adding to the Linetypes
collection, but they’ll be created with the default properties only.

The Linetypes collection is accessed via a Document object. In the following code, ThisDrawing
is used as the active document:

Dim objLinetypes As AcadLineTypes

Set objLinetypes = ThisDrawing.Linetypes

To set a reference to an existing Linetype object, use the Item method of the Linetypes
collection as follows:

Dim objLinetype As AcadLineType

Set objLinetype = objLinetypes.Item(2)

Set objLinetype = objLinetypes.Item("Dashed")

The parameter of this method is either an integer representing the position of the
desired Linetype object within the Linetypes collection or a string representing the name
of the desired Linetype object. If you use an index number, it must be between 0 and
Linetypes.Count minus 1.

Like other AutoCAD collections, Item is the default method for Linetypes. This means that
the method name may be omitted, and the parameter passed straight to the Linetypes refer-
ence. Some programmers prefer this, as it’s simpler to type and read. The following code does
the same thing as the prior example using the default method to specify the Linetype object:

Dim objLinetype As AcadLinetype

Set objLinetype = objLinetypes(2)

Set objLinetype = objLinetypes("Dashed")

However, I recommended in the “Accessing Layers” section that you avoid using default
methods and instead try to use explicit properties and methods. Microsoft is committed to
explicit coding in programming technologies. For instance, .NET doesn’t support default

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 101

5793c06_final.qxd 8/22/05 2:22 AM Page 101

Checking for Existing Linetypes
In some situations your program must determine if an element is present in the collection.
One way to do this is to search for the element while iterating the collection, as described ear-
lier in the chapter. The following example gets a linetype name from the user and then checks
for its existence by iterating the Linetypes collection:

Public Sub CheckForLinetypeByIteration()

Dim objLinetype As AcadLineType

Dim strLinetypeName As String

strLinetypeName = InputBox("Enter a Linetype name to search for: ")

If "" = strLinetypeName Then Exit Sub ' exit if no name entered

For Each objLinetype In ThisDrawing.Linetypes

If 0 = StrComp(objLinetype.Name, strLinetypeName, vbTextCompare) Then

MsgBox "Linetype '" & strLinetypeName & "' exists"

Exit Sub ' exit after finding linetype

End If

Next objLinetype

MsgBox "Linetype '" & strLinetypeName & "' does not exist"

End Sub

Unlike prior releases, in which linetype names were converted to uppercase, AutoCAD
2000 and later allow the names to be a mix of upper- and lowercase, although “Linetype1” and
“LINETYPE1” will be treated as the same name. This sample uses a case-insensitive string com-
parison of strLinetypeName and each Linetype name to allow for capitalization differences.

A second technique is to let AutoCAD perform the search for you. This is quite a bit more
efficient because AutoCAD can internally determine if the element is present, and it eliminates
sending unneeded elements to your program. AutoCAD will also handle the case-insensitive
name comparison for you. To use this technique you must employ the VBA error handler.

Like many AutoCAD ActiveX objects, the Linetypes collection uses run-time errors or
exceptions to signal unexpected conditions. If an exception isn’t handled, the calling program
halts and displays an error message to the user. In this case, Linetypes will raise an exception
if you attempt to access an unknown Linetype name. By detecting this exception, or more cor-
rectly the lack of the exception, your program is notified of the existence of the Linetype. The
following example gets a linetype name from the user and employs AutoCAD to check for its
existence:

Public Sub CheckForLinetypeByException()

Dim strLinetypeName As String

Dim objLinetype As AcadLineType

strLinetypeName = InputBox("Enter a Linetype name to search for: ")

If "" = strLinetypeName Then Exit Sub ' exit if no name entered

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES102

5793c06_final.qxd 8/22/05 2:22 AM Page 102

On Error Resume Next ' handle exceptions inline

Set objLinetype = ThisDrawing.Linetypes(strLinetypeName)

If objLinetype Is Nothing Then ' check if obj has been set

MsgBox "Linetype '" & strLinetypeName & "' does not exist"

Else

MsgBox "Linetype '" & objLinetype.Name & "' exists"

End If

End Sub

Loading a Linetype
Linetype definitions are stored in linetype library files, which are external to drawing files and
have the extension .lin. Linetypes are loaded by name from library files into similarly named
Linetype objects in the drawing. Once loaded into a drawing, a Linetype object has no more
connection to the library file. I don’t cover the creation and definition of linetypes here, because
no methods exist for customizing linetypes programmatically, but you can take a look at the
AutoCAD Customization Guide in the online help files for details on creating custom linetypes.
It’s interesting to note that you can create custom linetypes by writing a linetype definition file
programmatically and then loading it.

You can load a Linetype object into your drawing using the Load method shown in the fol-
lowing code and detailed in Table 6-3.

Set LinetypeObject = LinetypesCollection.Load(LinetypeName, _

LinetypeFilename)

Table 6-3. Linetype Load Parameter Specifications

Name Data Type Description

LineTypeName String The name of the linetype

LinetypeFilename String The path and file name of the linetype library file

The AutoCAD default Linetype object definition file for standard linetypes is acad.lin.
You can view the contents of this via the Linetype dialog box (click Format ➤ Linetype to bring
it up) by clicking Load and browsing to the file (see Figure 6-3). You can also open a linetype
definition file in any ASCII text editor such as Windows Notepad.

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 103

5793c06_final.qxd 8/22/05 2:22 AM Page 103

Once you determine the linetype library and the name of a specific linetype you’d like to
load, you can use the following code to load it:

Public Sub LoadLinetype()

Dim strLinetypeName As String

Dim objLinetype As AcadLineType

strLinetypeName = InputBox("Enter a Linetype name" & _

" to load from ACAD.LIN: ")

If "" = strLinetypeName Then Exit Sub ' exit if no name entered

On Error Resume Next ' handle exceptions inline

ThisDrawing.Linetypes.Load strLinetypeName, "acad.lin"

If Err Then ' check if err was thrown

MsgBox "Error loading '" & strLinetypeName & "'" & vbCr & _

Err.Description

Else

MsgBox "Loaded Linetype '" & strLinetypeName & "'"

End If

End Sub

■Note Depending on the setting of the drawing’s MEASUREMENT system variable, the linetype library
could be acadiso.lin.

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES104

Figure 6-3. The Linetype dialog box

5793c06_final.qxd 8/22/05 2:22 AM Page 104

Making a Linetype Active
The Linetype property for new entities is determined by the drawing linetype setting for the
drawing. By default, this is set so that new entities are displayed using the linetype assigned
to the layer that they’re drawn on. By changing this setting, you may assign specific linetypes
directly to entities rather than the layer setting, which normally takes precedence. You can
change the linetype of an existing entity at any time by altering its Linetype property.

■Note You can’t make a linetype active if it’s Xref-dependent.

You can use two special linetypes: ByLayer and ByBlock. The ByLayer option was described
earlier in this chapter. This is the most commonly used method when creating drawing entities.
If you use the ByBlock option, all new entities that you create will use the linetype associated
with the block containing the entity. Block objects are considered in more detail in Chapter 13.

The ActiveLinetype property is a member of the Document object. To make a specific line-
type active, assign the Linetype object to the ActiveLinetype property:

DocumentObject.ActiveLinetype = LinetypeObject

The following example makes the linetype named TRACKS the active linetype for the cur-
rent Document:

ThisDrawing.ActiveLinetype = ThisDrawing.Linetypes("TRACKS")

Now, all the new entities will be created with this linetype until another linetype is acti-
vated. You can change the linetype of existing entities by altering the Linetype property of that
particular entity. The Linetype property is a string that corresponds to the name of a Linetype
object. The following example lets the user pick a drawing entity and specify a new linetype
name for that entity:

Public Sub ChangeEntityLinetype()

On Error Resume Next ' handle exceptions inline

Dim objEntity As AcadEntity

Dim varPick As Variant

Dim strLinetypeName As String

Dim objLinetype As AcadLineType

ThisDrawing.Utility.GetEntity objEntity, varPick, "Select an entity"

If objEntity Is Nothing Then Exit Sub ' exit if no entity picked

strLinetypeName = InputBox("Enter a new Linetype name: ")

If "" = strLinetypeName Then Exit Sub ' exit if no name entered

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 105

5793c06_final.qxd 8/22/05 2:22 AM Page 105

Set objLinetype = ThisDrawing.Linetypes(strLinetypeName)

If objLinetype Is Nothing Then

MsgBox "Linetype is not loaded"

Exit Sub ' exit if linetype not found

End If

objEntity.Linetype = strLinetypeName ' else change entity layer

End Sub

Renaming a Linetype
To rename a linetype, simply assign a new name to the Linetype.Name property. Take care to
address the possible exceptions that may be thrown up: invalid name, existing name, etc.

■Note You may not rename or delete ByLayer, ByBlock, Continuous, and Xref-dependent linetypes.

The following example renames a Linetype object based on user input:

Sub RenameLinetype()

On Error Resume Next ' handle exceptions inline

On Error Resume Next ' handle exceptions inline

Dim strLinetypeName As String

Dim objLinetype As AcadLineType

strLinetypeName = InputBox("Original Linetype name: ")

If "" = strLinetypeName Then Exit Sub ' exit if no old name

Set objLinetype = ThisDrawing.Linetypes(strLinetypeName)

If objLinetype Is Nothing Then ' exit if not found

MsgBox "Linetype '" & strLinetypeName & "' not found"

Exit Sub

End If

strLinetypeName = InputBox("New Linetype name: ")

If "" = strLinetypeName Then Exit Sub ' exit if no new name

objLinetype.Name = strLinetypeName ' try and change name

If Err Then ' check if it worked

MsgBox "Unable to rename Linetype: " & vbCr & Err.Description

Else

MsgBox "Linetype renamed to '" & strLinetypeName & "'"

End If

End Sub

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES106

5793c06_final.qxd 8/22/05 2:22 AM Page 106

Deleting a Linetype
The Linetype.Delete method removes a Linetype object from the Linetypes collection. This
method takes no parameters and has no return value:

LinetypeObject.Delete

It’s possible to delete a linetype practically whenever you choose; however, certain line-
types may not be deleted. A linetype may not be deleted if

• It is the active linetype.

• It is a ByLayer, ByBlock, or Continuous linetype.

• It is an Xref-dependent linetype.

Just as with layers, if a linetype is used by entities in model space, any paper space layout
or any block definition, it can’t be deleted. There’s no definitive way to tell which entities are
using a specific linetype short of doing an exhaustive search of each of these collections. If all
entities using the linetype are assigned to another, you can then delete the linetype.

Xref-dependent linetypes are created when an external reference file is attached and acti-
vated. Entities in the current drawing can’t use Xref-dependent linetypes. Furthermore, these
linetypes are simply duplications of the linetypes in the external drawing and aren’t saved with
the current drawing, so you don’t need to delete them.

The following example deletes a linetype based on user input:

Public Sub DeleteLinetype()

On Error Resume Next ' handle exceptions inline

Dim strLinetypeName As String

Dim objLinetype As AcadLineType

strLinetypeName = InputBox("Linetype name to delete: ")

If "" = strLinetypeName Then Exit Sub ' exit if no old name

Set objLinetype = ThisDrawing.Linetypes(strLinetypeName)

If objLinetype Is Nothing Then ' exit if not found

MsgBox "Linetype '" & strLinetypeName & "' not found"

Exit Sub

End If

objLinetype.Delete ' try to delete it

If Err Then ' check if it worked

MsgBox "Unable to delete linetype: " & vbCr & Err.Description

Else

MsgBox "Linetype '" & strLinetypeName & "' deleted"

End If

End Sub

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 107

5793c06_final.qxd 8/22/05 2:22 AM Page 107

Getting a Linetype’s Handle
AutoCAD assigns to every object a unique handle or ID that remains constant for as long as
the object exists. The handle of an object takes the form of a string and may be accessed via
the read-only Handle property. For example:

Dim objLinetype As AcadLinetype

Dim strLinetypeHandle As String

Set objLinetype = ThisDrawing.Linetypes("Center")

strLinetypeHandle = objLinetype.Handle

You’ll use handles extensively when working with extended entity data. Extended entity data
is specific information that can be attached to an object or entity by an external application.

Changing a Linetype’s Description
AutoCAD allows you to read, add, or modify a linetype’s description using the Description
property of the Linetype object. This property is a string that typically describes the linetype,
often with a simplified symbolized version of the actual linetype. The following code snippet
shows the Description property being set and retrieved:

Dim objLineType As AcadLineType

Dim strLineTypeDescription As String

objLineType.Description = "Linetype Description: -.-.-."

strLineTypeDescription = objLineType.Description

The following example changes a Linetype description based on user input:

Public Sub DescribeLinetype()

On Error Resume Next ' handle exceptions inline

Dim strLinetypeName As String

Dim strLinetypeDescription As String

Dim objLinetype As AcadLineType

strLinetypeName = InputBox("Enter the Linetype name: ")

If "" = strLinetypeName Then Exit Sub ' exit if no old name

Set objLinetype = ThisDrawing.Linetypes(strLinetypeName)

If objLinetype Is Nothing Then ' exit if not found

MsgBox "Linetype '" & strLinetypeName & "' not found"

Exit Sub

End If

strLinetypeDescription = InputBox("Enter the Linetype description: ")

If "" = strLinetypeDescription Then Exit Sub ' exit if no new name

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES108

5793c06_final.qxd 8/22/05 2:22 AM Page 108

objLinetype.Description = strLinetypeDescription ' try and change name

If Err Then ' check if it worked

MsgBox "Unable to alter Linetype: " & vbCr & Err.Description

Else

MsgBox "Linetype '" & strLinetypeName & "' description changed"

End If

Scaling Linetypes
The scale of a linetype determines how many times the pattern of a linetype is repeated over
a given distance: the smaller the scale, the finer the pattern. You need to adjust the scale of
linetypes to suitable values so that your drawings will display and plot sensibly.

Here I cover two types of scaling factors for linetypes: the global linetype scale or LTSCALE
and the individual linetype scale or CELTSCALE. LTSCALE affects all objects within a drawing,
and when it is changed, the lines of all existing objects are updated. CELTSCALE, on the other
hand, affects only the objects that are created after it has been set. If CELTSCALE is 2.0 when you
create a line object, that object will have a LinetypeScale property of 2.0. Note that you can
not assume a link between the current setting of CELTSCALE and the LinetypeScale property of
any objects in the drawing. The scaling of a linetype depends on a combination of LTSCALE and
each object's LinetypeScale property, as shown in Figure 6-4.

Because you’re likely to assign the linetype scale a number such as 0.5 or 2.0, you might be
tempted to use a single precision floating-point variable when reading LTSCALE or CELTSCALE for
a drawing. However, you might well find that the number returned isn’t so simple and that you
need more precision. Be proactive and use a double-precision variable type. Additionally, view-
port scaling affects global and individual linetype scaling, as can plot-style configurations.

Global Scale
The default for the global linetype LTSCALE system variable is 1.0, which means one linetype
unit per drawing unit. A LTSCALE factor of 2.0 would mean two linetype units per drawing unit.
Changing this value will change the linetype scale for all entities in the drawing. System vari-
ables are retrieved and set using the GetVariable and SetVariable methods of the Document
object.

The following example demonstrates setting and reading the LTSCALE system variable,
which holds a real number:

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES 109

Figure 6-4. An example of linetype scaling

5793c06_final.qxd 8/22/05 2:22 AM Page 109

Dim dblNewLTScale As Double

ThisDrawing.SetVariable "LTSCALE", 2#

dblNewLTScale = ThisDrawing.GetVariable("LTSCALE")

You should also note that the global PSLTSCALE system variable appears to override
LTSCALE. This variable is a simple toggle, and can be either 0 or 1. If PSLTSCALE is set to 1,
AutoCAD automatically scales the linetypes in proportion to each viewport’s zoom scale,
ensuring that a layout with viewports with differing scale factors will display its linetypes
at a consistent scale.

The following example demonstrates setting the and reading the PSLTSCALE system vari-
able, which holds the integers 0 and 1:

ThisDrawing.SetVariable "PSLTSCALE", 0

ThisDrawing.Regen acAllViewports

MsgBox "PSLTSCALE has been set to 0"

ThisDrawing.SetVariable "PSLTSCALE", 1

ThisDrawing.Regen acAllViewports

MsgBox "PSLTSCALE has been set to 1"

Individual Scale
The CELTSCALE system variable is set in a similar way to LTSCALE and also holds a real number.

Dim dblNewCELTScale As Double

ThisDrawing.SetVariable "CELTSCALE", 2#

dblNewCELTScale = ThisDrawing.GetVariable("CELTSCALE")

Summary
In this chapter, I showed you the advantages of effective use of layers and linetypes. I discussed
and gave code examples for many of the methods and properties of the Layers collection and
Layer object and the Linetypes collection and Linetype object. For complete details of each of
these AutoCAD objects, please refer to Appendix A.

CHAPTER 6 ■ CONTROLLING LAYERS AND L INETYPES110

5793c06_final.qxd 8/22/05 2:22 AM Page 110

User Interaction and the
Utility Object

To program truly powerful AutoCAD applications and macros, you need to be able to inter-
act with the user. The AutoCAD Automation model provides the Utility and SelectionSet
objects to do just that. Chapter 12 discusses the SelectionSet object. This chapter discusses
the Utility object, which contains a number of methods for obtaining user input via the
AutoCAD command line and graphics screen, such as picking points, entering distances
and angles, and picking a single entity.

In addition to these AutoCAD objects, you can, of course, interface with the user through
standard VBA functions and objects. The VBA InputBox and MsgBox functions allow simple user
input, while VBA UserForms and graphical controls allow a level of sophistication limited only
by your imagination.

This chapter covers the following:

• Controlling user keyword input

• Using GetXXX methods for all types of input

• Using other interactive or interesting methods of the Utility object

Interface Methods
Interface methods present and retrieve information from the user. This section discusses the
various methods made available through AutoCAD’s Utility object.

Input Methods and Dialogs
All the AutoCAD input methods require that the user interact with the AutoCAD drawing or
command window. To use these methods from a VBA UserForm, either hide the form before
you call the input methods or set the UserForm to modeless operation. If you don’t, an error
will occur. This is because modal forms maintain the application focus while they’re visible.
As long as a modal VBA form is visible, there’s no way for the user to get to the AutoCAD
drawing or command window. UserForms can be modal or modeless only with AutoCAD 2002
and later versions.

111

C H A P T E R 7

■ ■ ■

5793c07_final.qxd 8/22/05 2:20 AM Page 111

The following example places the command button cmdGetReal on a UserForm, which is
then hidden while the GetReal user input method executes:

Private Sub cmdGetReal_Click()

Dim dblInput As Double

Me.Hide

dblInput = ThisDrawing.Utility.GetReal("Enter a real value: ")

Me.Show

End Sub

■Note Remember to Show the form after you Hide it for the GetReal user input method, or your program
will exit without completing any of the form’s remaining code.

The code in this chapter runs from the Macros dialog box. To work from a UserForm, you
need to modify each sample. For example, change code from this:

Public Sub TestUserInput()

Dim strInput As String

With ThisDrawing.Utility

.InitializeUserInput 1, "Line Arc Circle laSt"

strInput = .GetKeyword(vbCr & "Option [Line/Arc/Circle/laSt]: ")

.Prompt "You selected '" & strInput & "'"

End With

End Sub

to this:

Private Sub CommandButton1_Click()

Dim strInput As String

Me.Hide

With ThisDrawing.Utility

.InitializeUserInput 1, "Line Arc Circle laSt"

strInput = .GetKeyword(vbCr & "Option [Line/Arc/Circle/laSt]: ")

MsgBox "You selected '" & strInput & "'"

End With

Me.Show

End Sub

Programs written using the full version of Visual Basic 6 or VBA 6.3 (AutoCAD 2002 and
later) are not limited to modal dialog forms. But sometimes it may make sense to hide the form
while interacting with the user at the AutoCAD command prompt. Try to think like your users
when you design the interaction process and your forms’ behavior.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT112

5793c07_final.qxd 8/22/05 2:20 AM Page 112

The Prompt Method
The Prompt method displays messages on the AutoCAD command line. It returns nothing.

UtilityObject.Prompt Message

The Message parameter is a string that contains the message to display at the command
prompt.

■Note Remember to include carriage returns or linefeeds in the message string, or your message will just
be appended to whatever text is on the command prompt.

The following code displays a simple message at the command prompt, as shown in
Figure 7-1:

Public Sub TestPrompt()

ThisDrawing.Utility.Prompt vbCrLf & "This is a simple message"

End Sub

The remaining examples in this chapter extensively use the Prompt method to give the
user feedback.

The InitializeUserInput Method
The InitializeUserInput method establishes which keywords the program will accept during
command line input. It also sets input criteria such as whether null values are allowed. It affects
the very next call to an input function, after which the keywords and other input criteria are
cleared.

The InitializeUserInput method has this syntax:

UtilityObject.InitializeUserInput OptionBits[, KeywordList]

Table 7-1 explains this method’s parameters.

Table 7-1. The InitializeUserInput Method’s Parameters

Name Type Description

OptionBits Long Restricts what the user can input, as Table 7-2 explains

KeywordList String Displays a list of the keywords delimited by spaces

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 113

Figure 7-1. Displaying a message at the command prompt

5793c07_final.qxd 8/22/05 2:20 AM Page 113

Table 7-2 explains valid OptionBits options.

Table 7-2. The Acceptable Keyword List Values

Bit Value Description

0 or not set No control conditions are applied.

1 Prevents null input such as pressing Enter or entering a space.

2 Prevents the user from entering a zero value.

4 Prevents the user from entering a negative value.

8 Lets the user enter a point outside the current drawing limits. AutoCAD won’t
check the drawing limits even if the LIMCHECK system variable is on. LIMCHECK
controls whether entities may be created outside the drawing limits.

16 Not currently used.

32 For methods that allow input via the graphics screen, AutoCAD uses a dashed
rather than solid line when it displays a rubber-band line or box. AutoCAD ignores
this bit if the POPUPS system variable is set to zero. POPUPS indicates whether the
currently configured display driver supports dialog boxes, the menu bar, and icon
menus.

64 For the GetDistance method, ignores the Z-coordinate of 3-D points, thus returning
a 2-D distance.

128 Accepts any user input.

Keywords
Command line keywords give the user various options. For instance, if you use the AutoCAD
Draw toolbar’s rectangle command, you may either pick a point or use one of the five keywords
to choose another command:

Specify first corner point or [Chamfer/Elevation/Fillet/Thickness/Width]:

The KeywordList parameter specifies a set of keywords available at the input prompt. It is
a string that contains the keywords, each separated by a space. The capital letter in each key-
word is the shortcut key the user can type.

It is common practice to give the user a list of valid keywords when prompting for input.
You must supply this list in your input prompt, since AutoCAD does not indicate the active key-
words in any other way. This example demonstrates these ideas by getting a keyword from the
user and then printing it on the command line:

Public Sub TestUserInput()

Dim strInput As String

With ThisDrawing.Utility

.InitializeUserInput 1, "Line Arc Circle laSt"

strInput = .GetKeyword(vbCr & "Option [Line/Arc/Circle/laSt]: ")

.Prompt vbCr & "You selected '" & strInput & "'"

End With

End Sub

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT114

5793c07_final.qxd 8/22/05 2:20 AM Page 114

In this example, you can type L for a line, A for an arc, C for a circle, or S for the last com-
mand. AutoCAD rejects any other single letter, whether in a keyword or otherwise. However,
you can type a partial keyword, or even the entire keyword, if you want. When you type partial
keywords, you must supply enough of the keyword to uniquely distinguish it from all other
keywords. The partial entry must also include at least up to the capital letter in the keyword.
For example, AutoCAD rejects typing la, but typing las correctly returns laSt.

Regardless of how the user types a keyword, AutoCAD returns a string that exactly matches
the capitalization used when you initialized the keyword. In the previous example, typing S,
LAS, Las, or any other variation returns laSt.

You can use keywords in conjunction with these Utility input methods: GetKeyword,
GetInteger, GetReal, GetDistance, GetAngle, GetOrientation, GetPoint, and GetCorner. Each
of these methods can obtain keywords set using the InitializeUserInput method. See “The
GetInput Method” later in this chapter to learn how to retrieve keywords from them.

■Note AutoCAD 2006 provides a new feature known as Dynamic Input. This feature provides a command
line–like interface near the cursor to help you keep your focus in the drawing area. Figure 7-2 illustrates this
new feature.

The GetXXX Methods
The GetXXX methods get specific types of data from the user. These methods make AutoCAD
pause until the user supplies a value at the command prompt or picks a point in the drawing
window. If the user supplies the wrong type of data, such as typing a string when a number is
needed, AutoCAD displays a message at the command prompt that tells them to reenter the
data.

The GetKeyword Method
The GetKeyword method gets a command line option from the user. You must call
InitializeUserInput to establish the list of keywords before you use this method. It returns
the keyword the user entered exactly as the keyword list specified it. If you want, you can
include a prompt to display on the command line while the function waits for user input.
This method has the following syntax:

strUserKeyWordInput = Object.GetKeyword([Prompt])

This method’s Prompt parameter is a string that contains the prompt to display on the
command line.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 115

Figure 7-2. Using Dynamic Input

5793c07_final.qxd 8/22/05 2:20 AM Page 115

If the user tries to enter a string that’s not in the keyword list, AutoCAD displays the error
message Invalid option keyword in the command window. AutoCAD then tries to get valid
user input by redisplaying the prompt if you specified one or by displaying a blank command
line if you didn’t. If you allow null input, the user can press Enter to return an empty string.

This example asks the user for an option and then starts the specified command, using
the SendCommand method outlined in Appendix A:

Sub TestGetKeyword()

Dim strInput As String

With ThisDrawing.Utility

.InitializeUserInput 0, "Line Arc Circle"

strInput = .GetKeyword(vbCr & "Command [Line/Arc/Circle]: ")

End With

Select Case strInput

Case "Line": ThisDrawing.SendCommand "_Line" & vbCr

Case "Arc": ThisDrawing.SendCommand "_Arc" & vbCr

Case "Circle": ThisDrawing.SendCommand "_Circle" & vbCr

Case Else: MsgBox "You pressed Enter."

End Select

End Sub

The GetString Method
The GetString method gets string values from the user. AutoCAD pauses until the user enters
a value. This method has the following syntax:

dblUserStringInput = UtilityObject.GetString(HasSpaces[,Prompt])

Table 7-3 lists this method’s parameters.

Table 7-3. The GetString Method’s Parameters

Name Type Description

HasSpaces Boolean Specifies whether the user input may contain spaces. If set to True,
spaces are valid, and the user must press Enter to terminate the
input. If set to False, spaces are not allowed, and the user can ter-
minate the input either by pressing Enter or by entering a space.

Prompt String An optional parameter used to display a prompt for input.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT116

5793c07_final.qxd 8/22/05 2:20 AM Page 116

This example gets a string from the user, including spaces, and then displays it:

Public Sub TestGetString()

Dim strInput As String

With ThisDrawing.Utility

strInput = .GetString(True, vbCr & "Enter a string: ")

.Prompt vbCr & "You entered '" & strInput & "' "

End With

End Sub

This method lets the user enter up to 132 characters. Entering more than 132 characters
generates the error Method 'GetString' of object 'IAcadUtility' failed, which is unfor-
tunately the same description reported when a user issues a Cancel or Esc. If you need to
distinguish between the overflow and the Cancel for this method, consider using the unique
exception number instead of the description.

The GetInteger Method
The GetInteger method gets an integer from the user. AutoCAD waits for the user to input an
integer and returns the entered value. This method has the following syntax:

intUserIntegerInput = UtilityObject.GetInteger([Prompt])

This method has one parameter, Prompt, a string. Optionally use it to specify a prompt
for input.

The user may enter either an integer in the range –32,768 to +32,767 or a keyword (see “The
GetInput Method” later in the chapter for more information). If the user tries to enter any other
value, AutoCAD returns the error message Requires an integer value or option keyword and
asks the user to enter another value. Here’s an example of GetInteger:

Public Sub TestGetInteger()

Dim intInput As Integer

With ThisDrawing.Utility

intInput = .GetInteger(vbCr & "Enter an integer: ")

.Prompt vbCr & "You entered " & intInput

End With

End Sub

This method throws exceptions for null input, keyword entry, and canceled input.

The GetReal Method
The GetReal method is similar to GetInteger but gets floating-point numbers. It returns a value
of data type Double.

dblUserRealInput = UtilityObject.GetReal([Prompt])

This method’s Prompt parameter, a string, is optional. Use it to specify a prompt for input.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 117

5793c07_final.qxd 8/22/05 2:20 AM Page 117

This method accepts any real (double-precision floating-point) value or any previously
set keyword. For more about these keywords, see “The GetInput Method” later in this chapter.
If the user enters any other value, AutoCAD returns the error message Requires numeric value
and asks the user to enter another value. This example retrieves and displays a real value from
the user:

Public Sub TestGetReal()

Dim dblInput As Double

With ThisDrawing.Utility

dblInput = .GetReal(vbCrLf & "Enter an real: ")

.Prompt vbCr & "You entered " & dblInput

End With

End Sub

This method raises an exception for null input, keyword entry, and canceled input.

The GetPoint Method
The GetPoint method gets a point from the user, either by typing coordinates at the command
prompt or by picking points in the drawing area. The return value is a Variant data type and
contains a three-element array of doubles holding the point’s World Coordinate System (WCS)
coordinates. This method has the following syntax:

varUserPointInput = UtilityObject.GetPoint([BasePoint] [,Prompt])

Table 7-4 explains this method’s parameters.

Table 7-4. The GetPoint Method’s Parameters

Name Type Description

BasePoint Variant Optional. A three-element array of doubles that specifies an angle
vector’s first point in WCS.

Prompt String Optional. A prompt for input.

The optional BasePoint parameter sets a rubber-band line’s start point. This line, which
extends to the current crosshair position, can be a useful visual aid to the user during input.

This example gets a point from the user and displays its coordinate values:

Public Sub TestGetPoint()

Dim varPick As Variant

With ThisDrawing.Utility

varPick = .GetPoint(, vbCr & "Pick a point: ")

.Prompt vbCr & varPick(0) & "," & varPick(1)

End With

End Sub

This method raises exceptions for null input, keyword entry, and canceled input.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT118

5793c07_final.qxd 8/22/05 2:20 AM Page 118

The GetCorner Method
Given a base point in a rectangle, the GetCorner method gets the diagonally opposing corner
point. It returns a Variant data type and contains a three-element array of doubles showing
the corner point’s WCS coordinates. This method has the following syntax:

varUserCornerInput = UtilityObject.GetCorner(BasePoint [,Prompt])

Table 7-5 explains this method’s parameters.

Table 7-5. The GetCorner Method’s Parameters

Name Type Description

BasePoint Variant A three-element array of doubles specifying the rectangle’s first corner
in WCS.

Prompt String Optional. A prompt for input.

If the user picks a point on the graphic screen, the GetCorner method ignores the point’s
Z-coordinate and sets it to the current elevation. This example gets a point and then a corner
from the user and displays the rectangle’s values:

Public Sub TestGetCorner()

Dim varBase As Variant

Dim varPick As Variant

With ThisDrawing.Utility

varBase = .GetPoint(, vbCr & "Pick the first corner: ")

.Prompt vbCrLf & varBase(0) & "," & varBase(1)

varPick = .GetCorner(varBase, vbLf & "Pick the second: ")

.Prompt vbCr & varPick(0) & "," & varPick(1)

End With

End Sub

This method throws exceptions for null input, keyword entry, and canceled input.

The GetDistance Method
The GetDistance method gets a double from the user. It differs from GetReal in that the user can
either type a distance in the current units format or pick the point(s) on the graphics screen.
These two methods are otherwise similar, and most people prefer GetDistance because it’s more
flexible. This method has the following syntax:

dblUserDistanceInput = UtilityObject.GetDistance([BasePoint] [,Prompt])

Table 7-6 explains this method’s parameters.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 119

5793c07_final.qxd 8/22/05 2:20 AM Page 119

Table 7-6. The GetDistance Method’s Parameters

Name Type Description

BasePoint Variant Optional. A three-element array of doubles specifying a start point
from which to begin measuring (in WCS). If you don’t provide this
parameter, the user must specify two points.

Prompt String Optional. A prompt for input.

■Note This method lets you enter a negative number at the command prompt and returns this negative
number. But it calculates the absolute distance between points if you enter it on the graphics screen.

If the user chooses to pick points from the screen, AutoCAD draws a rubber-band line
as a visual aid from the base point, or first pick point, to the current crosshair position. By
default, the points are 3-D. You may force AutoCAD to calculate a planar distance by first call-
ing InitializeUserInput with a bit code of 16 in OptionBits. This makes AutoCAD ignore the
Z-coordinates.

This example code sets the base point to the origin of WCS, prompts the user for input,
and then displays the value:

Public Sub TestGetDistance()

Dim dblInput As Double

Dim dblBase(2) As Double

dblBase(0) = 0: dblBase(1) = 0: dblBase(2) = 0

With ThisDrawing.Utility

dblInput = .GetDistance(dblBase, vbCr & "Enter a distance: ")

.Prompt vbCr & "You entered " & dblInput

End With

End Sub

This method raises an exception for null input, keyword entry, and canceled input.

The GetAngle Method
Use the GetAngle to get an angle, in radians, from the user. The user may either type the angle
at the command prompt or pick point(s) on the screen. VBA ignores the points’ Z-coordinates.
It measures the angle counterclockwise with respect to the ANGBASE system variable’s current
value. This method has the following syntax:

dblUserAngleInput = UtilityObject.GetAngle([BasePoint] [,Prompt])

Table 7-7 explains this method’s parameters.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT120

5793c07_final.qxd 8/22/05 2:20 AM Page 120

Table 7-7. The GetAngle Method’s Parameters

Name Type Description

BasePoint Variant Optional. A three-element array of doubles specifying an angle vector’s
first point in WCS. If not provided, the user must specify two points
to specify the angle on the graphics screen.

Prompt String Optional. A prompt for input.

This method returns the angle in radians regardless of the current setting of the DIMAUNIT
angular units system variable or the angular unit type the user entered. In this way, it acts in
a similar manner to the Utility object’s AngleToReal conversion method.

This example sets the angular units to degrees and then retrieves and displays an angle
from the user:

Public Sub TestGetAngle()

Dim dblInput As Double

ThisDrawing.SetVariable "DIMAUNIT", acDegrees

With ThisDrawing.Utility

dblInput = .GetAngle(, vbCr & "Enter an angle: ")

.Prompt vbCr & "Angle in radians: " & dblInput

End With

End Sub

This method throws exceptions for null input, keyword entry, and canceled input.

The GetOrientation Method
The GetOrientation method is similar to GetAngle, except that the angle returned is always
measured from the east, or three o’clock, regardless of the ANGBASE system variable setting.
This method has the following syntax:

dblUserOrientationInput = UtilityObject.GetOrientation([BasePoint] [,Prompt])

Table 7-8 explains this method’s parameters.

Table 7-8. The GetOrientation Method’s Parameters

Name Type Description

BasePoint Variant Optional. A three-element array of doubles specifying an angle vector’s
first point in WCS. If not provided, the user must specify two points
if they want to specify the angle on the graphics screen.

Prompt String Optional. A prompt for input.

This method throws an exception for both null input and keyword entry if allowed and
supplied.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 121

5793c07_final.qxd 8/22/05 2:20 AM Page 121

The GetInput Method
As mentioned in the discussion of GetKeyword, you can use seven other input methods in
conjunction with the keywords set using InitializeUserInput:

• GetInteger

• GetReal

• GetDistance

• GetAngle

• GetOrientation

• GetPoint

• GetCorner

When these methods have keywords and they are executed, the user can enter the data
type requested or choose one of the available keywords. Because each of these input methods
returns a specific data type, each can’t also return the keyword string. Instead, the input meth-
ods use an exception with the description User input is a keyword to signal the presence of
a keyword. Unless null input is disabled, VBA uses this same exception to indicate null input,
such as when the user simply presses Enter at the input prompt.

Your code must handle the exception, or the program will stop and display an error mes-
sage. After detecting this exception, use GetInput to retrieve the keyword before calling any
other GetXXX method. The GetInput method takes no parameters. It returns either a string
containing the keyword in InitializeUserInput or an empty string in the case of null input.

StrUserKeywordInput = UtilityObject.GetInput()

As shown in the previous examples, it is not necessary to call the GetInput method after
the GetXXX methods when no keywords are offered to the user. If called independently, this
method returns an empty string.

The following code retrieves either an integer or a keyword from the user. It uses
GetInteger to demonstrate the GetInput method, but the technique is identical for each of the
six other input methods:

Public Sub TestGetInput()

Dim intInput As Integer

Dim strInput As String

On Error Resume Next ' handle exceptions inline

With ThisDrawing.Utility

strInput = .GetInput()

.InitializeUserInput 0, "Line Arc Circle"

intInput = .GetInteger(vbCr & "Integer or [Line/Arc/Circle]: ")

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT122

5793c07_final.qxd 8/22/05 2:20 AM Page 122

If Err.Description Like "*error*" Then

.Prompt vbCr & "Input Cancelled"

ElseIf Err.Description Like "*keyword*" Then

strInput = .GetInput()

Select Case strInput

Case "Line": ThisDrawing.SendCommand "_Line" & vbCr

Case "Arc": ThisDrawing.SendCommand "_Arc" & vbCr

Case "Circle": ThisDrawing.SendCommand "_Circle" & vbCr

Case Else: .Prompt vbCr & "Null Input entered"

End Select

Else

.Prompt vbCr & "You entered " & intInput

End If

End With

End Sub

This example first sets the keywords using InitializeUserInput and then uses an input
method to get the user’s input. Because the code sets keywords, the input method either returns
an integer or throws an exception when the user enters a keyword. If there was an exception and
it contains the word error, this code displays a cancel message. Otherwise, if the exception con-
tains the word keyword, the code uses GetInput to retrieve the keyword and takes an appropriate
action based on the keyword. If no exception was thrown, this code uses the Integer value the
GetInteger method returned.

A bug causes GetInput to return the keyword from earlier calls to InitializeUserInput
when the user enters null input at a later input method that takes keywords. The following
code demonstrates the problem. Choose any option at the first input prompt and then press
Enter for the second input. In case the user enters a keyword, the second call to GetInput
should return a null—but instead it returns the keyword you selected in the previous input.

Public Sub TestGetInputBug()

On Error Resume Next ' handle exceptions inline

With ThisDrawing.Utility

'' first keyword input

.InitializeUserInput 1, "Alpha Beta Ship"

.GetInteger vbCr & "Option [Alpha/Beta/Ship]: "

MsgBox "You entered: " & .GetInput()

'' second keyword input - hit Enter here

.InitializeUserInput 0, "Bug May Slip"

.GetInteger vbCr & "Hit enter [Bug/May/Slip]: "

MsgBox "GetInput still returns: " & .GetInput()

End With

End Sub

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 123

5793c07_final.qxd 8/22/05 2:20 AM Page 123

Because null and keyword input throw the same exceptions, GetInput’s return value is the
only way to determine which the user entered. But because of this odd persistence of the pre-
vious keyword entry, no sure way exists to determine whether the user entered a keyword or
nothing at all.

The following code demonstrates a partial workaround for this problem. The technique is
to grab the existing keyword from GetInput before calling InitializeUserInput for the second
GetXXX method. If, after getting input from the user, the newly entered keyword matches the
previous keyword, it’s possible that the user entered a null.

Public Sub TestGetInputWorkaround()

Dim strBeforeKeyword As String

Dim strKeyword As String

On Error Resume Next ' handle exceptions inline

With ThisDrawing.Utility

'' first keyword input

.InitializeUserInput 1, "This Bug Stuff"

.GetInteger vbCrLf & "Option [This/Bug/Stuff]: "

MsgBox "You entered: " & .GetInput()

'' get lingering keyword

strBeforeKeyword = .GetInput()

'' second keyword input - press Enter

.InitializeUserInput 0, "Make Life Rough"

.GetInteger vbCrLf & "Hit enter [Make/Life/Rough]: "

strKeyword = .GetInput()

'' if input = lingering, it might be null input

If strKeyword = strBeforeKeyword Then

MsgBox "Looks like null input: " & strKeyword

Else

MsgBox "This time you entered: " & strKeyword

End If

End With

End Sub

The GetEntity Method
Use the GetEntity method to select an AutoCAD object by letting the user pick an entity from
the graphics screen.

■Note Because the user may type L for the last entity in the drawing window, this method can return an
invisible entity or an entity that’s on a frozen layer. However, in 2005 and 2006, AutoCAD will select the last
visible entity.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT124

5793c07_final.qxd 8/22/05 2:20 AM Page 124

This method has the following syntax:

UtilityObject.GetEntity PickedEntity, PickedPoint[, Prompt]

Table 7-9 explains this method’s parameters.

Table 7-9. The GetEntity Method’s Parameters

Name Type Description

PickedEntity AcadEntity object Output. Returns a reference to the drawing object that
the user picked.

PickPoint Variant Output. A three-element array of doubles that specifies
the point by which the entity was picked in WCS.

Prompt String Optional. A prompt for input.

This example gets an entity from the user and displays the point’s object type and
coordinates:

Public Sub TestGetEntity()

Dim objEnt As AcadEntity

Dim varPick As Variant

On Error Resume Next

With ThisDrawing.Utility

.GetEntity objEnt, varPick, vbCr & "Pick an entity: "

If objEnt Is Nothing Then 'check if object was picked.

.Prompt vbCrLf & "You did not pick as entity"

Exit Sub

End If

.Prompt vbCr & "You picked a " & objEnt.ObjectName

.Prompt vbCrLf & "At " & varPick(0) & "," & varPick(1)

End With

End Sub

GetEntity raises an error if the input is null, such as when there is no entity at the picked
point, or if the user presses Enter without selecting an entity. The example checks for this con-
dition to avoid the error.

The GetSubEntity Method
Use the GetSubEntity method in place of GetEntity when you need to obtain subentity infor-
mation based on the user’s selection. A subentity is an entity that another entity contains, such
as an entity in a block or a vertex entity contained in polylines. This method lets the user pick
an entity or subentity from the graphics screen and returns details about that entity and any
object that contains it.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 125

5793c07_final.qxd 8/22/05 2:20 AM Page 125

■Note Like GetEntity, this method can return an entity even if it is not currently visible or is on a frozen
layer because the user can type L to select the last entity in the drawing window. However, in 2005 and
2006, AutoCAD will select the last visible entity.

This method has the following syntax:

UtilityObject.GetSubEntity PickedEntity, PickPoint, Matrix, Context[, Prompt]

Table 7-10 explains this method’s parameters.

Table 7-10. The GetSubEntity Method’s Parameters

Name Type Description

PickedEntity AcadEntity object Output. Returns a reference to the drawing object that
the user picked.

PickPoint Variant Output. A three-element array of doubles that specifies
an angle vector’s first point in WCS.

Matrix Variant Output. Returns a four-by-four element array of
doubles that holds the selected entity’s translation
matrix.

Context Variant Output. Returns an array of long integers holding the
ObjectIds for each parent block containing the selected
entity, if the entity is in a block.

Prompt String Optional. A prompt for input.

The Matrix output parameter is the selected entity’s Model to World Transformation Matrix.
It is a composite of all the transformations involved in the entity’s visible representation. Imagine
a line stored in a block, which is also stored in a block. The Matrix output parameter encapsulates
each scale, rotation, and translation involved in the nested line’s display. You can use it to trans-
late points from the internal Model Coordinate System (MCS) to WCS.

The Context output parameter is an array of the ObjectIds for any objects that contain the
selected entity. For the example line, this would be an array of two ObjectIds, one for each nest-
ing level of the containing blocks. To get information about each containing entity, use the
ObjectIdToObject method of the Document object to convert the ObjectId to an object reference.

The following example uses the Prompt method to display information about the selected
entity and any containing entities. Try it on a variety of entities, including those nested in
blocks.

Public Sub TestGetSubEntity()

Dim objEnt As AcadEntity

Dim varPick As Variant

Dim varMatrix As Variant

Dim varParents As Variant

Dim intI As Integer

Dim intJ As Integer

Dim varID As Variant

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT126

5793c07_final.qxd 8/22/05 2:20 AM Page 126

With ThisDrawing.Utility

'' get the subentity from the user

.GetSubEntity objEnt, varPick, varMatrix, varParents, _

vbCr & "Pick an entity: "

'' print some information about the entity

.Prompt vbCr & "You picked a " & objEnt.ObjectName

.Prompt vbCrLf & "At " & varPick(0) & "," & varPick(1)

'' dump the varMatrix

If Not IsEmpty(varMatrix) Then

.Prompt vbLf & "MCS to WCS Translation varMatrix:"

'' format varMatrix row

For intI = 0 To 3

.Prompt vbLf & "["

'' format varMatrix column

For intJ = 0 To 3

.Prompt "(" & varMatrix(intI, intJ) & ")"

Next intJ

.Prompt "]"

Next intI

.Prompt vbLf

End If

'' if it has a parent nest

If Not IsEmpty(varParents) Then

.Prompt vbLf & "Block nesting:"

'' depth counter

intI = -1

'' traverse most to least deep (reverse order)

For intJ = UBound(varParents) To LBound(varParents) Step -1

'' increment depth

intI = intI + 1

'' indent output

.Prompt vbLf & Space(intI * 2)

'' parent object ID

varID = varParents(intJ)

'' parent entity

Set objEnt = ThisDrawing.ObjectIdToObject(varID)

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 127

5793c07_final.qxd 8/22/05 2:20 AM Page 127

'' print info about parent

.Prompt objEnt.ObjectName & " : " & objEnt.Name

Next intJ

.Prompt vbLf

End If

.Prompt vbCr

End With

End Sub

GetSubEntity throws an exception if the input is null, such as when there is no entity at
the picked point or when the user presses Enter without selecting an entity.

Figure 7-3 shows the result of picking a line that forms part of a block reference named
Window.

Handling Errors in User Input
Each AutoCAD command line user input method this chapter discusses uses run-time errors
to signal input conditions such as null input, keyword input, or the user canceling the com-
mand line input. Your code must handle these run-time errors, known as exceptions, or the
program halts and displays an error message. VBA gives you two basic strategies for dealing
with these exceptions.

On Error Goto: The first strategy is to use On Error Goto to jump to labeled sections of
code called error handlers. This strategy has the advantage of keeping the main program
logic very clean—all the error handler code is separate from the program body. It has the
disadvantage of becoming unwieldy as the program’s size or complexity increases. As the
complexity of errors increases, so too does the error handler’s complexity. At a certain
level of complexity, you reach a point of diminishing returns with labeled error handlers.
They begin to take on a life of their own, with all their necessary conditions, loops, and
jumps back and forth from the main program body.

On Error Resume Next: The second strategy is to use On Error Resume Next to handle the
errors in the main program body. This is called inline error handling. It has the advantage
of keeping the exception handling close to the method or function that generated the con-
dition. This encourages, and in some ways forces, a more direct cause-and-effect framework
for dealing with errors. Because inline error handling is woven into the main program exe-
cution, it has the disadvantage of clouding the pure algorithmic logic. Because of this
interaction with the main program logic, it is also more difficult to retrofit existing code
that lacks error handling with code that uses inline handling.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT128

Figure 7-3. The TestGetSubEntity command line output

5793c07_final.qxd 8/22/05 2:20 AM Page 128

This chapter’s examples minimize error handling to focus all attention on the methods
being described. However, because each input method generates exceptions for normal and
expected conditions such as null input and keyword entry, be prepared to handle these errors
in your program. See the sample code for the GetInput method for an example of handling
these kinds of exceptions. You can apply this same framework to each input method.

Conversion Methods
Several Utility methods do not involve direct user interaction but are often used in conjunc-
tion with user input. You can categorize these methods as conversion methods. Use them to
convert between common unit types or among AutoCAD’s various coordinate systems.

The AngleToReal Method
Use the AngleToReal method to convert a string that represents an angle into the equivalent
radian value. This is useful, for example, for converting angles the user inputs as a string into
a form compatible with most of AutoCAD’s geometric methods. This method returns a double,
giving the angle in radians. It has the following syntax:

dblAngle = UtilityObject.AngleToReal(Angle, Unit)

Table 7-11 explains this method’s parameters.

Table 7-11. The AngleToReal Method’s Parameters

Name Type Description

Angle String A string containing the angle to convert

Unit Long The input angle’s default unit format as one of AcAngleUnits’ con-
stants: acDegreeMinuteSeconds, acDegrees, acGrads, or acRadians

The Unit parameter specifies the conversion’s default unit type. This default unit is assigned
when the input specifies no units. For instance, the string 2.5 can be interpreted as degrees,
grads, or radians. If the input contains an explicit unit type, AutoCAD uses it and ignores the
Unit parameter. For instance, 2.5d, 2.5g, and 2.5r are each explicit, and AutoCAD reads them
as degrees, grads, and radians, respectively.

This example gets an angle from the user, converts it to a double using AngleToReal with
a default of degrees, and then displays the results of the conversion to radians:

Public Sub TestAngleToReal()

Dim strInput As String

Dim dblAngle As Double

With ThisDrawing.Utility

strInput = .GetString(True, vbCr & "Enter an angle: ")

dblAngle = .AngleToReal(strInput, acDegrees)

.Prompt vbCr & "Radians: " & dblAngle

End With

End Sub

An exception is thrown if AngleToReal is unable to convert the input string.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 129

5793c07_final.qxd 8/22/05 2:20 AM Page 129

The AngleToString Method
Use the AngleToString method to convert an angle in radians to a string representing the angle
in angular units. This is useful for converting radian angles, used by most geometric properties
and methods, into a form that the user can work with. This method returns a string that gives
the angle in a specified unit type and precision. This method has the following syntax:

strAngle = UtilityObject.AngleToString(Angle, Unit, Precision)

Table 7-12 explains this method’s parameters.

Table 7-12. The AngleToString Method’s Parameters

Name Type Description

Angle Double The angle, in radians, to be converted

Unit Long The angular unit for the output string as one of AcAngleUnits’
constants: acDegreeMinuteSeconds, acDegrees, acGrads, or acRadians

Precision Long Specifies the output’s precision from zero to eight decimal places

This example gets an angle from the user, converts it to a double using AngleToReal with a
default of degrees, and then converts and displays the results using AngleToString with a unit
of degrees and a precision of four decimal places:

Public Sub TestAngleToString()

Dim strInput As String

Dim strOutput As String

Dim dblAngle As Double

With ThisDrawing.Utility

strInput = .GetString(True, vbCr & "Enter an angle: ")

dblAngle = .AngleToReal(strInput, acDegrees)

.Prompt vbCr & "Radians: " & dblAngle

strOutput = .AngleToString(dblAngle, acDegrees, 4)

.Prompt vbCrLf & "Degrees: " & strOutput

End With

End Sub

Sub TestAngleToString()

The DistanceToReal Method
Use the DistanceToReal method to convert a string that represents a linear distance into
the equivalent double. This is useful, for example, for converting distances the user inputs
as a string into their numeric equivalents. This method returns a double. It has the follow-
ing syntax:

dblDistance = UtilityObject.DistanceToReal(Distance, Unit)

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT130

5793c07_final.qxd 8/22/05 2:20 AM Page 130

Table 7-13 explains this method’s parameters.

Table 7-13. The DistanceToReal Method’s Parameters

Name Type Description

Distance String A string that contains the angle to convert

Unit Long The input’s default unit format, as one of AcUnits’ constants:
acArchitectural, acDecimal, acDefaultUnits, acEngineering,
acFractional, or acScientific

The Unit parameter specifies the conversion’s default unit type. VBA assigns this default
unit when the input specifies no units. If the input contains an explicit unit type, AutoCAD
uses it and ignores the Unit parameter. For instance, 1'6-1/2", 1.54', 18 1/2, and 0.185e+2 are
each explicit, and AutoCAD reads them as architectural, engineering, fractional, and scientific
notation, respectively. The acDefaultUnits value uses whichever unit type the LUNITS system
variable currently specifies.

This example gets a distance from the user, converts it using DistanceToReal with a
default of architectural units, and then displays the results of the conversion to a double:

Public Sub TestDistanceToReal()

Dim strInput As String

Dim dblDist As Double

With ThisDrawing.Utility

strInput = .GetString(True, vbCr & "Enter a distance: ")

dblDist = .DistanceToReal(strInput, acArchitectural)

.Prompt vbCr & "Distance: " & dblDist

End With

End Sub

An exception is thrown if DistanceToReal is unable to convert the input string.

The RealToString Method
Use the RealToString method to convert a double to a string representing a distance in linear
units. This is useful for converting the lengths, sizes, and locations that most AutoCAD geomet-
ric properties and methods use into a form that the user can work with. This method returns a
string containing the distance in a specified unit type and precision. It has the following syntax:

strDistance = UtilityObject.RealToString(Distance, Unit, Precision)

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 131

5793c07_final.qxd 8/22/05 2:20 AM Page 131

Table 7-14 explains this method’s parameters.

Table 7-14. The RealToString Method’s Parameters

Name Type Description

Distance Double A double containing the distance

Unit Long The linear unit format for the output string, as one of AcUnits’ con-
stants: acArchitectural, acDecimal, acDefaultUnits, acEngineering,
acFractional, or acScientific

Precision Long The output’s precision, from zero to eight decimal places

This example gets a distance from the user, converts it to a double using DistanceToReal
with a default of architectural, and then converts and displays the results using RealToString
with a unit of architectural and a precision of four decimal places:

Public Sub TestRealToString()

Dim strInput As String

Dim strOutput As String

Dim dblDist As Double

With ThisDrawing.Utility

strInput = .GetString(True, vbCr & "Enter a distance: ")

dblDist = .DistanceToReal(strInput, acArchitectural)

.Prompt vbCr & "Double: " & dblDist

strOutput = .RealToString(dblDist, acArchitectural, 4)

.Prompt vbCrLf & "Distance: " & strOutput

End With

End Sub

The AngleFromXAxis Method
Use the AngleFromXAxis method to measure the angle, in radians, between an imaginary line
formed by two points and the WCS X-axis. This method returns a double. It has the following
syntax:

dblAngle = UtilityObject.AngleFromXAxis(StartPoint, EndPoint)

Table 7-15 explains this method’s parameters.

Table 7-15. The AngleFromXAxis Method’s Parameters

Name Type Description

StartPoint Variant A three-element array of doubles that specifies the first point of an
imaginary line in WCS

EndPoint Variant A three-element array of doubles that specifies the second point of
an imaginary line in WCS

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT132

5793c07_final.qxd 8/22/05 2:20 AM Page 132

This example gets two points from the user and then uses the AngleFromXAxis method
to calculate the angle of a line formed by those points and the WCS X-axis:

Public Sub TestAngleFromXAxis()

Dim varStart As Variant

Dim varEnd As Variant

Dim dblAngle As Double

With ThisDrawing.Utility

varStart = .GetPoint(, vbCr & "Pick the start point: ")

varEnd = .GetPoint(varStart, vbCr & "Pick the end point: ")

dblAngle = .AngleFromXAxis(varStart, varEnd)

.Prompt vbCr & "The angle from the X-axis is " _

& .AngleToString(dblAngle, acDegrees, 2) & " degrees"

End With

End Sub

The PolarPoint Method
Use the PolarPoint method to get a new point that’s a specified distance and angle from another
point. This method returns a Variant that holds a three-element array of doubles. It has the fol-
lowing syntax:

varPolarPoint = UtilityObject.PolarPoint(OriginalPoint, Angle, Distance)

Table 7-16 explains this method’s parameters.

Table 7-16. The PolarPoint Method’s Parameters

Name Type Description

OriginalPoint Variant A three-element array of doubles that specifies the point from
which to begin the polar calculation

Angle Double The angle in radians measured from WCS X-axis

Distance Double The distance between the original and new point measured in
current drawing units

In this example, the user specifies a start point and a rectangle’s length, height, and angle.
It uses the PolarPoint method and user input to calculate the rest of the points:

Public Sub TestPolarPoint()

Dim varpnt1 As Variant

Dim varpnt2 As Variant

Dim varpnt3 As Variant

Dim varpnt4 As Variant

Dim dblAngle As Double

Dim dblLength As Double

Dim dblHeight As Double

Dim dbl90Deg As Double

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 133

5793c07_final.qxd 8/22/05 2:20 AM Page 133

'' get the point, length, height, and angle from user

With ThisDrawing.Utility

'' get point, length, height, and angle from user

varpnt1 = .GetPoint(, vbCr & "Pick the start point: ")

dblLength = .GetDistance(varpnt1, vbCr & "Enter the length: ")

dblHeight = .GetDistance(varpnt1, vbCr & "Enter the height: ")

dblAngle = .GetAngle(varpnt1, vbCr & "Enter the angle: ")

'' calculate remaining rectangle points

dbl90Deg = .AngleToReal("90d", acDegrees)

varpnt2 = .PolarPoint(varpnt1, dblAngle, dblLength)

varpnt3 = .PolarPoint(varpnt2, dblAngle + dbl90Deg, dblHeight)

varpnt4 = .PolarPoint(varpnt3, dblAngle + (dbl90Deg * 2), dblLength)

End With

'' draw the rectangle

With ThisDrawing

.ModelSpace.AddLine varpnt1, varpnt2

.ModelSpace.AddLine varpnt2, varpnt3

.ModelSpace.AddLine varpnt3, varpnt4

.ModelSpace.AddLine varpnt4, varpnt1

End With

End Sub

Chapter 8 covers creating drawing objects.

The TranslateCoordinates Method
Use the TranslateCoordinates method to translate a point from one coordinate system to
another. This is often necessary when the user is working in a construction plane, for example.
Most AutoCAD input and object-creation methods work exclusively in WCS, so you need to
translate user input to correctly work in the construction plane.

This method returns an array of doubles. It has the following syntax:

dblAngle = UtilityObject.AngleFromXAxis(Point, From, To, Displacement [, Norm])

Table 7-17 explains this method’s parameters.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT134

5793c07_final.qxd 8/22/05 2:20 AM Page 134

Table 7-17. The TranslateCoordinates Method’s Parameters

Name Type Description

Point Variant A three-element array of doubles that specifies the point to
translate.

From Long The source coordinate system. One of the AcCoordinateSystem
constants: acDisplayDCS, acOCS, acPaperSpaceDCS, acUCS, or acWorld.

To Long The destination coordinate system. One of the AcCoordinateSystem
constants: acDisplayDCS, acOCS, acPaperSpaceDCS, acUCS, or acWorld.

Displacement Boolean If True, the input is treated as a displacement vector. If False, the
input is treated as a point.

Norm Variant Optional. A three-element array of doubles specifying the Object
Coordinate System (OCS) normal. Use with an acOCS value in
either the From parameter or the To parameter.

The From and To parameters specify the point translation’s source and destination coordinate
systems. For instance, to convert the Point parameter from WCS to the current construction
plane, set From to acWorld and set To to acUCS. If either From or To is set to acOCS, you must pass
the Norm to indicate the OCS normal vector.

■Note Because you can pass only a single normal vector into the method, you can’t translate points from
one OCS directly to another. Instead, translate the source OCS to an intermediate coordinate system and
then translate from the intermediate coordinate system to the destination OCS.

When the Displacement parameter is True, the Point parameter is treated like a displace-
ment vector instead of like a point. Use this setting when you need to calculate offset values
instead of a new point, such as when performing relative movement. For example, to move
an entity by a specified amount, compose the X, Y, and Z displacements and pass them to
TranslateCoordinates as a displacement vector.

The following example gets two points from the user and then uses the AngleFromXAxis
method to calculate the angle of the line those points form and the WCS X-axis. It uses
TranslateCoordinates to translate the first input point to User Coordinate System (UCS)
for use in the base point of the second point acquisition.

Public Sub TestTranslateCoordinates()

Dim varpnt1 As Variant

Dim varpnt1Ucs As Variant

Dim varpnt2 As Variant

'' get the point, length, height, and angle from user

With ThisDrawing.Utility

'' get start point

varpnt1 = .GetPoint(, vbCr & "Pick the start point: ")

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 135

5793c07_final.qxd 8/22/05 2:20 AM Page 135

'' convert to UCS for use in the base point rubber-band line

varpnt1Ucs = .TranslateCoordinates(varpnt1, acWorld, acUCS, False)

'' get end point

varpnt2 = .GetPoint(varpnt1Ucs, vbCr & "Pick the end point: ")

End With

'' draw the line

With ThisDrawing

.ModelSpace.AddLine varpnt1, varpnt2

End With

End Sub

Try TestTranslateCoordinates from various coordinate systems, and you can see that the
rubber-band line in the second point input always starts in the correct position. Without the
coordinate translation, the point is always expressed in WCS coordinates and appears incorrectly.

Internet Methods
AutoCAD 2000 and higher has the ability to open and save drawing files from the Internet. The
following methods let your program accept, return, or validate Uniform Resource Locators
(URLs), which are Internet addresses that uniquely identify remote files. The methods include
a Web file browser, Internet file upload and downloading capabilities, and functions for vali-
dating URLs and determining if a file originated from the Internet.

The IsURL Method
Use the IsURL method to determine if a string is a properly formed URL. It does not ensure
that the URL is actually accessible, just that it is syntactically correct. It returns a Boolean.
Its syntax is as follows:

blnStatus = UtilityObject.IsURL(InputURL)

This method has one parameter, InputURL, a string. Use it to specify the URL to check for
validity.

This example gets a string from the user and then, using IsURL, displays whether it is a
valid URL:

Public Sub TestIsURL()

Dim strInput As String

With ThisDrawing.Utility

strInput = .GetString(True, vbCr & "Enter a URL: ")

If .IsURL(strInput) Then

MsgBox "You entered a valid URL"

Else

MsgBox "That was not a URL"

End If

End With

End Sub

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT136

5793c07_final.qxd 8/22/05 2:20 AM Page 136

The LaunchBrowserDialog Method
Use the LaunchBrowserDialog method to perform a Hypertext Transfer Protocol (HTTP) request,
displaying a document using the default Web browser. It can’t verify or validate URLs; it simply
opens the browser and sends the request, exactly the way launching a favorite works in Internet
Explorer or launching a bookmark works in Netscape. This method sets OutputURL to the URL
the user selects. It returns True if the Web browser successfully launched and the user selected
a file, or it returns False to indicate failure or that the user didn’t select a file. This method has
the following syntax:

blnStatus = UtilityObject.LaunchBrowserDialog(OutputURL, _

Title, SelectCaption, StartingURL, PreferencesKey, SelectLinks)

Table 7-18 explains this method’s parameters.

Table 7-18. The LaunchBrowserDialog Method’s Parameters

Name Type Description

SelectedURL String Output. The URL of the remote file the user selected.

DialogTitle String A caption for the Web browser dialog.

OpenButtonCaption String A caption for the OK/Open button.

StartPageURL String The starting URL for the Web browser.

RegistryRootKey String The product root key for storing persistent Web browser
dialog information. This key specifies where to store
information about the size, position, and other prefer-
ences information of the dialog and can be stored across
sessions. Leave empty to disregard this functionality.

OpenButtonAlwaysEnabled Boolean Input Only. If True, the Open button is enabled, allow-
ing a file or link to be selected. If False, the Open button
is disabled and is enabled only when the user selects a
file for download.

The RegistryRootKey parameter stores the browser window’s size and location in the Win-
dows Registry. This lets your application make the Web browser appear with the same size and
location each time it is called. The information is stored in HKEY_CURRENT_USER and so is specific
to each user. If you don’t want to use this capability, pass a null (empty) string in this parameter.

The OpenButtonAlwaysEnabled parameter enables URL link selection. If True, the Select
button is enabled at all times, and the browser can return any URL, whether it’s an actual file
or just a link. Use this if your program just needs to obtain a URL from the user and doesn’t
need to actually open or work with the contents of a remote file.

The following example uses LaunchBrowserDialog to get a URL from the user and displays
the selection in a message box. Figure 7-4 illustrates this code in action.

Public Sub TestLaunchBrowserDialog()

Dim strStartUrl As String

Dim strInput As String

Dim blnStatus As Boolean

strStartUrl = InputBox("Enter a URL", , "http://www.apress.com")

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 137

5793c07_final.qxd 8/22/05 2:20 AM Page 137

With ThisDrawing.Utility

If .IsURL(strStartUrl) = False Then

MsgBox "You did not enter a valid URL"

Exit Sub

End If

blnStatus = .LaunchBrowserDialog(strInput, _

"Select a URL", _

"Select", _

strStartUrl, _

"ContractCADDgroup", _

True)

If Not blnStatus Then

MsgBox "You cancelled without selecting anything"

Exit Sub

End If

If strStartUrl = strInput Then

MsgBox "You selected the original URL"

Else

MsgBox "You selected: " & strInput

End If

End With

End Sub

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT138

Figure 7-4. Getting output from TestLaunchBrowserDialog

5793c07_final.qxd 8/22/05 2:21 AM Page 138

The GetRemoteFile Method
Use the GetRemoteFile method to retrieve a remote file given a URL. The file is downloaded to
a temporary local file with the name being passed back in the LocalFile output parameter.
This method returns nothing. It has the following syntax:

UtilityObject.GetRemoteFile InputURL, LocalFile, IgnoreCache

Table 7-19 explains this method’s parameters.

Table 7-19. The GetRemoteFile Method’s Parameters

Name Type Description

InputURL String The URL from which to download the file.

LocalFile String Output. The temporary local copy’s file name.

IgnoreCache Boolean Whether to use the browser’s file cache to retrieve the file.

If IgnoreCache is True, the file gets downloaded from the URL even if it is present in the
local browser file cache. Do this to ensure you have the most current copy of the file.

If InputURL is a secure URL, a dialog box asks the user for access information such as user-
name and password.

This example gets a file from a user-specified URL and displays the temporary file name
in a message box:

Public Sub TestGetRemoteFile()

Dim strUrl As String

Dim strLocalName As String

Dim blnStatus As Boolean

strUrl = InputBox("Enter a URL of a drawing file")

With ThisDrawing.Utility

If .IsURL(strUrl) = False Then

MsgBox "You did not enter a valid URL"

Exit Sub

End If

.GetRemoteFile strUrl, strLocalName, True

If Err Then

MsgBox "Failed to download: " & strUrl & vbCr & Err.Description

Else

MsgBox "The file was downloaded to: " & strLocalName

End If

End With

End Sub

■Note When you exit AutoCAD, the temporary file this method creates is deleted from your system.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 139

5793c07_final.qxd 8/22/05 2:21 AM Page 139

The IsRemoteFile Method
Use the IsRemoteFile method to determine whether a local file was retrieved from a URL. The
OutputURL parameter contains the file’s original URL. This method returns True if the file was
downloaded from a URL. This method has the following syntax:

blnStatus = UtilityObject.IsRemoteFile(LocalFile, OutputURL)

Table 7-20 explains this method’s parameters.

Table 7-20. The IsRemoteFile Method’s Parameters

Name Type Description

LocalFile String The file name of a local file to check.

OutputURL String Output. The original URL of the local file.

This example gets a file name from the user and then displays a message telling whether
the file was retrieved from a URL:

Public Sub TestIsRemoteFile()

Dim strOutputURL As String

Dim strLocalName As String

strLocalName = InputBox("Enter the file and path name to check")

If strLocalName = "" Then Exit Sub

With ThisDrawing.Utility

'' check if the local file is from a URL

If .IsRemoteFile(strLocalName, strOutputURL) Then

MsgBox "This file was downloaded from: " & strOutputURL

Else

MsgBox "This file was not downloaded from a URL"

End If

End With

End Sub

The PutRemoteFile Method
Use the PutRemoteFile method to upload a local file to a URL. This method returns nothing. It
has the following syntax:

UtilityObject.PutRemoteFile UploadURL, LocalFile

Table 7-21 explains this method’s parameters.

Table 7-21. The PutRemoteFile Method’s Parameters

Name Type Description

UploadURL String The URL to which to upload the file

LocalFile String The file name to upload

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT140

5793c07_final.qxd 8/22/05 2:21 AM Page 140

If UploadURL is a secure URL, the method displays a dialog box to ask the user for their
access information such as username and password.

For more extensive Web-enabled capabilities, look at the Autodesk i-drop technology and
related API tools. The i-drop technology lets you publish content to Web sites and drag and drop
selected items (and associated metadata) directly into drawings.

Summary
Although this chapter didn’t cover every conceivable user interaction scenario, it did cover the
most commonly used methods. The user interface is unique to each situation, and as a pro-
grammer you have to decide how best to use AutoCAD VBA’s methods and properties to create
the ideal user interface.

CHAPTER 7 ■ USER INTERACTION AND THE UTIL ITY OBJECT 141

5793c07_final.qxd 8/22/05 2:21 AM Page 141

5793c07_final.qxd 8/22/05 2:21 AM Page 142

Drawing Objects

AutoCAD provides you with a number of methods to create the drawing entities users nor-
mally access through the application window. Nearly every drawing entity that you can create
and manipulate through the AutoCAD GUI has an equivalent object with associated proper-
ties and methods in the AutoCAD object model.

In this chapter I cover the majority of drawing entities that you can create as single
AutoCAD objects, including the following:

• The Arc, Circle, and Ellipse objects

• Lines of finite and infinite length, such as the Line, Ray, and Polyline objects

• Solid, Hatch, and Region compound objects

The code samples in this chapter demonstrate how to create these objects through VBA.
Realistically, though, before you create drawing entities you need to understand how to con-
trol the drawing space where you place and view these objects. You’ll start in the next section
by examining how to toggle between the model space and paper space.

Controlling the Drawing Space
AutoCAD segregates entities that users create into one of several collections. The two primary
collections separate objects that make up the model geometry and objects used to describe
the geometry for printing or plotting purposes. The model is stored in the ModelSpace collec-
tion, and the printing/plotting layout is stored in the PaperSpace collection.

Model space is the drawing area where users create the objects that they’re designing or
rendering. It typically contains everything that would exist in reality—each of the components
in an assembly, or all of the physical elements of a building, for instance. Scaled views (or view-
ports) of specific areas of the model are then placed in paper space. Each of the views is dynamic,
and changes to the model are automatically reflected in the paper space views.

Users will typically place items that describe the views of the model, such as dimensions,
annotation, labels, and textual tables, into paper space. Title blocks and sheet borders are also
placed here, and the complete page layout is formatted for output to a printer or plotter.

AutoCAD does nothing to enforce the division between the model space and the paper
space—in fact, users may draw anything they want in either space. The spaces are simply pro-
vided to assist in the format and page layout for presentation and output purposes.

In AutoCAD 2000 and higher, users may create any number of paper space pages, which
are called layouts. The layouts, each of which generally represents a single formatted page, are

143

C H A P T E R 8

■ ■ ■

5793c08_final.qxd 8/22/05 2:18 AM Page 143

given unique names and are shown as a series of tabs at the bottom of each drawing window.
AutoCAD automatically generates a model space layout named Model and a paper space lay-
out named Layout1, but users may create as many as they’d like. Every layout except Model is
a paper space layout, and the last of these accessed is always referred to by the PaperSpace
property of the Document object.

■Note You can’t rename or delete the Model layout. If you delete the last paper space layout, AutoCAD
automatically creates a new Layout1. However, you may rename any of the paper space layouts.

Internally, AutoCAD stores model space and each of the paper space layouts as special
block definitions. Therefore, you may use all the operations noted in this chapter equally well
with ModelSpace, PaperSpace, or Block objects with only occasional, minor differences.

The ModelSpace and PaperSpace Collections
One of the first things you need to know to use the ModelSpace and PaperSpace collections is
which space—model or paper—is currently active. This information is held in the ActiveSpace
property of the Document object. This is an integer property, and it may hold one of the two val-
ues shown in Table 8-1, along with that value’s associated AutoCAD constants.

Table 8-1. ModelSpace and PaperSpace Constants

Constant Value

acModelSpace 1

acPaperSpace 0

The following code snippet uses a message box to inform you of the active space for the
current document:

If ThisDrawing.ActiveSpace = acModelSpace Then

MsgBox "The active space is model space"

Else

MsgBox "The active space is paper space"

End If

To change the active space, you need to set the value of the ActiveSpace property. The fol-
lowing code contains a macro you can use to toggle between the two spaces:

Public Sub ToggleSpace()

With ThisDrawing

If .ActiveSpace = acModelSpace Then

.ActiveSpace = acPaperSpace

Else

.ActiveSpace = acModelSpace

End If

End With

End Sub

CHAPTER 8 ■ DRAWING OBJECTS144

5793c08_final.qxd 8/22/05 2:18 AM Page 144

Alternatively, you can simply use the following line of code:

ThisDrawing.ActiveSpace = (ThisDrawing.ActiveSpace + 1) Mod 2

Creating Objects
As mentioned previously, the AddXXX methods apply equally to the PaperSpace, ModelSpace, and
Block objects. Therefore, when I present the syntax of each method in this section, the word
Object denotes any one of these collections. For example:

Set CircleObject = Object.AddCircle(CenterPoint, Radius)

Each of the AddXXX methods returns an object reference to the newly created entity, so you
must use the VBA Set operator if you want to assign this return to a variable.

When you create or modify an entity, the changes to the drawing don’t display until the
Update method of that object, the Update method of the Application object, or the Regen method
of the Document object is called. In some cases, AutoCAD will update the display once your macro
or program is complete; however, it’s always safest to ensure the update takes place in your code.
In the examples presented here, I use the Update method of the newly created entity to update
the drawing display.

Circular Objects
This section demonstrates how to create the various circular objects.

The Arc Object
You create an Arc object by using the AddArc method. This method takes four arguments that
determine the position and size of the arc:

Set ArcObject = Object.AddArc(CenterPoint, Radius, StartAngle, EndAngle)

Table 8-2 provides a brief description of each argument.

Table 8-2. AddArc Method Parameters

Name Data Type Description

CenterPoint Variant A three-element array of doubles specifying the center of the arc
in the WCS

Radius Double The radius of the arc

StartAngle Double The start angle of the arc given in radians with respect to the
X-axis of the WCS

EndAngle Double The end angle of the arc given in radians with respect to the
X-axis of the WCS

Arcs are drawn counterclockwise from the start angle to the end angle, as shown in
Figure 8-1.

CHAPTER 8 ■ DRAWING OBJECTS 145

5793c08_final.qxd 8/22/05 2:18 AM Page 145

The following example creates an arc in the active drawing space (model or paper space)
utilizing user input:

Public Sub TestAddArc()

Dim varCenter As Variant

Dim dblRadius As Double

Dim dblStart As Double

Dim dblEnd As Double

Dim objEnt As AcadArc

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

varCenter = .GetPoint(, vbCr & "Pick the center point: ")

dblRadius = .GetDistance(varCenter, vbCr & "Enter the radius: ")

dblStart = .GetAngle(varCenter, vbCr & "Enter the start angle: ")

dblEnd = .GetAngle(varCenter, vbCr & "Enter the end angle: ")

End With

'' draw the arc

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddArc(varCenter, dblRadius, _

dblStart, dblEnd)

Else

Set objEnt = ThisDrawing.PaperSpace.AddArc(varCenter, dblRadius, dblStart, dblEnd)

End If

objEnt.Update

End Sub

CHAPTER 8 ■ DRAWING OBJECTS146

Figure 8-1. The Arc object

5793c08_final.qxd 8/22/05 2:18 AM Page 146

The Circle Object
You can create a Circle object by specifying the position of the center and the radius, and
using the AddCircle method:

Set CircleObject = Object.AddCircle(CenterPoint, Radius)

Table 8-3 provides a brief description of each argument.

Table 8-3. AddCircle Method Parameters

Name Data Type Description

CenterPoint Variant A three-element array of doubles specifying the center of the
circle in the WCS

Radius Double The radius of the circle

Figure 8-2 illustrates the Circle object.

The following example creates a circle based on user input:

Public Sub TestAddCircle()

Dim varCenter As Variant

Dim dblRadius As Double

Dim objEnt As AcadCircle

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

varCenter = .GetPoint(, vbCr & "Pick the centerpoint: ")

dblRadius = .GetDistance(varCenter, vbCr & "Enter the radius: ")

End With

CHAPTER 8 ■ DRAWING OBJECTS 147

Figure 8-2. The Circle object

5793c08_final.qxd 8/22/05 2:18 AM Page 147

'' draw the entity

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddCircle(varCenter, dblRadius)

Else

Set objEnt = ThisDrawing.PaperSpace.AddCircle(varCenter, dblRadius)

End If

objEnt.Update

End Sub

The Ellipse Object
You use the AddEllipse method to create a fully closed Ellipse object. This method takes
three parameters:

Set EllipseObject = Object.AddEllipse(CenterPoint, MajorAxis, RadiusRatio)

Table 8-4 describes the AddEllipse method’s parameters.

Table 8-4. AddEllipse Method Parameters

Name Data Type Description

CenterPoint Variant A three-element array of doubles specifying the center of the
ellipse in the WCS.

MajorAxis Variant A three-element array of doubles specifying the vector of the
major axis of the ellipse from the CenterPoint.

RadiusRatio Double The ratio of the lengths of the minor to major axis vectors:
0 < RadiusRatio ≤ 1. A value of 1 generates an ellipse object that
looks like a circle.

If you want to create an elliptical arc, set the StartAngle and EndAngle properties after you
create the full Ellipse object, as shown in Figure 8-3.

CHAPTER 8 ■ DRAWING OBJECTS148

5793c08_final.qxd 8/22/05 2:18 AM Page 148

The following example creates a new Ellipse object by first setting the center axis, major
axis, and radius ratio. It then gets a start and an end angle from the user to convert the closed
Ellipse into an elliptical arc.

Public Sub TestAddEllipse()

Dim dblCenter(0 To 2) As Double

Dim dblMajor(0 To 2) As Double

Dim dblRatio As Double

Dim dblStart As Double

Dim dblEnd As Double

Dim objEnt As AcadEllipse

On Error Resume Next

'' setup the ellipse parameters

dblCenter(0) = 0: dblCenter(1) = 0: dblCenter(2) = 0

dblMajor(0) = 10: dblMajor(1) = 0: dblMajor(2) = 0

dblRatio = 0.5

'' draw the ellipse

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddEllipse(dblCenter, dblMajor, dblRatio)

Else

Set objEnt = ThisDrawing.PaperSpace.AddEllipse(dblCenter, dblMajor, dblRatio)

End If

objEnt.Update

CHAPTER 8 ■ DRAWING OBJECTS 149

Figure 8-3. The Ellipse object

5793c08_final.qxd 8/22/05 2:18 AM Page 149

'' get angular input from user

With ThisDrawing.Utility

dblStart = .GetAngle(dblCenter, vbCr & "Enter the start angle: ")

dblEnd = .GetAngle(dblCenter, vbCr & "Enter the end angle: ")

End With

'' convert the ellipse into elliptical arc

With objEnt

.StartAngle = dblStart

.EndAngle = dblEnd

.Update

End With

End Sub

Line Objects
This section demonstrates how to create the various line-shaped objects.

The Line Object
The AddLine method creates a Line object, which is a single, straight line running between two
points:

Set LineObject = Object.AddLine(StartPoint, EndPoint)

Table 8-5 provides a brief description of each argument.

Table 8-5. AddLine Method Parameters

Name Data Type Description

StartPoint Variant A three-element array of doubles specifying the line’s start in the
WCS

EndPoint Variant A three-element array of doubles specifying the line’s end in the
WCS

Figure 8-4 illustrates the Line object.

CHAPTER 8 ■ DRAWING OBJECTS150

5793c08_final.qxd 8/22/05 2:18 AM Page 150

This example gets a start and end point from the user and then creates a new line:

Public Sub TestAddLine()

Dim varStart As Variant

Dim varEnd As Variant

Dim objEnt As AcadLine

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

varStart = .GetPoint(, vbCr & "Pick the start point: ")

varEnd = .GetPoint(varStart, vbCr & "Pick the end point: ")

End With

'' draw the entity

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddLine(varStart, varEnd)

Else

Set objEnt = ThisDrawing.PaperSpace.AddLine(varStart, varEnd)

End If

objEnt.Update

End Sub

The LWPolyline Object
A lightweight polyline is a 2-D line consisting of straight and arced segments. It’s functionally
similar to the legacy Polyline entity, but it’s internally represented in a “flat” data structure as
opposed to the tree-structured Polyline entity. This results in a more compact data size per
entity and faster graphics regeneration; hence the “lightweight” name.

You create a new LWPolyline object using the AddLightWeightPolyline method, as follows:

Set LWPolylineObject = Object.AddLightWeightPolyline(Vertices)

CHAPTER 8 ■ DRAWING OBJECTS 151

Figure 8-4. The Line object

5793c08_final.qxd 8/22/05 2:18 AM Page 151

Table 8-6 provides a brief description of the Vertices argument.

Table 8-6. The AddLightWeightPolyline Method Parameter

Name Data Type Description

Vertices Variant An array of doubles specifying a list of 2-D vertex points in WCS
coordinates. It’s a simple array with a single dimension composed
of alternating X and Y values (i.e., p1x, p1y, p2x, p2y, etc.). Because
you must supply at least two points to create a polyline, this array
must have a minimum of four elements.

■Note Lightweight polylines don’t store Z-axis or elevation information with each vertex point. Instead, the
Polyline object has an Elevation property that specifies the Z elevation relative to the coordinate system
for all vertices.

Figure 8-5 illustrates the LWPolyline object.

When you create an LWPolyline object, it’s open as shown in Figure 8-5. To close the poly-
line (i.e., to join the first vertex to the last), set its Closed property to True. All the segments are
straight lines by default. See the section titled “Polyline Arc Segments” later in this chapter for
details on how to optionally create arcs.

The following example creates a new lightweight polyline:

Public Sub TestAddLWPolyline()

Dim objEnt As AcadLWPolyline

Dim dblVertices() As Double

CHAPTER 8 ■ DRAWING OBJECTS152

Figure 8-5. The LWPolyline object

5793c08_final.qxd 8/22/05 2:18 AM Page 152

'' setup initial points

ReDim dblVertices(11)

dblVertices(0) = 0#: dblVertices(1) = 0#

dblVertices(2) = 10#: dblVertices(3) = 0#

dblVertices(4) = 10#: dblVertices(5) = 10#

dblVertices(6) = 5#: dblVertices(7) = 5#

dblVertices(8) = 2#: dblVertices(9) = 2#

dblVertices(10) = 0#: dblVertices(11) = 10#

'' draw the entity

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddLightWeightPolyline(dblVertices)

Else

Set objEnt = ThisDrawing.PaperSpace.AddLightWeightPolyline(dblVertices)

End If

objEnt.Closed = True

objEnt.Update

End Sub

To add vertices to an LWPolyline object one at a time instead of all at once, use the AddVertex
method. The following example uses this method in a loop, adding vertices to a selected polyline
until the user is satisfied. Try using it on the polyline you created in the previous example:

Public Sub TestAddVertex()

On Error Resume Next

Dim objEnt As AcadLWPolyline

Dim dblNew(0 To 1) As Double

Dim lngLastVertex As Long

Dim varPick As Variant

Dim varWCS As Variant

With ThisDrawing.Utility

'' get entity from user

.GetEntity objEnt, varPick, vbCr & "Pick a polyline <exit>: "

'' exit if no pick

If objEnt Is Nothing Then Exit Sub

'' exit if not a lwpolyline

If objEnt.ObjectName <> "AcDbPolyline" Then

MsgBox "You did not pick a polyline"

Exit Sub

End If

CHAPTER 8 ■ DRAWING OBJECTS 153

5793c08_final.qxd 8/22/05 2:18 AM Page 153

'' copy last vertex of pline into pickpoint to begin loop

ReDim varPick(2)

varPick(0) = objEnt.Coordinates(UBound(objEnt.Coordinates) - 1)

varPick(1) = objEnt.Coordinates(UBound(objEnt.Coordinates))

varPick(2) = 0

'' append vertexes in a loop

Do

'' translate picked point to UCS for basepoint below

varWCS = .TranslateCoordinates(varPick, acWorld, acUCS, True)

'' get user point for new vertex, use last pick as basepoint

varPick = .GetPoint(varWCS, vbCr & "Pick another point <exit>: ")

'' exit loop if no point picked

If Err Then Exit Do

'' copy picked point X and Y into new 2d point

dblNew(0) = varPick(0): dblNew(1) = varPick(1)

'' get last vertex offset. it is one half the array size

lngLastVertex = (UBound(objEnt.Coordinates) + 1) / 2

'' add new vertex to pline at last offset

objEnt.AddVertex lngLastVertex, dblNew

Loop

End With

objEnt.Update

End Sub

The MLine Object
The MLine object is a single graphic entity that consists of multiple parallel straight-line seg-
ments. The maximum number of parallel lines is 16. You use the AddMLine method to create a
new MLine object:

Set MLineObject = Object.AddMLine(Vertices)

Table 8-7 provides a brief description of the Vertices argument.

Table 8-7. The AddMLine Method Parameter

Name Data Type Description

Vertices Variant An array of doubles specifying a list of 3-D vertex points in WCS
coordinates. It’s a simple array with a single dimension composed
of alternating X, Y, and Z values (i.e., p1x, p1y, p1z, p2x, p2y, p2z,
etc.). Because you must supply at least two points to create an
MLine, this array must have a minimum of six elements.

CHAPTER 8 ■ DRAWING OBJECTS154

5793c08_final.qxd 8/22/05 2:18 AM Page 154

Although an MLine object consists of multiple parallel lines, the AutoCAD Automation
model doesn’t expose those lines to VBA. Similarly, MLine styles aren’t directly accessible from
VBA. However, you have a limited amount of control when you use the CMLJUST, CMLSCALE, and
CMLSTYLE system variables to control the justification, scale, and style of newly created MLines.

■Note You may create or load additional multiline styles using the MLSTYLE command.

The following example illustrates the AddMLine method:

Public Sub TestAddMLine()

Dim objEnt As AcadMLine

Dim dblVertices(17) As Double

'' setup initial points

dblVertices(0) = 0: dblVertices(1) = 0: dblVertices(2) = 0

dblVertices(3) = 10: dblVertices(4) = 0: dblVertices(5) = 0

dblVertices(6) = 10: dblVertices(7) = 10: dblVertices(8) = 0

dblVertices(9) = 5: dblVertices(10) = 10: dblVertices(11) = 0

dblVertices(12) = 5: dblVertices(13) = 5: dblVertices(14) = 0

dblVertices(15) = 0: dblVertices(16) = 5: dblVertices(17) = 0

'' draw the entity

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddMLine(dblVertices)

Else

Set objEnt = ThisDrawing.PaperSpace.AddMLine(dblVertices)

End If

objEnt.Update

End Sub

The Polyline Object
The Polyline object is similar in function to the LWPolyline object, but it’s stored in an alter-
nate format. It’s a 2-D or 3-D line consisting of straight and arced segments, but the segments
are stored as distinct entities. A number of different polyline types are available; the following
list illustrates their AutoCAD command-line equivalent and a description of each type:

PLINE = 2D polyline (AcadPolyline)

3DPOLY = 3D polyline (Acad3DPolyline)

3DMESH (also EDGESURF, RULESURF, TABSURF, etc.) = N x M 3D mesh

(AcadPolygonMesh)

PFACE = Irregular 3D mesh (AcadPolyfaceMesh)

CHAPTER 8 ■ DRAWING OBJECTS 155

5793c08_final.qxd 8/22/05 2:18 AM Page 155

Each segment in an AcadPolyline object has a start point, an end point, and several other
unique properties. This object is less efficient than the lightweight polyline object, in which
segments are defined as a collection of vertex points.

Use the AddPolyline method to create a Polyline defined by a set of vertices, as follows:

Set PolylineObject = Object.AddPolyline(Vertices)

Table 8-8 provides a brief description of the Vertices argument.

Table 8-8. The AddPolyline Method Parameter

Name Data Type Description

Vertices Variant An array of doubles specifying a list of 3-D vertex points in WCS
coordinates. It’s a simple array with a single dimension composed
of alternating X, Y, and Z values (i.e., p1x, p1y, p1z, p2x, p2y, p2z,
etc.). Because you must supply at least two points to create a
polyline, this array must have a minimum of six elements.

The following example illustrates the AddPolyline method and shows how to close the
polyline and set its type:

Public Sub TestAddPolyline()

Dim objEnt As AcadPolyline

Dim dblVertices(17) As Double

'' setup initial points

dblVertices(0) = 0: dblVertices(1) = 0: dblVertices(2) = 0

dblVertices(3) = 10: dblVertices(4) = 0: dblVertices(5) = 0

dblVertices(6) = 7: dblVertices(7) = 10: dblVertices(8) = 0

dblVertices(9) = 5: dblVertices(10) = 7: dblVertices(11) = 0

dblVertices(12) = 6: dblVertices(13) = 2: dblVertices(14) = 0

dblVertices(15) = 0: dblVertices(16) = 4: dblVertices(17) = 0

'' draw the entity

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddPolyline(dblVertices)

Else

Set objEnt = ThisDrawing.PaperSpace.AddPolyline(dblVertices)

End If

objEnt.Type = acFitCurvePoly

objEnt.Closed = True

objEnt.Update

End Sub

AutoCAD is set to draw lightweight polylines by default because of their efficiency; you
may change this default setting using the PLINETYPE system variable. You can convert existing
polylines from lightweight to heavy and vice versa by using the Convertpoly command.

Although it’s less efficient for simple polyline representations, the Polyline object has fea-
tures not present in the lightweight form, such as the capability to represent splines and other

CHAPTER 8 ■ DRAWING OBJECTS156

5793c08_final.qxd 8/22/05 2:18 AM Page 156

smoothly curved shapes. The following example allows the user to change a specified Polyline
curve type from the command line. Try it on the polyline you created in the preceding example:

Public Sub TestPolylineType()

Dim objEnt As AcadPolyline

Dim varPick As Variant

Dim strType As String

Dim intType As Integer

On Error Resume Next

With ThisDrawing.Utility

.GetEntity objEnt, varPick, vbCr & "Pick a polyline: "

If Err Then

MsgBox "That is not a Polyline"

Exit Sub

End If

.InitializeUserInput 1, "Simple Fit Quad Cubic"

strType = .GetKeyword(vbCr & "Change type [Simple/Fit/Quad/Cubic]: ")

Select Case strType

Case "Simple": intType = acSimplePoly

Case "Fit": intType = acFitCurvePoly

Case "Quad": intType = acQuadSplinePoly

Case "Cubic": intType = acCubicSplinePoly

End Select

End With

objEnt.Type = intType

objEnt.Closed = True

objEnt.Update

End Sub

Polyline Arc Segments

When you first create them, both the LWPolyline and Polyline objects consist of only straight-
line segments. Each polyline segment has an arc bulge factor that determines the segment’s
arc radius. By default, all segments have a bulge factor of 0, which is a straight line. A positive
bulge factor denotes a counterclockwise arc relative to the start and end points of the polyline
segment, and a negative bulge factor denotes a clockwise arc.

You derive the bulge factor from the arc radius by calculating the tangent of one-fourth of
the included angle between the polyline segment’s start and end points, as shown in Figure 8-6.

Because AutoCAD is already storing the segment points, a bulge factor is a very efficient
way to capture the arc radius. Further, because the bulge factor is calculated using the seg-
ment’s start and end points, the resulting arc is automatically scaled as the distance between
these points changes (e.g., when the user scales or grip-edits the polyline).

CHAPTER 8 ■ DRAWING OBJECTS 157

5793c08_final.qxd 8/22/05 2:18 AM Page 157

To assign a bulge factor to the polyline segments, use the SetBulge method. The following
example sets the bulge on a Polyline segment:

Public Sub TestAddBulge()

Dim objEnt As AcadPolyline

Dim dblVertices(17) As Double

'' setup initial points

dblVertices(0) = 0: dblVertices(1) = 0: dblVertices(2) = 0

dblVertices(3) = 10: dblVertices(4) = 0: dblVertices(5) = 0

dblVertices(6) = 7: dblVertices(7) = 10: dblVertices(8) = 0

dblVertices(9) = 5: dblVertices(10) = 7: dblVertices(11) = 0

dblVertices(12) = 6: dblVertices(13) = 2: dblVertices(14) = 0

dblVertices(15) = 0: dblVertices(16) = 4: dblVertices(17) = 0

'' draw the entity

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddPolyline(dblVertices)

Else

Set objEnt = ThisDrawing.PaperSpace.AddPolyline(dblVertices)

End If

objEnt.Type = acSimplePoly

'add bulge to the fourth segment

objEnt.SetBulge 3, 0.5

objEnt.Update

End Sub

The Ray Object
The Ray object represents a line that extends to infinity in one direction from a specified start
point. The AddRay method uses the following syntax to create a new ray:

Set RayObject = Object.AddRay(StartPoint, SecondPoint)

Table 8-9 provides a brief description of each argument.

CHAPTER 8 ■ DRAWING OBJECTS158

Figure 8-6. A polyline segment

5793c08_final.qxd 8/22/05 2:18 AM Page 158

Table 8-9. AddRay Method Parameters

Name Data Type Description

StartPoint Variant A three-element array of doubles that specifies the ray’s start with
respect to the WCS.

SecondPoint Variant A three-element array of doubles that specifies a second point
through which the ray passes. This point simply determines the
ray’s direction.

Figure 8-7 illustrates the Ray object.

The following example uses the AddRay method with points obtained from the user:

Public Sub TestAddRay()

Dim varStart As Variant

Dim varEnd As Variant

Dim objEnt As AcadRay

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

varStart = .GetPoint(, vbCr & "Pick the start point: ")

varEnd = .GetPoint(varStart, vbCr & "Indicate a direction: ")

End With

'' draw the entity

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddRay(varStart, varEnd)

Else

Set objEnt = ThisDrawing.PaperSpace.AddRay(varStart, varEnd)

End If

objEnt.Update

End Sub

CHAPTER 8 ■ DRAWING OBJECTS 159

Figure 8-7. The Ray object

5793c08_final.qxd 8/22/05 2:18 AM Page 159

The Spline Object
The Spline object represents a nonuniform rational B-spline (NURBS) quadratic or cubic
curve. You use the AddSpline method to create a new Spline object:

Set SplineObject = Object.AddSpline(FitPoints, StartTangent, EndTangent)

Table 8-10 provides a brief description of each argument.

Table 8-10. AddSpline Method Parameters

Name Data Type Description

FitPoints Variant An array of doubles specifying a list of 3-D fit points in WCS
coordinates. It’s a simple array with a single dimension com-
posed of alternating X, Y, and Z values (i.e., p1x, p1y, p1z, p2x,
p2y, p2z, etc.). Because you must supply at least two points to
create a spline, this array must have a minimum of six elements.

StartTangent Variant A three-element array of doubles that determines the tangent
of the spline at its first fit point.

EndTangent Variant A three-element array of doubles that determines the tangent
of the spline at its last fit point.

Figure 8-8 illustrates the Spline object.

The following code sample demonstrates the AddSpline method:

Public Sub TestAddSpline()

Dim objEnt As AcadSpline

Dim dblBegin(0 To 2) As Double

Dim dblEnd(0 To 2) As Double

Dim dblPoints(14) As Double

'' set tangencies

dblBegin(0) = 1.5: dblBegin(1) = 0#: dblBegin(2) = 0

dblEnd(0) = 1.5: dblEnd(1) = 0#: dblEnd(2) = 0

CHAPTER 8 ■ DRAWING OBJECTS160

Figure 8-8. The Spline object

5793c08_final.qxd 8/22/05 2:18 AM Page 160

'' set the fit dblPoints

dblPoints(0) = 0: dblPoints(1) = 0: dblPoints(2) = 0

dblPoints(3) = 3: dblPoints(4) = 5: dblPoints(5) = 0

dblPoints(6) = 5: dblPoints(7) = 0: dblPoints(8) = 0

dblPoints(9) = 7: dblPoints(10) = -5: dblPoints(11) = 0

dblPoints(12) = 10: dblPoints(13) = 0: dblPoints(14) = 0

'' draw the entity

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddSpline(dblPoints, dblBegin, dblEnd)

Else

Set objEnt = ThisDrawing.PaperSpace.AddSpline(dblPoints, dblBegin, dblEnd)

End If

objEnt.Update

End Sub

The XLine Object
The XLine object represents a straight line that passes through two specified points and extends
to infinity in both directions. You use the AddXline method to create a new XLine object:

Set XLineObject = Object.AddXline(FirstPoint, SecondPoint)

Table 8-11 provides a brief description of each argument.

Table 8-11. AddXline Method Parameters

Name Data Type Description

FirstPoint Variant A three-element array of doubles specifying a point through
which the XLine object passes in WCS coordinates.

SecondPoint Variant A three-element array of doubles specifying a second point
through which the XLine passes. This point simply determines
the direction of the XLine.

Figure 8-9 illustrates the Xline object.

CHAPTER 8 ■ DRAWING OBJECTS 161

Figure 8-9. The Xline object

5793c08_final.qxd 8/22/05 2:18 AM Page 161

The following example illustrates how to implement the AddXline method:

Public Sub TestAddXline()

Dim varStart As Variant

Dim varEnd As Variant

Dim objEnt As AcadXline

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

varStart = .GetPoint(, vbCr & "Pick the start point: ")

varEnd = .GetPoint(varStart, vbCr & "Indicate an angle: ")

End With

'' draw the entity

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddXline(varStart, varEnd)

Else

Set objEnt = ThisDrawing.PaperSpace.AddXline(varStart, varEnd)

End If

objEnt.Update

End Sub

Other Objects of Interest
The following sections describe some other objects of interest, starting with the Hatch object.

The Hatch Object
The Hatch object represents an area filled with a pattern. The pattern may be associated with
the area boundary (i.e., if the boundary changes, the pattern also changes appropriately), or
the pattern may be independent of the area boundary. The read-only AssociativeHatch prop-
erty determines whether the pattern is associated with the Hatch object. You set this property
when you create the Hatch object, using the AddHatch method:

Set HatchObject = Object.AddHatch(PatternType, PatternName, Associativity)

Table 8-12 provides a brief description of each argument.

Table 8-12. AddHatch Method Parameters

Name Data Type Description

PatternType Long Specifies the type of pattern to use. It may take one of the
three possible values given in Table 8-13.

PatternName String Specifies which hatch pattern to use from the .pat file.

Associativity Boolean Determines whether the hatch is associative. Set this parame-
ter to True to create an associative hatch.

CHAPTER 8 ■ DRAWING OBJECTS162

5793c08_final.qxd 8/22/05 2:18 AM Page 162

Table 8-13 shows the three possible values for the PatternType parameter.

Table 8-13. PatternType Parameter Values

Constant Value Description

AcHatchPatternTypeUserDefined 0 Allows you to define a pattern of lines using the
current linetype

AcHatchPatternTypePredefined 1 Uses a pattern name from those defined in the
acad.pat file

AcHatchPatternTypeCustomDefined 2 Uses a pattern name from those defined in a
.pat file other than the acad.pat file

After you create the Hatch object, you must specify the boundary or loop using the
AppendOuterLoop method. You must close and add this loop before any inner loops. You create
any inner loops you may need one at a time using the AppendInnerLoop method.

■Caution The documentation for the AddHatch method warns that you must call AppendOuterLoop
immediately after you add the Hatch object; otherwise, AutoCAD will enter an unpredictable state.

The following code gets a center point and radius from the user, and then creates some
entities using these inputs. The new entities are then used to specify the inner and outer
boundaries for a new Hatch object. The resulting Hatch object is shown in Figure 8-10.

Public Sub TestAddHatch()

Dim varCenter As Variant

Dim dblRadius As Double

Dim dblAngle As Double

Dim objEnt As AcadHatch

Dim varOuter() As AcadEntity

Dim varInner() As AcadEntity

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

varCenter = .GetPoint(, vbCr & "Pick the center point: ")

dblRadius = .GetDistance(varCenter, vbCr & "Indicate the radius: ")

dblAngle = .AngleToReal("180", acDegrees)

End With

'' draw the entities With ThisDrawing.ModelSpace

'' draw the Outer loop (circle)

ReDim varOuter(0)

Set varOuter(0) = .AddCircle(varCenter, dblRadius)

CHAPTER 8 ■ DRAWING OBJECTS 163

5793c08_final.qxd 8/22/05 2:18 AM Page 163

'' draw then Inner loop (semicircle)

ReDim varInner(1)

Set varInner(0) = .AddArc(varCenter, dblRadius * 0.5, 0, dblAngle)

Set varInner(1) = .AddLine(varInner(0).StartPoint, _

varInner(0).EndPoint)

'' create the Hatch object

Set objEnt = .AddHatch(acHatchPatternTypePreDefined, "ANSI31", True)

'' append boundaries to the hatch

objEnt.AppendOuterLoop varOuter

objEnt.AppendInnerLoop varInner

'' evaluate and display hatched boundaries

objEnt.Evaluate

objEnt.Update

End With

End Sub

As you can see, the AppendOuterLoop and AppendInnerLoop methods take as a parameter
an array of objects forming a closed loop. The Evaluate method of the Hatch object evaluates
the lines or fill for the hatch pattern.

■Note In AutoCAD 2004, Hatch objects support a gradient fill display behavior. This in turn provides several
new properties, such as GradientAngle, GradientCentered, GradientColor1, and GradientColor2.
Consult the AutoCAD 2004 Customization Guide for more information about new Hatch object features.

CHAPTER 8 ■ DRAWING OBJECTS164

Figure 8-10. The Hatch object

5793c08_final.qxd 8/22/05 2:18 AM Page 164

The MText Object
The MText object represents a paragraph of alphanumeric characters that fits within a non-
printing bounding box. Each MText object is treated as a single object, regardless of the number
of lines of text it contains. The bounding box remains an integral part of the entity, even though
it isn’t plotted or printed. MText objects use word wrap to break long lines into paragraphs.

You can create an MText entity using the AddMText method:

Set MTextObject = Object.AddMText(InsertionPoint, Width, TextString)

Table 8-14 provides a brief description of each argument.

Table 8-14. AddMText Method Parameters

Name Data Type Description

InsertionPoint Variant A three-element array of doubles specifying the point at
which the MText bounding box will be inserted with respect
to the WCS

Width Double The width of the text block

TextString String The text displayed in the drawing space

Figure 8-11 illustrates the MText object.

The following example demonstrates the AddMText method:

Public Sub TestAddMText()

Dim varStart As Variant

Dim dblWidth As Double

Dim strText As String

Dim objEnt As AcadMText

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

varStart = .GetPoint(, vbCr & "Pick the start point: ")

dblWidth = .GetDistance(varStart, vbCr & "Indicate the width: ")

strText = .GetString(True, vbCr & "Enter the text: ")

End With

CHAPTER 8 ■ DRAWING OBJECTS 165

Figure 8-11. The MText object

5793c08_final.qxd 8/22/05 2:18 AM Page 165

'' add font and size formatting

strText = "\Fromand.shx;\H0.5;" & strText

'' create the mtext

Set objEnt = ThisDrawing.ModelSpace.AddMText(varStart, dblWidth, strText)

objEnt.Update

End Sub

Rich text format (RTF) control codes aren’t recognized in an MText entity. Text from other
programs with embedded formatting will lose that formatting when you import it into an
MText-style paragraph if you’re working with AutoCAD 2000, 2000i, or 2002. Formatting is well
preserved within AutoCAD 2004 and higher, however. You can paste Microsoft Word docu-
ments directly into AutoCAD 2002 and higher as MText and maintain their original formatting.

AutoCAD 2000, 2000i, and 2002 exhibit odd behavior with respect to exploding block
insertions that contain MText entities. In these versions, the nested MText entities are automat-
ically exploded into individual Text entities when you use the VBA Explode method. This
doesn’t occur in AutoCAD 2004 and higher, however, and MText is preserved after the Explode
method is executed. Text styles may be applied similarly to normal Text objects.

2005 and 2006 allows you to retrieve the field codes used to display special characters
within the text string. However, the special codes inserted using an AutoCAD command may
not be retrieved. A good rule of thumb is, if you can add a code programmatically, then you
can retrieve it as well.

The Point Object
Point objects can act as nodes to which you can snap objects. You can specify a full 3-D WCS
location for a point. You use the AddPoint method to create a new Point object, as follows:

Set PointObject = Object.AddPoint(PointPosition)

Table 8-15 provides a brief description of the PointPosition argument.

Table 8-15. AddPoint Method Parameter

Name Data Type Description

PointPosition Variant A three-element array of doubles specifying the point’s WCS
coordinates

Controlling How a Point Object Is Displayed

The appearance of Point objects is controlled by the system variables PDMODE and PDSIZE. The
PDMODE variable specifies the figure used to represent a point. This variable may take a value
from 0 to 4, as Figure 8-12 illustrates. A value of 1 means that nothing is displayed.

You can combine the PDMODE variable value with the number 32, 64, or 96, which represents
a surrounding shape. Figure 8-13 shows the possible combined symbols for a Point object.

The PDSIZE variable controls the size of the Point object figure. It has no effect if you set
PDMODE to 0 or 1. You may set PDSIZE to a positive, negative, or zero value:

CHAPTER 8 ■ DRAWING OBJECTS166

5793c08_final.qxd 8/22/05 2:18 AM Page 166

• A positive value specifies an
absolute size for the point in draw-
ing units.

• A negative value specifies the point
symbol size as a percentage of the
viewport area.

• A zero setting will generate the
points at five percent of the height
of the graphics area.

When you regenerate the drawing,
AutoCAD recalculates the size and symbol of all
points. So if you change PDMODE and PDSIZE, the appearance of existing points doesn’t change
until AutoCAD regenerates the drawing. You set the PDMODE and PDSIZE variables using the
SetVariable method, which I discuss in Appendix C.

The following example illustrates how to use the PDMODE and PDSIZE variables and the
AddPoint method:

Public Sub TestAddPoint()

Dim objEnt As AcadPoint

Dim varPick As Variant

Dim strType As String

Dim intType As Integer

Dim dblSize As Double

On Error Resume Next

With ThisDrawing.Utility

'' get the pdmode center type

.InitializeUserInput 1, "Dot None Cross X Tick"

strType = .GetKeyword(vbCr & "Center type [Dot/None/Cross/X/Tick]: ")

If Err Then Exit Sub

Select Case strType

Case "Dot": intType = 0

Case "None": intType = 1

Case "Cross": intType = 2

Case "X": intType = 3

Case "Tick": intType = 4

End Select

'' get the pdmode surrounding type

.InitializeUserInput 1, "Circle Square Both"

strType = .GetKeyword(vbCr & "Outer type [Circle/Square/Both]: ")

If Err Then Exit Sub

CHAPTER 8 ■ DRAWING OBJECTS 167

Figure 8-12.
The Point object

Figure 8-13. Various
point styles

5793c08_final.qxd 8/22/05 2:18 AM Page 167

Select Case strType

Case "Circle": intType = intType + 32

Case "Square": intType = intType + 64

Case "Both": intType = intType + 96

End Select

'' get the pdsize

.InitializeUserInput 1, ""

dblSize = .GetDistance(, vbCr & "Enter a point size: ")

If Err Then Exit Sub

'' set the system varibles

With ThisDrawing

.SetVariable "PDMODE", intType

.SetVariable "PDSIZE", dblSize

End With

'' now add points in a loop

Do

'' get user point for new vertex, use last pick as basepoint

varPick = .GetPoint(, vbCr & "Pick a point <exit>: ")

'' exit loop if no point picked

If Err Then Exit Do

'' add new vertex to pline at last offset

ThisDrawing.ModelSpace.AddPoint varPick

Loop

End With

End Sub

The Region Object
The Region object represents a bounded plane and may consist of Line, Arc, Circle,
Elliptical Arc, LightweightPolyline, and Spline objects. To create a Region object from
a set of drawing entities, use the AddRegion method as follows:

RegionArray = Object.AddRegion(ObjectsArray)

Table 8-16 provides a brief description of the ObjectsArray argument.

Table 8-16. AddRegion Method Parameter

Name Data Type Description

ObjectsArray Array of objects The objects used to make the region objects. These
objects must form a closed area and must be coplanar.

AddRegion returns an array of the Region objects created from the ObjectsArray parame-
ter, as shown in Figure 8-14.

CHAPTER 8 ■ DRAWING OBJECTS168

5793c08_final.qxd 8/22/05 2:18 AM Page 168

The ObjectsArray may contain drawing objects that form more than one enclosed plane.
For each enclosed plane, a Region object is formed and held in an array of Region objects. If
two or more curves share end points, the region created may be arbitrary.

The following example demonstrates how to build and manipulate regions. The objEnts
variable is an array of objects that forms two closed coplanar faces to be converted into Region
objects. One region is a full circle and the other is a closed semicircle. Once the AddRegion
method is executed, these two regions are held in the regions variable. Next, the code uses
the Boolean method (detailed in Chapter 9) to subtract the semicircle from the larger full cir-
cle. Finally, the region is moved to a new location, showing that it’s a single composite object.

Public Sub TestAddRegion()

Dim varCenter As Variant

Dim varMove As Variant

Dim dblRadius As Double

Dim dblAngle As Double

Dim varRegions As Variant

Dim objEnts() As AcadEntity

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

varCenter = .GetPoint(, vbCr & "Pick the center point: ")

dblRadius = .GetDistance(varCenter, vbCr & "Indicate the radius: ")

dblAngle = .AngleToReal("180", acDegrees)

End With

'' draw the entities

With ThisDrawing.ModelSpace

'' draw the outer region (circle)

ReDim objEnts(2)

Set objEnts(0) = .AddCircle(varCenter, dblRadius)

'' draw the inner region (semicircle)

Set objEnts(1) = .AddArc(varCenter, dblRadius * 0.5, 0, dblAngle)

Set objEnts(2) = .AddLine(objEnts(1).StartPoint, objEnts(1).EndPoint)

CHAPTER 8 ■ DRAWING OBJECTS 169

Figure 8-14. Region objects

5793c08_final.qxd 8/22/05 2:18 AM Page 169

'' create the regions

varRegions = .AddRegion(objEnts)

End With

'' get new position from user

varMove = ThisDrawing.Utility.GetPoint(varCenter, vbCr & _

"Pick a new location: ")

'' subtract the inner region from the outer

varRegions(1).Boolean acSubtraction, varRegions(0)

'' move the composite region to a new location

varRegions(1).Move varCenter, varMove

End Sub

You may also explode individual regions by using the Explode method. Be aware that invok-
ing the Region entity incurs a performance hit while AutoCAD loads the ACIS or ShapeManager
solid-modeling engine, depending upon what version of AutoCAD you’re working with.

The Solid Object
The Solid object represents a 2-D polygon, not to be confused with the 3-D solids described in
Chapter 9. You can create a polygon by specifying two points to define the first edge. The third
point defines an edge back to the start point, not to the second point as you might imagine.
Next, you have the option to define a fourth point in the same position as the third, which
results in a triangular shape. Alternatively, you can specify a different fourth point to define a
variety of shapes (e.g., a rectangle, a parallelogram, a trapezoid, a chevron, or a bow tie). Use
the AddSolid method as follows:

Set SolidObject = Object.AddSolid(Point1, Point2, Point3, Point4)

Table 8-17 provides a brief description of each argument.

Table 8-17. AddSolid Method Parameters

Name Data Type Description

Point1 Variant A three-element array of doubles defining the start of the polygon’s
first side in WCS coordinates.

Point2 Variant A three-element array of doubles defining the end of the polygon’s
first side in WCS coordinates.

Point3 Variant A three-element array of doubles defining the end of the polygon’s
second side in WCS coordinates. This point is opposite Point1 on
the second edge.

Point4 Variant A three-element array of doubles specifying the last point that
defines the polygon’s third and optionally fourth edges in WCS
coordinates. It may be the same as Point3, in which case only
three polygon edges are visible.

CHAPTER 8 ■ DRAWING OBJECTS170

5793c08_final.qxd 8/22/05 2:18 AM Page 170

If the FILLMODE system variable is set to 1, the shape will be shaded; otherwise, only the
boundary lines are visible. The following example uses AddSolid with input from the user:

Public Sub TestAddSolid()

Dim varP1 As Variant

Dim varP2 As Variant

Dim varP3 As Variant

Dim varP4 As Variant

Dim objEnt As AcadSolid

On Error Resume Next

'' ensure that solid fill is enabled

ThisDrawing.SetVariable "FILLMODE", 1

'' get input from user

With ThisDrawing.Utility

varP1 = .GetPoint(, vbCr & "Pick the start point: ")

varP2 = .GetPoint(varP1, vbCr & "Pick the second point: ")

varP3 = .GetPoint(varP1, vbCr & "Pick a point opposite the start: ")

varP4 = .GetPoint(varP3, vbCr & "Pick the last point: ")

End With

'' draw the entity

Set objEnt = ThisDrawing.ModelSpace.AddSolid(varP1, varP2, varP3, varP4)

objEnt.Update

End Sub

The Text Object
The Text object represents text on a drawing. It differs from the MText object in that it consists
of only one line of text. It also lacks the embedded formatting capabilities of MText. The
AddText method creates a new Text object:

Set TextObject = Object.AddText(TextString, InsertionPoint, Height)

Table 8-18 provides a brief description of each argument.

Table 8-18. AddText Method Parameters

Name Data Type Description

TextString String The text to be displayed in the drawing

InsertionPoint Variant A three-element array of doubles representing the text’s
position with respect to the WCS

Height Double A positive number indicating the text’s height

CHAPTER 8 ■ DRAWING OBJECTS 171

5793c08_final.qxd 8/22/05 2:18 AM Page 171

The following code example shows the AddText method in practice:

Public Sub TestAddText()

Dim varStart As Variant

Dim dblHeight As Double

Dim strText As String

Dim objEnt As AcadText

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

varStart = .GetPoint(, vbCr & "Pick the start point: ")

dblHeight = .GetDistance(varStart, vbCr & "Indicate the height: ")

strText = .GetString(True, vbCr & "Enter the text: ")

End With

'' create the text

If ThisDrawing.ActiveSpace = acModelSpace Then

Set objEnt = ThisDrawing.ModelSpace.AddText(strText, varStart, dblHeight)

Else

Set objEnt = ThisDrawing.PaperSpace.AddText(strText, varStart, dblHeight)

End If

objEnt.Update

End Sub

Summary
In this chapter you learned how to create a number of different 2-D and 3-D drawing objects.
In the next chapter you’ll learn how to create a variety of 3-D solid objects.

CHAPTER 8 ■ DRAWING OBJECTS172

5793c08_final.qxd 8/22/05 2:18 AM Page 172

Creating 3-D Objects

In Chapter 8 you learned how to create simple 2-D drawing entities, such as circles, lines, and
text. AutoCAD also provides you with a number of methods to programmatically create com-
plex 3-D solid entities. Represented by the 3DSolid object, each solid entity and the creation
of this object in its various disguises will form the basis of this chapter.

This chapter covers the following topics:

• 3-D primitives (the box, cone, cylinder, sphere, torus, and wedge objects)

• Elliptical cones and cylinders

• Extruded and revolved solids

• Manipulation of solids (slicing, checking interference, and spatial properties)

Understanding the 3DSolid Object
The 3DSolid object represents a solid with a free-form surface. This means the solid may take
virtually any shape. You may add a 3DSolid object to a drawing or block by using one of the
AddXXX methods I describe in this chapter.

Although you can do amazing things with the ActiveX solids and surfacing features in
AutoCAD, they don’t provide all the functionality that AutoCAD can harness. Some examples
of this functionality include SOLIDEDIT operations such as Shell, Imprint, Copy Faces, Taper
Faces, Clean, and Check.

This limitation is because of the manner in which solids and surfaces are constructed and
managed using an external modeling kernel. Up until AutoCAD 2002, the solid modeling kernel
was ACIS by Spatial (http://www.spatial.com). With AutoCAD 2004 and later, however, Autodesk
has parted ways with ACIS and uses its own modeling technology, ShapeManager, which was
adapted from ACIS. Developing applications that work with ACIS objects internally requires a
separate developer’s license with Spatial. Autodesk is developing an API for ShapeManager, but
so far it is built on ObjectARX only.

Methods are exposed by the ModelSpace, PaperSpace, and Block objects to create each of
the 3-D solid objects. When I present the syntax for each method, I use the word Object to
refer to any of these objects. For example:

Set 3DSolidObject = Object.AddBox(BoxCenter, Length, Width, Height)

Because you may combine solids to form sophisticated geometric shapes, they have
no characteristic start or end points. Instead, you specify solids through a control point, the

173

C H A P T E R 9

■ ■ ■

5793c09_final.qxd 8/22/05 2:16 AM Page 173

Centroid, that sits at the center of a bounding box. No matter how complex the solid becomes,
the Centroid point can quickly be calculated. Many of the examples in this chapter demonstrate
how to convert user input for each primitive, such as the corner of a box, into the Centroid point
specification.

In the examples that follow, you’ll change the angle at which the drawing is displayed so
that you can view the newly created objects unambiguously. You achieve this by changing the
Direction property of the active ViewPort object. You use the following function to consolidate
this operation:

Sub SetViewpoint(Optional Zoom As Boolean = False, _

Optional X As Double = 1, _

Optional Y As Double = -2, _

Optional Z As Double = 1)

Dim dblDirection(2) As Double

dblDirection(0) = X: dblDirection(1) = Y: dblDirection(2) = Z

With ThisDrawing

.Preferences.ContourLinesPerSurface = 10 ' set surface countours

.ActiveViewport.Direction = dblDirection ' assign new direction

.ActiveViewport = .ActiveViewport ' force a viewport update

If Zoom Then .Application.ZoomAll ' zoomall if requested

End With

End Sub

Notice that the ContourLinesPerSurface property of the drawing Preferences object is set
to 10. This setting controls the number of surface lines AutoCAD shows on each surface. You
can set a higher number with a resulting increase in surface lines.

Creating Simple Solid Objects
This section demonstrates how to create the various 3-D solid objects.

The Box
A box is a 3DSolid object with edges parallel to the axes of the WCS. You create it using the
AddBox method:

Set 3DSolidObject = Object.AddBox(BoxCenter, Length, Width, Height)

Table 9-1 presents the AddBox method’s parameters.

CHAPTER 9 ■ CREATING 3-D OBJECTS174

5793c09_final.qxd 8/22/05 2:16 AM Page 174

Table 9-1. The AddBox Method’s Parameters

Name Data Type Description

BoxCenter Variant A three-element array of doubles specifying the center of the box
in WCS coordinates

Length Double A positive value representing the length of the box

Width Double A positive value representing the width of the box

Height Double A positive value representing the height of the box

Figure 9-1 shows an example of a box in AutoCAD.

The following code creates a box based on user input:

Public Sub TestAddBox()

Dim varPick As Variant

Dim dblLength As Double

Dim dblWidth As Double

Dim dblHeight As Double

Dim dblCenter(2) As Double

Dim objEnt As Acad3DSolid

'' set the default viewpoint

SetViewpoint Zoom:=True

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

varPick = .GetPoint(, vbCr & "Pick a corner point: ")

.InitializeUserInput 1 + 2 + 4, ""

dblLength = .GetDistance(varPick, vbCr & "Enter the X length: ")

.InitializeUserInput 1 + 2 + 4, ""

dblWidth = .GetDistance(varPick, vbCr & "Enter the Y width: ")

.InitializeUserInput 1 + 2 + 4, ""

dblHeight = .GetDistance(varPick, vbCr & "Enter the Z height: ")

End With

CHAPTER 9 ■ CREATING 3-D OBJECTS 175

Figure 9-1. A box

5793c09_final.qxd 8/22/05 2:16 AM Page 175

'' calculate center point from input

dblCenter(0) = varPick(0) + (dblLength / 2)

dblCenter(1) = varPick(1) + (dblWidth / 2)

dblCenter(2) = varPick(2) + (dblHeight / 2)

'' draw the entity

Set objEnt = ThisDrawing.ModelSpace.AddBox(dblCenter, dblLength, _

dblWidth, dblHeight)

objEnt.Update

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

The Cone
You create a 3DSolid object in the form of a cone using the AddCone method. The base of the
cone is parallel with the XY plane of the WCS.

Set 3DSolidObject = Object.AddCone(ConeCenter, BaseRadius, Height)

Table 9-2 presents the AddCone method’s parameters, and Figure 9-2 shows an example of
a cone in AutoCAD.

Table 9-2. The AddCone Method’s Parameters

Name Data Type Description

ConeCenter Variant A three-element array of doubles specifying the cone’s center in
WCS coordinates

BaseRadius Double A positive value representing the radius of the cone’s circular base

Height Double A positive value representing the cone’s height

CHAPTER 9 ■ CREATING 3-D OBJECTS176

Figure 9-2. A cone

5793c09_final.qxd 8/22/05 2:16 AM Page 176

This example creates a cone based on user input:

Public Sub TestAddCone()

Dim varPick As Variant

Dim dblRadius As Double

Dim dblHeight As Double

Dim dblCenter(2) As Double

Dim objEnt As Acad3DSolid

'' set the default viewpoint

SetViewpoint

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

varPick = .GetPoint(, vbCr & "Pick the base center point: ")

.InitializeUserInput 1 + 2 + 4, ""

dblRadius = .GetDistance(varPick, vbCr & "Enter the radius: ")

.InitializeUserInput 1 + 2 + 4, ""

dblHeight = .GetDistance(varPick, vbCr & "Enter the Z height: ")

End With

'' calculate center point from input

dblCenter(0) = varPick(0)

dblCenter(1) = varPick(1)

dblCenter(2) = varPick(2) + (dblHeight / 2)

'' draw the entity

Set objEnt = ThisDrawing.ModelSpace.AddCone(dblCenter, dblRadius, _

dblHeight)

objEnt.Update

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

The Cylinder
You add a cylinder to a drawing using the AddCylinder method. The base of the cylinder lies in
a plane parallel to the WCS XY plane.

Set 3DSolidObject = Object.AddCylinder(CylinderCenter, Radius, Height)

Table 9-3 presents the AddCylinder method’s parameters, and Figure 9-3 shows an exam-
ple of a cylinder in AutoCAD.

CHAPTER 9 ■ CREATING 3-D OBJECTS 177

5793c09_final.qxd 8/22/05 2:16 AM Page 177

Table 9-3. The AddCylinder Method’s Parameters

Name Data Type Description

CylinderCenter Variant A three-element array of doubles specifying the cylinder’s
center in WCS coordinates

Radius Double A positive value representing the radius of the cylinder’s base

Height Double A positive value representing the cylinder’s height

The following example creates a cylinder based on user input:

Public Sub TestAddCylinder()

Dim varPick As Variant

Dim dblRadius As Double

Dim dblHeight As Double

Dim dblCenter(2) As Double

Dim objEnt As Acad3DSolid

'' set the default viewpoint

SetViewpoint

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

varPick = .GetPoint(, vbCr & "Pick the base center point: ")

.InitializeUserInput 1 + 2 + 4, ""

dblRadius = .GetDistance(varPick, vbCr & "Enter the radius: ")

.InitializeUserInput 1 + 2 + 4, ""

dblHeight = .GetDistance(varPick, vbCr & "Enter the Z height: ")

End With

'' calculate center point from input

dblCenter(0) = varPick(0)

dblCenter(1) = varPick(1)

dblCenter(2) = varPick(2) + (dblHeight / 2)

CHAPTER 9 ■ CREATING 3-D OBJECTS178

Figure 9-3. A cylinder

5793c09_final.qxd 8/22/05 2:16 AM Page 178

'' draw the entity

Set objEnt = ThisDrawing.ModelSpace.AddCylinder(dblCenter, dblRadius, dblHeight)

objEnt.Update

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

The Sphere
You use the AddSphere method to create a 3DSolid object representing a sphere and to add it to
a drawing.

Set 3DSolidObject = Object.AddSphere(SphereCenter, Radius)

Table 9-4 presents the AddSphere method’s parameters, and Figure 9-4 shows an example
of a sphere in AutoCAD.

Table 9-4. The AddSphere Method’s Parameters

Name Data Type Description

SphereCenter Variant A three-element array of doubles specifying the sphere’s
center in WCS coordinates

Radius Double A positive value representing the sphere’s radius

This example creates a sphere based on user input:

Public Sub TestAddSphere()

Dim varPick As Variant

Dim dblRadius As Double

Dim objEnt As Acad3DSolid

'' set the default viewpoint

SetViewpoint

CHAPTER 9 ■ CREATING 3-D OBJECTS 179

Figure 9-4. A sphere

5793c09_final.qxd 8/22/05 2:16 AM Page 179

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

varPick = .GetPoint(, vbCr & "Pick the center point: ")

.InitializeUserInput 1 + 2 + 4, ""

dblRadius = .GetDistance(varPick, vbCr & "Enter the radius: ")

End With

'' draw the entity

Set objEnt = ThisDrawing.ModelSpace.AddSphere(varPick, dblRadius)

objEnt.Update

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

The Torus
Use the AddTorus method to create a torus and add it at a given point in a drawing, such that
the ring lays flat in the XY plane.

Set 3DSolidObject = Object.AddTorus(TorusCenter, TorusRadius, TubeRadius)

Table 9-5 presents the AddTorus method’s parameters, and Figure 9-5 shows an example of
a torus in AutoCAD.

Table 9-5. The AddTorus Method’s Parameters

Name Data Type Description

TorusCenter Variant A three-element array of doubles specifying the point about
which the torus is centered in WCS coordinates

TorusRadius Double A positive value representing the distance from the torus’s
center to the tube’s center

TubeRadius Double A positive value representing the tube’s radius

CHAPTER 9 ■ CREATING 3-D OBJECTS180

Figure 9-5. A torus

5793c09_final.qxd 8/22/05 2:16 AM Page 180

The following example creates a torus based on user input:

Public Sub TestAddTorus()

Dim pntPick As Variant

Dim pntRadius As Variant

Dim dblRadius As Double

Dim dblTube As Double

Dim objEnt As Acad3DSolid

Dim intI As Integer

'' set the default viewpoint

SetViewpoint

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

pntPick = .GetPoint(, vbCr & "Pick the center point: ")

.InitializeUserInput 1

pntRadius = .GetPoint(pntPick, vbCr & "Pick a radius point: ")

.InitializeUserInput 1 + 2 + 4, ""

dblTube = .GetDistance(pntRadius, vbCr & "Enter the tube radius: ")

End With

'' calculate radius from points

For intI = 0 To 2

dblRadius = dblRadius + (pntPick(intI) - pntRadius(intI)) ^ 2

Next

dblRadius = Sqr(dblRadius)

'' draw the entity

Set objEnt = ThisDrawing.ModelSpace.AddTorus(pntPick, dblRadius, dblTube)

objEnt.Update

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

The Wedge
The AddWedge method creates a wedge with edges parallel to the WCS axes.

Set 3DSolidObject = Object.AddWedge(FaceCenter, Length, Width, Height)

Table 9-6 presents the AddWedge method’s parameters, and Figure 9-6 shows an example of
a wedge in AutoCAD.

CHAPTER 9 ■ CREATING 3-D OBJECTS 181

5793c09_final.qxd 8/22/05 2:16 AM Page 181

Table 9-6. The AddWedge Method’s Parameters

Name Data Type Description

FaceCenter4 Variant A three-element array of doubles specifying the bounding
box’s center in WCS coordinates. This corresponds to the
sloping face’s center as well.

Length Double A positive value representing the wedge base’s length (X-axis).

Width Double A positive value representing the wedge base’s width (Y-axis).

Height Double A positive value representing the wedge base’s height (Z-axis).

This example creates a wedge based on user input:

Public Sub TestAddWedge()

Dim varPick As Variant

Dim dblLength As Double

Dim dblWidth As Double

Dim dblHeight As Double

Dim dblCenter(2) As Double

Dim objEnt As Acad3DSolid

'' set the default viewpoint

SetViewpoint

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

varPick = .GetPoint(, vbCr & "Pick a base corner point: ")

.InitializeUserInput 1 + 2 + 4, ""

dblLength = .GetDistance(varPick, vbCr & "Enter the base X length: ")

.InitializeUserInput 1 + 2 + 4, ""

dblWidth = .GetDistance(varPick, vbCr & "Enter the base Y width: ")

.InitializeUserInput 1 + 2 + 4, ""

dblHeight = .GetDistance(varPick, vbCr & "Enter the base Z height: ")

End With

CHAPTER 9 ■ CREATING 3-D OBJECTS182

Figure 9-6. A wedge

5793c09_final.qxd 8/22/05 2:16 AM Page 182

'' calculate center point from input

dblCenter(0) = varPick(0) + (dblLength / 2)

dblCenter(1) = varPick(1) + (dblWidth / 2)

dblCenter(2) = varPick(2) + (dblHeight / 2)

'' draw the entity

Set objEnt = ThisDrawing.ModelSpace.AddWedge(dblCenter, dblLength, _

dblWidth, dblHeight)

objEnt.Update

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

Creating Elliptical 3-D Objects
AutoCAD provides two methods for creating elliptical solids. The first creates an elliptical
cone, and the second creates an elliptical cylinder.

The Elliptical Cone
The AddEllipticalCone method creates a 3DSolid object in the form of an elliptical cone
whose base lies flat on the WCS XY plane. The major axis of the ellipse may lie in either the X
direction or the Y direction.

Set 3DSolidObject = Object.AddEllipticalCone(ConeCenter, XLength, YLength, Height)

Table 9-7 presents the AddElliptical method’s parameters, and Figure 9-7 shows an
example of an elliptical cone in AutoCAD.

Table 9-7. The AddEllipticalCone Method’s Parameters

Name Data Type Description

ConeCenter Variant A three-element array of doubles specifying the center of the
bounding box in WCS coordinates

XLength Double A positive value representing the length of the X-axis of the
cone’s elliptical base

YLength Double A positive value representing the length of the Y-axis of the
cone’s elliptical base

Height Double A positive value representing the cone’s height

CHAPTER 9 ■ CREATING 3-D OBJECTS 183

5793c09_final.qxd 8/22/05 2:16 AM Page 183

The following example creates an elliptical cone based on user input:

Public Sub TestAddEllipticalCone()

Dim varPick As Variant

Dim dblXAxis As Double

Dim dblYAxis As Double

Dim dblHeight As Double

Dim dblCenter(2) As Double

Dim objEnt As Acad3DSolid

'' set the default viewpoint

SetViewpoint

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

varPick = .GetPoint(, vbCr & "Pick a base center point: ")

.InitializeUserInput 1 + 2 + 4, ""

dblXAxis = .GetDistance(varPick, vbCr & "Enter the X eccentricity: ")

.InitializeUserInput 1 + 2 + 4, ""

dblYAxis = .GetDistance(varPick, vbCr & "Enter the Y eccentricity: ")

.InitializeUserInput 1 + 2 + 4, ""

dblHeight = .GetDistance(varPick, vbCr & "Enter the cone Z height: ")

End With

'' calculate center point from input

dblCenter(0) = varPick(0)

dblCenter(1) = varPick(1)

dblCenter(2) = varPick(2) + (dblHeight / 2)

CHAPTER 9 ■ CREATING 3-D OBJECTS184

Figure 9-7. An elliptical cone

5793c09_final.qxd 8/22/05 2:16 AM Page 184

'' draw the entity

Set objEnt = ThisDrawing.ModelSpace.AddEllipticalCone(dblCenter, _

dblXAxis, dblYAxis, dblHeight)

objEnt.Update

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

The Elliptical Cylinder
Use the AddEllipticalCylinder method to add a 3DSolid elliptical cylinder whose base lies
parallel to the WCS XY plane. The major axis of the elliptical base lies either in the X direction
or in the Y direction.

Set 3DSolidObject = Object.AddEllipticalCylinder _

(CylinderCenter, XLength, YLength, Height)

Table 9-8 presents the AddEllipticalCylinder method’s parameters, and Figure 9-8 shows
an example of an elliptical cylinder in AutoCAD.

Table 9-8. The AddEllipticalCylinder Method’s Parameters

Name Data Type Description

CylinderCenter Variant A three-element array of doubles specifying the center of
the bounding box in WCS coordinates

XLength Double A positive value representing the length of the X-axis of
the cylinder’s elliptical base

YLength Double A positive value representing the length of the Y-axis of
the cylinder’s elliptical base

Height Double A positive value representing the cylinder’s height

CHAPTER 9 ■ CREATING 3-D OBJECTS 185

5793c09_final.qxd 8/22/05 2:16 AM Page 185

This example creates an elliptical cylinder based on user input:

Public Sub TestAddEllipticalCylinder()

Dim varPick As Variant

Dim dblXAxis As Double

Dim dblYAxis As Double

Dim dblHeight As Double

Dim dblCenter(2) As Double

Dim objEnt As Acad3DSolid

'' set the default viewpoint

SetViewpoint

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

varPick = .GetPoint(, vbCr & "Pick a base center point: ")

.InitializeUserInput 1 + 2 + 4, ""

dblXAxis = .GetDistance(varPick, vbCr & "Enter the X eccentricity: ")

.InitializeUserInput 1 + 2 + 4, ""

dblYAxis = .GetDistance(varPick, vbCr & "Enter the Y eccentricity: ")

.InitializeUserInput 1 + 2 + 4, ""

dblHeight = .GetDistance(varPick, vbCr & _

"Enter the cylinder Z height: ")

End With

'' calculate center point from input

dblCenter(0) = varPick(0)

dblCenter(1) = varPick(1)

dblCenter(2) = varPick(2) + (dblHeight / 2)

'' draw the entity

Set objEnt = ThisDrawing.ModelSpace.AddEllipticalCylinder(dblCenter, _

dblXAxis, dblYAxis, dblHeight)

objEnt.Update

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

Creating Extruded and Revolved Objects
You create extruded and revolved solids by taking planar Region objects and adding thickness
to them, either by extruding them along the Z-axis or by revolving them around an arbitrary
axis. The newly created entities are 3DSolid objects.

CHAPTER 9 ■ CREATING 3-D OBJECTS186

5793c09_final.qxd 8/22/05 2:16 AM Page 186

The Extruded Solid
You create this solid by extruding a planar region along its Z-axis. You may extrude the region
in a positive or negative direction, and you may taper or expand it in the extrusion direction.

Set 3DSolidObject = Object.AddExtrudedSolid(Region, Height, TaperAngle)

Table 9-9 presents the AddExtrudedSolid method’s parameters.

Table 9-9. The AddExtrudedSolid Method’s Parameters

Name Data Type Description

Region Region object A closed planar region to be extruded.

Height Double A nonzero value representing the extrusion’s height. If this value
is positive, the region is extruded in the OCS Z-direction. If this
value is negative, the region is extruded in the –Z direction.

TaperAngle Double The angle of tapering or expansion of the extrusion given in
radians. It must lie between –90 degrees and +90 degrees. Posi-
tive values taper in from the base, and negative values expand.

In Figure 9-9 you can see that the Height parameter is positive because the region is
extruded in the +Z direction, and the TaperAngle parameter is negative because the object
becomes wider as it’s extruded.

AutoCAD won’t create the extruded object if it intersects itself. In this event, AutoCAD will
raise a run-time error. To avoid this possibility, you should be careful to choose the Height and
TaperAngle parameters so that this doesn’t occur.

CHAPTER 9 ■ CREATING 3-D OBJECTS 187

Figure 9-9. An extruded solid

5793c09_final.qxd 8/22/05 2:16 AM Page 187

The following example creates a circular region and extrudes it into a solid based on user
input:

Public Sub TestAddExtrudedSolid()

Dim varCenter As Variant

Dim dblRadius As Double

Dim dblHeight As Double

Dim dblTaper As Double

Dim strInput As String

Dim varRegions As Variant

Dim objEnts() As AcadEntity

Dim objEnt As Acad3DSolid

Dim varItem As Variant

On Error GoTo Done

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

varCenter = .GetPoint(, vbCr & "Pick the center point: ")

.InitializeUserInput 1 + 2 + 4

dblRadius = .GetDistance(varCenter, vbCr & "Indicate the radius: ")

.InitializeUserInput 1 + 2 + 4

dblHeight = .GetDistance(varCenter, vbCr & _

"Enter the extrusion height: ")

'' get the taper type

.InitializeUserInput 1, "Expand Contract None"

strInput = .GetKeyword(vbCr & _

"Extrusion taper [Expand/Contract/None]: ")

'' if none, taper = 0

If strInput = "None" Then

dblTaper = 0

'' otherwise, get the taper angle

Else

.InitializeUserInput 1 + 2 + 4

dblTaper = .GetReal("Enter the taper angle (in degrees): ")

dblTaper = .AngleToReal(CStr(dblTaper), acDegrees)

'' if expanding, negate the angle

If strInput = "Expand" Then dblTaper = -dblTaper

End If

End With

CHAPTER 9 ■ CREATING 3-D OBJECTS188

5793c09_final.qxd 8/22/05 2:16 AM Page 188

'' draw the entities

With ThisDrawing.ModelSpace

'' draw the outer region (circle)

ReDim objEnts(0)

Set objEnts(0) = .AddCircle(varCenter, dblRadius)

'' create the region

varRegions = .AddRegion(objEnts)

'' extrude the solid

Set objEnt = .AddExtrudedSolid(varRegions(0), dblHeight, dblTaper)

'' update the extruded solid

objEnt.Update

End With

Done:

If Err Then MsgBox Err.Description

'' delete the temporary geometry

For Each varItem In objEnts

varItem.Delete

Next

For Each varItem In varRegions

varItem.Delete

Next

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

The Extruded Solid Along a Path
You use the AddExtrudedSolidAlongPath method to create a new 3DSolid object that repre-
sents the extrusion of a closed planar region along a given path. This path may take the form
of a polyline, spline, circle, ellipse, or arc. The new solid is extruded from the current location
of the region using the translation of the path to the region’s Centroid.

Set 3DSolidObject = Object.AddExtrudedSolidAlongPath(Region, Path)

Table 9-10 presents the AddExtrudedSolidAlongPath method’s parameters, and Figure 9-10
shows an example of an extruded solid along a path.

Table 9-10. The AddExtrudedSolidAlongPath Method’s Parameters

Name Data Type Description

Region Region object A closed planar region to be extruded.

Path Polyline, Spline, Circle, The path along which the plane region is to be
Ellipse, or Arc object extruded. This path can’t lie in the same plane as the

region to be extruded.

CHAPTER 9 ■ CREATING 3-D OBJECTS 189

5793c09_final.qxd 8/22/05 2:16 AM Page 189

As with the extruded solid, the newly created object may not intersect itself. Therefore,
you should avoid self-intersecting paths or those with sections of high curvature.

The following example extrudes a circular region into a solid along the path of a spline
specified by the user:

Public Sub TestAddExtrudedSolidAlongPath()

Dim objPath As AcadSpline

Dim varPick As Variant

Dim intI As Integer

Dim dblCenter(2) As Double

Dim dblRadius As Double

Dim objCircle As AcadCircle

Dim objEnts() As AcadEntity

Dim objShape As Acad3DSolid

Dim varRegions As Variant

Dim varItem As Variant

'' set default viewpoint

SetViewpoint

'' pick path and calculate shape points

With ThisDrawing.Utility

'' pick the path

On Error Resume Next

.GetEntity objPath, varPick, "Pick a Spline for the path"

If Err Then

MsgBox "You did not pick a spline"

Exit Sub

End If

objPath.Color = acGreen

CHAPTER 9 ■ CREATING 3-D OBJECTS190

Figure 9-10. An extruded solid along a path

5793c09_final.qxd 8/22/05 2:16 AM Page 190

For intI = 0 To 2

dblCenter(intI) = objPath.FitPoints(intI)

Next

.InitializeUserInput 1 + 2 + 4

dblRadius = .GetDistance(dblCenter, vbCr & "Indicate the radius: ")

End With

'' draw the circular region, then extrude along path

With ThisDrawing.ModelSpace

'' draw the outer region (circle)

ReDim objEnts(0)

Set objCircle = .AddCircle(dblCenter, dblRadius)

objCircle.Normal = objPath.StartTangent

Set objEnts(0) = objCircle

'' create the region

varRegions = .AddRegion(objEnts)

Set objShape = .AddExtrudedSolidAlongPath(varRegions(0), objPath)

objShape.Color = acRed

End With

'' delete the temporary geometry

For Each varItem In objEnts: varItem.Delete: Next

For Each varItem In varRegions: varItem.Delete: Next

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

The Revolved Solid
You add a 3DSolid object representing a revolved solid, which you create by sweeping a planar
region around an axis, to a drawing by using the AddRevolvedSolid method.

Set 3DSolidObject = Object.AddRevolvedSolid(Region, AxisPoint, _

AxisDirection, Angle)

Table 9-11 presents the AddRevolvedSolid method’s parameters, and Figure 9-11 shows an
example of a revolved solid in AutoCAD.

CHAPTER 9 ■ CREATING 3-D OBJECTS 191

5793c09_final.qxd 8/22/05 2:16 AM Page 191

Table 9-11. The AddRevolvedSolid Method’s Parameters

Name Data Type Description

Region Region object A closed planar region to be revolved.

AxisPoint Variant A three-element array of doubles specifying the center of
the axis of rotation in WCS coordinates.

AxisDirection Variant A three-element array of doubles specifying a directional
vector for the axis of rotation.

Angle Double The angle through which the region is swept, measured in
radians. You determine the positive direction of rotation by
applying the arbitrary axis algorithm to AxisDirection.

The following example lets the user choose a closed region, which is then revolved into
a solid based on user input:

Public Sub TestAddRevolvedSolid()

Dim objShape As AcadLWPolyline

Dim varPick As Variant

Dim objEnt As AcadEntity

Dim varPnt1 As Variant

Dim dblOrigin(2) As Double

Dim varVec As Variant

Dim dblAngle As Double

Dim objEnts() As AcadEntity

Dim varRegions As Variant

Dim varItem As Variant

'' set default viewpoint

SetViewpoint

'' draw the shape and get rotation from user

With ThisDrawing.Utility

CHAPTER 9 ■ CREATING 3-D OBJECTS192

Figure 9-11. A revolved solid

5793c09_final.qxd 8/22/05 2:16 AM Page 192

'' pick a shape

On Error Resume Next

.GetEntity objShape, varPick, "pick a polyline shape"

If Err Then

MsgBox "You did not pick the correct type of shape"

Exit Sub

End If

On Error GoTo Done

objShape.Closed = True

'' add pline to region input array

ReDim objEnts(0)

Set objEnts(0) = objShape

'' get the axis points

.InitializeUserInput 1

varPnt1 = .GetPoint(, vbLf & "Pick an origin of revolution: ")

.InitializeUserInput 1

varVec = .GetPoint(dblOrigin, vbLf & _

"Indicate the axis of revolution: ")

'' get the angle to revolve

.InitializeUserInput 1

dblAngle = .GetAngle(, vbLf & "Angle to revolve: ")

End With

'' make the region, then revolve it into a solid

With ThisDrawing.ModelSpace

'' make region from closed pline

varRegions = .AddRegion(objEnts)

'' revolve solid about axis

Set objEnt = .AddRevolvedSolid(varRegions(0), varPnt1, varVec, _

dblAngle)

objEnt.Color = acRed

End With

Done:

If Err Then MsgBox Err.Description

'' delete the temporary geometry

For Each varItem In objEnts: varItem.Delete: Next

If Not IsEmpty(varRegions) Then

For Each varItem In varRegions: varItem.Delete: Next

End If

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

CHAPTER 9 ■ CREATING 3-D OBJECTS 193

5793c09_final.qxd 8/22/05 2:16 AM Page 193

Editing Solids
You may combine and edit individual 3DSolid objects to form new, more complex 3DSolid
objects. You may perform operations to combine solids, subtract one solid from another, and
find the common intersection between solids. You can use other methods to create sections
and slices of individual solids. In each of this section’s examples, you call the ORBIT command
so that the user can view the resultant solids from whatever angle desired.

Boolean Operations
You perform the primary editing operations using the Boolean method (see Table 9-12 for
parameter details). This method, whose name is derived from its algebraic nature, alters the
solid according to the Operation parameter.

3DSolidObject.Boolean(Operation, SolidObject)

Table 9-12. The Boolean Method’s Parameters

Name Data Type Description

Operation Long The type of operation that takes place. It must be one of
the AcBooleanType constants: acUnion, acIntersection, or
acSubtraction.

SolidObject 3DSolid object The object the Boolean operation is performed against.

This method is destructive to the solid passed in the SolidObject parameter—that is, the
3DSolid object passed to this method is destroyed during the combination with the calling
object.

■Note If you specify the Intersection operation and the object passed in the SolidObject parameter
doesn’t spatially intersect the calling object, both 3DSolid objects are destroyed.

The following example combines selected solids using the Boolean operation specified.
Try it on some of the solids you created in the preceding examples.

Public Sub TestBoolean()

Dim objFirst As Acad3DSolid

Dim objSecond As Acad3DSolid

Dim varPick As Variant

Dim strOp As String

On Error Resume Next

With ThisDrawing.Utility

CHAPTER 9 ■ CREATING 3-D OBJECTS194

5793c09_final.qxd 8/22/05 2:16 AM Page 194

'' get first solid from user

.GetEntity objFirst, varPick, vbCr & "Pick a solid to edit: "

If Err Then

MsgBox "That is not an Acad3DSolid"

Exit Sub

End If

'' highlight entity

objFirst.Highlight True

objFirst.Update

'' get second solid from user

.GetEntity objSecond, varPick, vbCr & "Pick a solid to combine: "

If Err Then

MsgBox "That is not an Acad3DSolid"

Exit Sub

End If

'' exit if they're the same

If objFirst Is objSecond Then

MsgBox "You must pick 2 different solids"

Exit Sub

End If

'' highlight entity

objSecond.Highlight True

objSecond.Update

'' get boolean operation

.InitializeUserInput 1, "Intersect Subtract Union"

strOp = .GetKeyword(vbCr & _

"Boolean operation [Intersect/Subtract/Union]: ")

'' combine the solids

Select Case strOp

Case "Intersect": objFirst.Boolean acIntersection, objSecond

Case "Subtract": objFirst.Boolean acSubtraction, objSecond

Case "Union": objFirst.Boolean acUnion, objSecond

End Select

'' highlight entity

objFirst.Highlight False

objFirst.Update

End With

'' shade the view, and start the interactive orbit command

ThisDrawing.SendCommand "_shade" & vbCr & "_orbit" & vbCr

End Sub

CHAPTER 9 ■ CREATING 3-D OBJECTS 195

5793c09_final.qxd 8/22/05 2:16 AM Page 195

Interference Operation
You can use another, nondestructive operation to deal with the common space shared by 3DSolid
objects. The CheckInterference method (see Table 9-13 for parameter details) calculates the com-
mon space between the calling solid and a second object passed to it. It optionally creates and
returns a new 3DSolid object.

[Set 3DSolidObject =] 3DSolidObject.CheckInterference(SolidObject, _

CreateInterferenceSolid)

Table 9-13. The CheckInterference Method’s Parameters

Name Data Type Description

SolidObject 3DSolid object The object that is checked against.

CreateInterferenceSolid Boolean Specifies whether a solid representing the inter-
ference of the two solids should be created. If it
is set to True, the interference solid is created.

The following example combines selected solids using this method. Compare its results to
the Boolean operators used in the previous example.

Public Sub TestInterference()

Dim objFirst As Acad3DSolid

Dim objSecond As Acad3DSolid

Dim objNew As Acad3DSolid

Dim varPick As Variant

Dim varNewPnt As Variant

On Error Resume Next

'' set default viewpoint

SetViewpoint

With ThisDrawing.Utility

'' get first solid from user

.GetEntity objFirst, varPick, vbCr & "Pick the first solid: "

If Err Then

MsgBox "That is not an Acad3DSolid"

Exit Sub

End If

'' highlight entity

objFirst.Highlight True

objFirst.Update

CHAPTER 9 ■ CREATING 3-D OBJECTS196

5793c09_final.qxd 8/22/05 2:16 AM Page 196

'' get second solid from user

.GetEntity objSecond, varPick, vbCr & "Pick the second solid: "

If Err Then

MsgBox "That is not an Acad3DSolid"

Exit Sub

End If

'' exit if they're the same

If objFirst Is objSecond Then

MsgBox "You must pick 2 different solids"

Exit Sub

End If

'' highlight entity

objSecond.Highlight True

objSecond.Update

'' combine the solids

Set objNew = objFirst.CheckInterference(objSecond, True)

If objNew Is Nothing Then

MsgBox "Those solids don't intersect"

Else

'' highlight new solid

objNew.Highlight True

objNew.Color = acWhite

objNew.Update

'' move new solid

.InitializeUserInput 1

varNewPnt = .GetPoint(varPick, vbCr & "Pick a new location: ")

objNew.Move varPick, varNewPnt

End If

'' dehighlight entities

objFirst.Highlight False

objFirst.Update

objSecond.Highlight False

objSecond.Update

End With

'' shade the view, and start the interactive orbit command

ThisDrawing.SendCommand "_shade" & vbCr & "_orbit" & vbCr

End Sub

CHAPTER 9 ■ CREATING 3-D OBJECTS 197

5793c09_final.qxd 8/22/05 2:16 AM Page 197

Slicing Solids
Use the SliceSolid method (see Table 9-14 for parameter details) to allow 3DSolid objects to
be sliced by an arbitrary plane. This plane, defined by three WCS points, destructively cuts the
solid into a front and optional back half. If the back half is desired, then this method returns a
new 3DSolid object.

Set 3DSolidObject = 3DSolidObject.SliceSolid(PlanePoint1, _

PlanePoint2, PlanePoint3, Negative)

Table 9-14. The SliceSolid Method’s Parameters

Name Data Type Description

PlanePoint1 Variant A three-element array of doubles specifying a point in the slice
plane.

PlanePoint2 Variant A three-element array of doubles specifying another point in the
slice plane.

PlanePoint3 Variant A three-element array of doubles specifying a third point in the
slice plane.

Negative Boolean A parameter controlling the return of the slice on the negative
side of the plane. If it is False, no object is returned, and the back
half of the slice is discarded. If it is True, the method returns the
back half. In both cases, the calling object retains the front half.

The following example slices a selected solid and moves the new back half to another
location. It might be quite difficult to choose three points that define a plane that slices
through your selected object, but using overrides such as Near and Perpendicular should
make this easier. Try it on some of the solids you created in the chapter’s previous examples.

Public Sub TestSliceSolid()

Dim objFirst As Acad3DSolid

Dim objSecond As Acad3DSolid

Dim objNew As Acad3DSolid

Dim varPick As Variant

Dim varPnt1 As Variant

Dim varPnt2 As Variant

Dim varPnt3 As Variant

Dim strOp As String

Dim blnOp As Boolean

On Error Resume Next

With ThisDrawing.Utility

'' get first solid from user

.GetEntity objFirst, varPick, vbCr & "Pick a solid to slice: "

If Err Then

MsgBox "That is not a 3DSolid"

Exit Sub

End If

CHAPTER 9 ■ CREATING 3-D OBJECTS198

5793c09_final.qxd 8/22/05 2:16 AM Page 198

'' highlight entity

objFirst.Highlight True

objFirst.Update

.InitializeUserInput 1

varPnt1 = .GetPoint(varPick, vbCr & "Pick first slice point: ")

.InitializeUserInput 1

varPnt2 = .GetPoint(varPnt1, vbCr & "Pick second slice point: ")

.InitializeUserInput 1

varPnt3 = .GetPoint(varPnt2, vbCr & "Pick last slice point: ")

'' section the solid

Set objNew = objFirst.SliceSolid(varPnt1, varPnt2, varPnt3, True)

If objNew Is Nothing Then

MsgBox "Couldn't slice using those points"

Else

'' highlight new solid

objNew.Highlight False

objNew.Color = objNew.Color + 1

objNew.Update

'' move section region to new location

.InitializeUserInput 1

varPnt2 = .GetPoint(varPnt1, vbCr & "Pick a new location: ")

objNew.Move varPnt1, varPnt2

End If

End With

'' shade the view

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

Sectioning Solids
The SectionSolid method (see Table 9-15 for parameter details) creates a new Region object
defined by the intersection of a 3DSolid object and an arbitrary plane. The plane is defined by
three WCS points.

Set RegionObject = 3DSolidObject.SectionSolid (PlanePoint1, _

PlanePoint2, PlanePoint3)

CHAPTER 9 ■ CREATING 3-D OBJECTS 199

5793c09_final.qxd 8/22/05 2:16 AM Page 199

Table 9-15. The SectionSolid Method’s Parameters

Name Data Type Description

PlanePoint1 Variant A three-element array of doubles specifying a point in the inter-
section plane

PlanePoint2 Variant A three-element array of doubles specifying another point in the
intersection plane

PlanePoint3 Variant A three-element array of doubles specifying a third point in the
intersection plane

The following example sections a selected solid and moves the new region to another
location. Remember to use object snap overrides such as Near and Perpendicular when you
define the section plane. Try it on some of the solids you created earlier in this chapter.

Public Sub TestSectionSolid()

Dim objFirst As Acad3DSolid

Dim objSecond As Acad3DSolid

Dim objNew As AcadRegion

Dim varPick As Variant

Dim varPnt1 As Variant

Dim varPnt2 As Variant

Dim varPnt3 As Variant

On Error Resume Next

With ThisDrawing.Utility

'' get first solid from user

.GetEntity objFirst, varPick, vbCr & "Pick a solid to section: "

If Err Then

MsgBox "That is not an Acad3DSolid"

Exit Sub

End If

'' highlight entity

objFirst.Highlight True

objFirst.Update

.InitializeUserInput 1

varPnt1 = .GetPoint(varPick, vbCr & "Pick first section point: ")

.InitializeUserInput 1

varPnt2 = .GetPoint(varPnt1, vbCr & "Pick second section point: ")

.InitializeUserInput 1

varPnt3 = .GetPoint(varPnt2, vbCr & "Pick last section point: ")

CHAPTER 9 ■ CREATING 3-D OBJECTS200

5793c09_final.qxd 8/22/05 2:16 AM Page 200

'' section the solid

Set objNew = objFirst.SectionSolid(varPnt1, varPnt2, varPnt3)

If objNew Is Nothing Then

MsgBox "Couldn't section using those points"

Else

'' highlight new solid

objNew.Highlight False

objNew.Color = acWhite

objNew.Update

'' move section region to new location

.InitializeUserInput 1

varPnt2 = .GetPoint(varPnt1, vbCr & "Pick a new location: ")

objNew.Move varPnt1, varPnt2

End If

'' dehighlight entities

objFirst.Highlight False

objFirst.Update

End With

'' shade the view

ThisDrawing.SendCommand "_shade" & vbCr

End Sub

Analyzing Solids: Mass Properties
Each 3DSolid object has a number of mass properties you can use for analysis. These properties
include the center of gravity, the total volume of the solid, the radii of gyration, the product of
inertia, and the moment of inertia.

The following example displays the mass properties for a selected solid. Try it on one of
the solids you created earlier in the chapter.

Public Sub TestMassProperties()

Dim objEnt As Acad3DSolid

Dim varPick As Variant

Dim strMassProperties As String

Dim varProperty As Variant

Dim intI As Integer

On Error Resume Next

'' let user pick a solid

With ThisDrawing.Utility

.GetEntity objEnt, varPick, vbCr & "Pick a solid: "

If Err Then

MsgBox "That is not an Acad3DSolid"

Exit Sub

End If

End With

CHAPTER 9 ■ CREATING 3-D OBJECTS 201

5793c09_final.qxd 8/22/05 2:16 AM Page 201

'' format mass properties

With objEnt

strMassProperties = "Volume: "

strMassProperties = strMassProperties & vbCr & " " & .Volume

strMassProperties = strMassProperties & vbCr & vbCr & _

"Center Of Gravity: "

For Each varProperty In .Centroid

strMassProperties = strMassProperties & vbCr & " "_

& varProperty

Next

strMassProperties = strMassProperties & vbCr & vbCr & _

"Moment Of Inertia: "

For Each varProperty In .MomentOfInertia

strMassProperties = strMassProperties & vbCr & " " & _

varProperty

Next

strMassProperties = strMassProperties & vbCr & vbCr & _

"Product Of Inertia: "

For Each varProperty In .ProductOfInertia

strMassProperties = strMassProperties & vbCr & " " & _

varProperty

Next

strMassProperties = strMassProperties & vbCr & vbCr & _

"Principal Moments: "

For Each varProperty In .PrincipalMoments

strMassProperties = strMassProperties & vbCr & " " & _

varProperty

Next

strMassProperties = strMassProperties & vbCr & vbCr & _

"Radii Of Gyration: "

For Each varProperty In .RadiiOfGyration

strMassProperties = strMassProperties & vbCr & " " & _

varProperty

Next

strMassProperties = strMassProperties & vbCr & vbCr & _

"Principal Directions: "

For intI = 0 To UBound(.PrincipalDirections) / 3

strMassProperties = strMassProperties & vbCr & " (" & _

.PrincipalDirections((intI - 1) * 3) & ", " & _

.PrincipalDirections((intI - 1) * 3 + 1) & "," & _

.PrincipalDirections((intI - 1) * 3 + 2) & ")"

Next

End With

CHAPTER 9 ■ CREATING 3-D OBJECTS202

5793c09_final.qxd 8/22/05 2:16 AM Page 202

'' highlight entity

objEnt.Highlight True

objEnt.Update

'' display properties

MsgBox strMassProperties, , "Mass Properties"

'' dehighlight entity

objEnt.Highlight False

objEnt.Update

End Sub

Summary
In this chapter you learned how to create each of the simple solid primitives. You considered
how you can use planar figures to create more free-form solid entities by extruding and revolv-
ing regions. You also examined how you can combine existing solids to create sophisticated
shapes and how to section and slice those shapes.

CHAPTER 9 ■ CREATING 3-D OBJECTS 203

5793c09_final.qxd 8/22/05 2:16 AM Page 203

5793c09_final.qxd 8/22/05 2:16 AM Page 204

Editing Objects

AutoCAD gives you plenty of methods and properties so you can edit drawing objects,
which you’d normally have to do in the AutoCAD interface. By employing these methods
and properties, you can adapt and combine editing tasks in macros and VBA applications
as needed.

This chapter considers editing objects, first through their methods and then through
their properties. Specifically, this chapter covers the following:

• Copying, deleting, exploding, highlighting, mirroring, moving, offsetting, rotating,
and scaling objects

• Working with polar and rectangular arrays

• Changing the color, layer, linetype, and visibility of objects

In versions prior to 2006, whenever you modify an object in your code, the changes to
the drawing don’t appear until you call the object’s Update method, the Application object’s
Update method, or the Document object’s Regen method. In some cases, AutoCAD updates the
display when your macro or program is complete, but it is safest for your code to force the
update. This chapter’s examples use the modified object’s Update method to update the
drawing display:

DrawingObject.Update

Editing with Methods
AutoCAD VBA editing methods edit differently from properties. Methods generally change an
entity’s shape, size, and position or create a new entity based on the original. Properties, on
the other hand, tend to change the appearance of the object boundary lines, which represent
the objects on the screen or on the plotter.

Unlike Visual LISP, VBA provides no equivalent functions for (vlax-method-applicable-p)
for making sure an object exposes a specific method. For this reason, for each object against
which you want to invoke a method, be sure that the object supports the method you are
using. Your best tools for this are error trapping and error handling.

205

C H A P T E R 1 0

■ ■ ■

5793c10_final.qxd 8/22/05 2:15 AM Page 205

Copying Objects
Use the Copy method to copy an existing drawing object. The new object occupies the same
position as the original object and is drawn on top of all other objects. This method has the
following syntax:

Set DrawingObject = DrawingObject.Copy

The following code asks the user to pick a drawing object from the screen. It then copies
the object and moves it to a point the user chooses.

Public Sub CopyObject()

Dim objDrawingObject As AcadEntity

Dim objCopiedObject As Object

Dim varEntityPickedPoint As Variant

Dim varCopyPoint As Variant

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Pick an entity to copy: "

If objDrawingObject Is Nothing Then

MsgBox "You did not pick an object"

Exit Sub

End If

'Copy the object

Set objCopiedObject = objDrawingObject.Copy()

varCopyPoint = ThisDrawing.Utility.GetPoint(, "Pick point to copy to: ")

'put the object in its new position

objCopiedObject.Move varEntityPickedPoint, varCopyPoint

objCopiedObject.Update

End Sub

Deleting Objects
To remove an object from a drawing, use the Delete method, which has the following simple
syntax:

Object.Delete

Many AutoCAD objects expose this method. For full details, see Appendix A. The follow-
ing example shows how to implement this method:

Public Sub DeleteObject()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

CHAPTER 10 ■ EDIT ING OBJECTS206

5793c10_final.qxd 8/22/05 2:15 AM Page 206

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Pick an entity to delete: "

If objDrawingObject Is Nothing Then

MsgBox "You did not pick an object."

Exit Sub

End If

'delete the object

objDrawingObject.Delete

End Sub

The Erase method is similar to the Delete method, except it erases only SelectionSet
groups. You can’t use it to delete objects.

Exploding Objects
Use the Explode method to break a compound object into its subentities. It returns an array of
objects that hold references to these subentities. This might mean breaking a block reference
into its constituent drawing objects or a polyline into its individual straight-line polylines. Block
Insertions leave the original block object behind, and the resulting exploded set of entities is
actually a copy of each original nested entity in the Block Insertion. To produce behavior similar
to the AutoCAD EXPLODE command, also delete the original Block Insertion entity. This method
has the following syntax:

varObjectArray = Object.Explode

The 3DPoly, BlockRef, LightweightPolyline, MInsertBlock, PolygonMesh, Polyline, Xref,
and Region objects expose this method.

This code example asks the user to choose a Region object. It then explodes the object and
displays a message box that lists the types of the objects into which it was exploded.

Public Sub ExplodeRegion()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Please pick a region object."

If objDrawingObject Is Nothing Or _

objDrawingObject.ObjectName <> "AcDbRegion" Then

MsgBox "You did not choose a region object."

Exit Sub

End If

Dim varObjectArray As Variant

Dim strObjectTypes As String

Dim intCount As Integer

CHAPTER 10 ■ EDIT ING OBJECTS 207

5793c10_final.qxd 8/22/05 2:15 AM Page 207

varObjectArray = objDrawingObject.Explode

strObjectTypes = "The region you chose has been exploded " & _

"into the following: " & UBound(varObjectArray) + 1 & " objects:"

For intCount = 0 To UBound(varObjectArray)

strObjectTypes = strObjectTypes & vbCrLf & _

varObjectArray(intCount).ObjectName

Next

MsgBox strObjectTypes

End Sub

■Note In AutoCAD versions before AutoCAD 2004, the Explode method exploded nested MText entities
in Block Insertions, resulting in individual Text entities. In AutoCAD 2004, the Explode method preserves
nested MText entities as MText.

Highlighting Entities
Use the Highlight method to set whether an entity is highlighted in the drawing editor win-
dow. Changes to an entity’s highlight become effective only when you update or regenerate
the entity. You can apply this method to drawing entities and the Group and SelectionSet
objects. This method has the following syntax:

Object.Highlight Highlighted

This method’s Highlighted parameter, a Boolean, indicates whether to highlight the object
(True) or not (False).

The following example illustrates the Highlight method in action. It asks the user to
choose a selection of objects from the drawing area. It then highlights and unhighlights each
of these objects.

Public Sub ToggleHighlight()

Dim objSelectionSet As AcadSelectionSet

Dim objDrawingObject As AcadEntity

'choose a selection set name that you only use as temporary storage and

'ensure that it does not currently exist

On Error Resume Next

ThisDrawing.SelectionSets("TempSSet").Delete

Set objSelectionSet = ThisDrawing.SelectionSets.Add("TempSSet")

'ask user to pick entities on the screen

objSelectionSet.SelectOnScreen

CHAPTER 10 ■ EDIT ING OBJECTS208

5793c10_final.qxd 8/22/05 2:15 AM Page 208

'change the highlight status of each entity selected

For Each objDrawingObject In objSelectionSet

objDrawingObject.Highlight True

objDrawingObject.Update 'not required for 2006

MsgBox "Notice that the entity is highlighted"

objDrawingObject.Highlight False 'not required for 2006

objDrawingObject.Update 'not required for 2006

MsgBox "Notice that the entity is not highlighted"

Next

objSelectionSet.Delete

End Sub

Mirroring Objects
Use the Mirror method to create an object that is the mirror image of an existing planar
object. This method has the following syntax:

Set DrawingObject = DrawingObject.Mirror(Point1, Point2)

Table 10-1 explains this method’s parameters.

Table 10-1. Mirror Method Parameters

Name Data Type Description

Point1 Variant A three-element array of doubles specifying the 3-D WCS coordinates
of a point on the mirror axis.

Point2 Variant A three-element array of doubles specifying the 3-D WCS coordinates
of a second point on the mirror axis.

The following code lets the user choose a selection of objects and a mirror axis, and then
mirrors the objects around that axis.

Public Sub MirrorObjects()

Dim objSelectionSet As AcadSelectionSet

Dim objDrawingObject As AcadEntity

Dim objMirroredObject As AcadEntity

Dim varPoint1 As Variant

Dim varPoint2 As Variant

ThisDrawing.SetVariable "MIRRTEXT", 0

CHAPTER 10 ■ EDIT ING OBJECTS 209

5793c10_final.qxd 8/22/05 2:15 AM Page 209

'choose a selection set name that you only use as temporary storage and

'ensure that it does not currently exist

On Error Resume Next

ThisDrawing.SelectionSets("TempSSet").Delete

Set objSelectionSet = ThisDrawing.SelectionSets.Add("TempSSet")

'ask user to pick entities on the screen

ThisDrawing.Utility.Prompt "Pick objects to be mirrored." & vbCrLf

objSelectionSet.SelectOnScreen

'change the highlight status of each entity selected

varPoint1 = ThisDrawing.Utility.GetPoint(, _

"Select a point on the mirror axis")

varPoint2 = ThisDrawing.Utility.GetPoint(varPoint1, _

"Select a point on the mirror axis")

For Each objDrawingObject In objSelectionSet

Set objMirroredObject = objDrawingObject.Mirror(varPoint1, varPoint2)

objMirroredObject.Update

Next

objSelectionSet.Delete

End Sub

Note that the MIRRTEXT system variable has been set to 0. This setting mirrors text objects to
the appropriate place on the drawing, but does not mirror the text itself, as shown in Figure 10-1.
The default value of MIRRTEXT in AutoCAD 2004 is 0, but it defaulted to 1 in earlier versions of
AutoCAD. If you set MIRRTEXT to 1, the text gets mirrored just as any other object.

CHAPTER 10 ■ EDIT ING OBJECTS210

Figure 10-1. Mirrored objects

5793c10_final.qxd 8/22/05 2:15 AM Page 210

Use the Mirror3D method to reflect an object in a plane, where the new object lies outside
the plane of the original object.

Set DrawingObject = DrawingObject.Mirror3D(PlanePoint1, PlanePoint2, PlanePoint3)

Table 10-2 explains this method’s parameters.

Table 10-2. Mirror 3D Method Parameters

Name Data Type Description

PlanePoint1 Variant A three-element array of doubles specifying the 3-D WCS
coordinates of a point in the mirror plane.

PlanePoint2 Variant A three-element array of doubles specifying the 3-D WCS
coordinates of a second point in the mirror plane.

PlanePoint3 Variant A three-element array of doubles specifying the 3-D WCS
coordinates of a third point defining the mirror plane.

Figure 10-2 shows an object reflected on a plane.

The following code adds a new drawing object that reflects the base object around the
WCS XY plane.

Public Sub MirrorObjectinXYplane()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

Dim objMirroredObject As AcadEntity

Dim dblPlanePoint1(2) As Double

Dim dblPlanePoint2(2) As Double

Dim dblPlanePoint3(2) As Double

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Please pick an entity to reflect: "

If objDrawingObject Is Nothing Then

MsgBox "You did not choose an object"

Exit Sub

CHAPTER 10 ■ EDIT ING OBJECTS 211

Figure 10-2. A 3-D mirrored object

5793c10_final.qxd 8/22/05 2:15 AM Page 211

'set plane of reflection to be the XY plane

dblPlanePoint2(0) = 1#

dblPlanePoint3(1) = 1#

objDrawingObject.Mirror3D dblPlanePoint1, dblPlanePoint2, dblPlanePoint3

End Sub

Moving Objects
Use the Move method to perform three-dimensional translations on drawing objects. This
method has the following syntax:

DrawingObject.Move Point1, Point2

Table 10-3 explains this method’s parameters.

Table 10-3. Move Method Parameters

Name Data Type Description

Point1 Variant A three-element array of doubles specifying the 3-D WCS
coordinates of the translation vector’s starting point.

Point2 Variant A three-element array of doubles specifying the 3-D WCS coordi-
nates of the translation vector’s ending point.

Figure 10-3 shows an object moved from one place to another.

The following example shows how to implement this method. The user first picks a selec-
tion of objects to be moved and specifies the translation vector on the screen.

CHAPTER 10 ■ EDIT ING OBJECTS212

Figure 10-3. A moved object

5793c10_final.qxd 8/22/05 2:15 AM Page 212

Public Sub MoveObjects()

Dim varPoint1 As Variant

Dim varPoint2 As Variant

Dim objSelectionSet As AcadSelectionSet

Dim objDrawingObject As AcadEntity

'choose a selection set name that you only use as temporary storage and

'ensure that it does not currently exist

On Error Resume Next

ThisDrawing.SelectionSets("TempSSet").Delete

Set objSelectionSet = ThisDrawing.SelectionSets.Add("TempSSet")

'ask user to pick entities on the screen

objSelectionSet.SelectOnScreen

varPoint1 = ThisDrawing.Utility.GetPoint(, vbCrLf _

& "Base point of displacement: ")

varPoint2 = ThisDrawing.Utility.GetPoint(varPoint1, vbCrLf _

& "Second point of displacement: ")

'move the selection of entities

For Each objDrawingObject In objSelectionSet

objDrawingObject.Move varPoint1, varPoint2

objDrawingObject.Update

Next

objSelectionSet.Delete

End Sub

Offsetting Objects
The Offset method creates a new object with boundaries offset a specified distance from
an existing object’s boundaries. You can apply this method to the Arc, Circle, Ellipse, Line,
LightweightPolyline, Polyline, Spline, and Xline objects. This method returns an array of
the newly created object(s). Even though this array frequently contains only one object of the
same type as the object from which it is offset, this is not always this case, as seen in the exam-
ple below.

varObjectArray = Object.Offset(OffsetDistance)

Table 10-4 explains this method’s parameter.

Table 10-4. The Object.Offset Method Parameter

Name Data Type Description

OffsetDistance Double A nonzero number that indicates the offset’s size and direction.
Negative numbers mean that the offset makes the new object
smaller than the original. If this has no meaning, as for a single
straight line, a negative number positions the new object
closer to the WCS origin.

CHAPTER 10 ■ EDIT ING OBJECTS 213

5793c10_final.qxd 8/22/05 2:15 AM Page 213

In Figure 10-4, the center object is an Ellipse from which the two other objects have been
offset. You can see that the new objects are not Ellipses as each point of each new object is
the same distance from the original Ellipse. In these cases, the returned object is a Spline.
In this example, the negative offset must be greater than 50.

The following code sample creates the Ellipse and Splines in Figure 10-4 and shows the
user a message box of the new objects’ types.

Public Sub OffsetEllipse()

Dim objEllipse As AcadEllipse

Dim varObjectArray As Variant

Dim dblCenter(2) As Double

Dim dblMajor(2) As Double

dblMajor(0) = 100#

Set objEllipse = ThisDrawing.ModelSpace.AddEllipse(dblCenter, dblMajor, _

0.5)

varObjectArray = objEllipse.Offset(50)

MsgBox "The offset object is a " & varObjectArray(0).ObjectName

varObjectArray = objEllipse.Offset(-25)

MsgBox "The offset object is a " & varObjectArray(0).ObjectName

End Sub

CHAPTER 10 ■ EDIT ING OBJECTS214

Figure 10-4. Offset objects

5793c10_final.qxd 8/22/05 2:15 AM Page 214

■Note For the sake of accuracy, because offsetting an Ellipse creates nonelliptical Spline entities,
instead consider creating new Ellipse entities with calculated geometry. This produces accurate Ellipse
entities instead of approximated elliptical Splines. The same is true for offsetting Spline or curve-fitted
Polyline or LightweightPolyline entities.

Rotating Objects
Use the Rotate method to rotate a drawing object around a given point in the User Coordinate
System’s (UCS) XY plane. This method has the following syntax:

DrawingObject.Rotate BasePoint, RotationAngle

Table 10-5 explains this method’s parameters.

Table 10-5. Rotate Method Parameters

Name Data Type Description

BasePoint Variant A three-element array of doubles that specifies the 3-D WCS
coordinates of the point through which the axis of rotation,
parallel to the Z-axis of the UCS, passes.

RotationAngle Double The angle of rotation given in radians and measured counter-
clockwise from the UCS’s X-axis.

Figure 10-5 shows a rotated object.

CHAPTER 10 ■ EDIT ING OBJECTS 215

Figure 10-5. A rotated object

5793c10_final.qxd 8/22/05 2:15 AM Page 215

The following sample rotates an object based on user input.

Public Sub RotateObject()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

Dim varBasePoint As Variant

Dim dblRotationAngle As Double

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Please pick an entity to rotate: "

If objDrawingObject Is Nothing Then

MsgBox "You did not choose an object."

Exit Sub

End If

varBasePoint = ThisDrawing.Utility.GetPoint(, _

"Enter a base point for the rotation.")

dblRotationAngle = ThisDrawing.Utility.GetReal(_

"Enter the rotation angle in degrees: ")

'convert to radians

dblRotationAngle = ThisDrawing.Utility. _

AngleToReal(CStr(dblRotationAngle), acDegrees)

'Rotate the object

objDrawingObject.Rotate varBasePoint, dblRotationAngle

objDrawingObject.Update

End Sub

Use the Rotate3D method to perform a three-dimensional rotation of an object around an
axis. This method has the following syntax:

DrawingObject.Rotate3D AxisPoint1, AxisPoint2, RotationAngle

Table 10-6 explains this method’s parameters.

Table 10-6. Rotate3D Method Parameters

Name Data Type Description

AxisPoint1 Variant A three-element array of doubles that specifies the 3-D WCS
coordinates of a point through which the axis of rotation passes.

AxisPoint2 Variant A three-element array of doubles that specifies the 3-D WCS
coordinates of a second point through which the axis of rotation
passes.

RotationAngle Double The angle of rotation given in radians and measured counter-
clockwise about the specified axis.

Figure 10-6 shows an object rotated around an axis.

CHAPTER 10 ■ EDIT ING OBJECTS216

5793c10_final.qxd 8/22/05 2:15 AM Page 216

The following code example lets the user choose an object to rotate, and the points that
define the axis of rotation. It then rotates the object around that axis at an angle the user chooses.

Public Sub Rotate3DObject()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

Dim objMirroredObject As AcadEntity

Dim varAxisPoint1 As Variant

Dim varAxisPoint2 As Variant

Dim dblRotationAxis As Double

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, _

varEntityPickedPoint, "Please select an entity to rotate: "

If objDrawingObject Is Nothing Then

MsgBox "You did not choose an object"

Exit Sub

End If

'ask user for axis points and angle of rotation

varAxisPoint1 = ThisDrawing.Utility.GetPoint(, _

"Enter first point of axis of rotation: ")

varAxisPoint2 = ThisDrawing.Utility.GetPoint(, _

"Enter second point of axis of rotation: ")

dblRotationAxis = ThisDrawing.Utility.GetReal(_

"Enter angle of rotation in degrees")

'convert to radians

dblRotationAxis = ThisDrawing.Utility.AngleToReal(CStr(dblRotationAxis), _

acDegrees)

objDrawingObject.Rotate3D varAxisPoint1, varAxisPoint2, dblRotationAxis

End Sub

CHAPTER 10 ■ EDIT ING OBJECTS 217

Figure 10-6. An object rotated in 3-D

5793c10_final.qxd 8/22/05 2:15 AM Page 217

Scaling Objects
The ScaleEntity method scales a drawing object uniformly in all directions around a base
point. This method has the following syntax:

DrawingObject.ScaleEntity BasePoint, ScaleFactor

Table 10-7 explains this method’s parameters.

Table 10-7. ScaleEntity Method Parameters

Name Data Type Description

BasePoint Variant A three-element array of doubles that specifies the 3-D WCS
coordinates of the scale’s base point.

ScaleFactor Double A positive number that represents how much to scale the object
relative to its current size. Each of the object’s dimensions, meas-
ured from the base point, is multiplied by this parameter. A scale
factor greater than 1 enlarges the object, while a scale factor less
than 1 shrinks the object.

Figure 10-7 shows a scaled object.

This example shows how to implement this method:

Public Sub ScaleObject()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

Dim varBasePoint As Variant

Dim dblScaleFactor As Double

CHAPTER 10 ■ EDIT ING OBJECTS218

Figure 10-7. A scaled object

5793c10_final.qxd 8/22/05 2:15 AM Page 218

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Please pick an entity to scale: "

If objDrawingObject Is Nothing Then

MsgBox "You did not choose an object"

Exit Sub

End If

varBasePoint = ThisDrawing.Utility.GetPoint(, _

"Pick a base point for the scale:")

dblScaleFactor = ThisDrawing.Utility.GetReal("Enter the scale factor: ")

'Scale the object

objDrawingObject.ScaleEntity varBasePoint, dblScaleFactor

objDrawingObject.Update

End Sub

■Note There is no direct equivalent to the SCALE command’s Reference option. AutoCAD performs those
calculations for you. To mimic that functionality, you have to write the code that performs the calculations.

Object Arrays
Use the ArrayPolar and ArrayRectangular methods to create an array of objects based on an
existing object. Both methods copy the base object into a regular pattern at a specified distance
from one another.

Creating a Polar Array of Objects
A polar array is a pattern of drawing objects lying on an arc’s path. The ArrayPolar method
creates a polar array, placing a specified number of objects over an angle. It returns an array of
the new objects.

varObjectArray = DrawingObject.ArrayPolar (NumberofObjects, _

AngleToFill, ArrayCenter)

Table 10-8 explains this method’s parameters.

Table 10-8. ArrayPolar Method Parameters

Name Data Type Description

NumberofObjects Long The number of objects in the polar array.

AngleToFill Double A nonzero value representing the angle, measured counter-
clockwise in radians, over which the array path will extend.

ArrayCenter Variant A three-element array of doubles specifying the 3-D WCS
coordinates of the arc’s center.

CHAPTER 10 ■ EDIT ING OBJECTS 219

5793c10_final.qxd 8/22/05 2:15 AM Page 219

Always set the NumberofObjects parameter greater than 1. The original object is counted
as an element of the polar array, even though this method doesn’t return it in the object array.
Consequently, the size of the object array is NumberofObjects-1. If you set NumberofObjects to
1, the method returns an empty array, but doesn’t raise an error.

Figure 10-8 shows an ellipse arranged along an arc using the ArrayPolar method.

The distance from the ArrayCenter to objects depends upon the object type. To specify the
distance to the objects and the vector from which to measure the AngleToFill, use a circle or
arc’s center, a block or shape’s insertion point, text’s start point, or a line or trace’s end point.

The following example shows how to implement this method. The objects returned in the
array are designated as red.

Public Sub CreatePolarArray()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

Dim varArrayCenter As Variant

Dim lngNumberofObjects As Long

Dim dblAngletoFill As Double

Dim varPolarArray As Variant

Dim intCount As Integer

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Please select an entity to form the basis of a polar array"

If objDrawingObject Is Nothing Then

MsgBox "You did not choose an object"

Exit Sub

End If

CHAPTER 10 ■ EDIT ING OBJECTS220

Figure 10-8. ArrayPolar arrangement of ellipses

5793c10_final.qxd 8/22/05 2:15 AM Page 220

varArrayCenter = ThisDrawing.Utility.GetPoint(, _

"Pick the center of the array: ")

lngNumberofObjects = ThisDrawing.Utility.GetInteger(_

"Enter total number of objects required in the array: ")

dblAngletoFill = ThisDrawing.Utility.GetReal(_

"Enter an angle (in degrees less than 360) over which the array should

extend: ")

dblAngletoFill = ThisDrawing.Utility.AngleToReal _

(CStr(dblAngletoFill), acDegrees)

If dblAngletoFill > 359 Then

MsgBox "Angle must be less than 360 degrees", vbCritical

Exit Sub

End If

varPolarArray = objDrawingObject.ArrayPolar(lngNumberofObjects, _

dblAngletoFill, varArrayCenter)

For intCount = 0 To UBound(varPolarArray)

varPolarArray(intCount).Color = acRed

varPolarArray(intCount).Update

Next

End Sub

■Note Unlike the AutoCAD ARRAY command, there is no ActiveX method available to control rotation of
copied entities in polar arrays. You must handle that yourself through programming to rotate each copied
entity appropriately along the array path’s circumference.

Creating a Rectangular Array of Objects
A rectangular array is a grid pattern of drawing objects. This pattern may be two- or three-
dimensional and you can construct it using the ArrayRectangular method. Just like the
ArrayPolar method, this method returns an array of objects that hold a reference to the new
drawing objects.

varObjectArray = DrawingObject.ArrayRectangular (NumberOfRows, _

NumberOfColumns, NumberOfLevels, DistBetweenRows, _

DistBetweenColumns, DistBetweenLevels)

Table 10-9 explains this method’s parameters.

CHAPTER 10 ■ EDIT ING OBJECTS 221

5793c10_final.qxd 8/22/05 2:15 AM Page 221

Table 10-9. ArrayRectangular Method Parameters

Name Data Type Description

NumberofRows Long A positive number representing the number of rows in
the rectangular array. If this parameter is set to 1, then
NumberofColumns must be greater than 1.

NumberOfColumns Long A positive number representing the number of columns
in the rectangular array. If this parameter is set to 1, then
NumberofRows must be greater than 1.

NumberOfLevels Long A positive number representing the number of levels in a
3-D array.

DistBetweenRows Double The distance between the rows. If this parameter is
positive, rows extend upwards from the base object; if
negative they extend downwards. If set to zero, objects
are placed on top of the base object.

DistBetweenColumns Double The distance between the columns. If this parameter is
positive, rows extend upwards from the base object; if
negative they extend downwards. If set to zero, objects
are placed on top of the base object.

DistBetweenLevels Double The distance between the levels. If this parameter is posi-
tive, rows extend upwards from the base object; if negative
they extend downwards. If set to zero, objects are placed on
top of the base object.

Figure 10-9 shows a two-dimensional rectangular array. A three-dimensional array is a
simple extension of a two-dimensional array.

To create a two-dimensional array, set the NumberOfLevels parameters to 1, as shown in
the following code example. Again, the new objects will be colored red in the array.

CHAPTER 10 ■ EDIT ING OBJECTS222

Figure 10-9. Objects arranged with ArrayRectangular

5793c10_final.qxd 8/22/05 2:15 AM Page 222

Public Sub Create2DRectangularArray()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

Dim lngNoRows As Long

Dim lngNoColumns As Long

Dim dblDistRows As Long

Dim dblDistCols As Long

Dim varRectangularArray As Variant

Dim intCount As Integer

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Please pick an entity to form the basis of a rectangular array: "

If objDrawingObject Is Nothing Then

MsgBox "You did not choose an object"

Exit Sub

End If

lngNoRows = ThisDrawing.Utility.GetInteger(_

"Enter the required number of rows: ")

lngNoColumns = ThisDrawing.Utility.GetInteger(_

"Enter the required number of columns: ")

dblDistRows = ThisDrawing.Utility.GetReal(_

"Enter the required distance between rows: ")

dblDistCols = ThisDrawing.Utility.GetReal(_

"Enter the required distance between columns: ")

varRectangularArray = objDrawingObject.ArrayRectangular(lngNoRows, _

lngNoColumns, 1, dblDistRows, dblDistCols, 0)

For intCount = 0 To UBound(varRectangularArray)

varRectangularArray(intCount).Color = acRed

varRectangularArray(intCount).Update

Next

End Sub

Editing with Properties
Unlike the methods described previously, you can use a drawing object’s properties to modify
the on-screen appearance of the lines that represent AutoCAD objects. The rest of this chapter
covers some of the most commonly used properties.

Changing an Object’s Color
Use the Color property to read or set a drawing object’s color. The Group and Layer objects also
expose this property. Beginning with AutoCAD 2004, all objects have a new TrueColor property

CHAPTER 10 ■ EDIT ING OBJECTS 223

5793c10_final.qxd 8/22/05 2:15 AM Page 223

that supports the Color property. This new property uses RGB color values, Pantone color
palettes, and color-book values. This property has the following syntax:

Object.Color = lngColor

lngColor may be one of 257 colors, 9 of which are represented by the predefined AutoCAD
AcColor constants detailed in Table 10-10.

Table 10-10. AcColor Constants

Constant Color Index Color

acByBlock 0 ByBlock

acRed 1 Red

acYellow 2 Yellow

acGreen 3 Green

acCyan 4 Cyan

acBlue 5 Blue

acMagenta 6 Magenta

acWhite 7 White or Black, depending on the screen background color

acByLayer 256 ByLayer

The following code changes the color of user-selected objects to green.

Public Sub ColorGreen()

Dim objSelectionSet As AcadSelectionSet

Dim objDrawingObject As AcadEntity

'choose a selection set name that you only use as temporary storage and

'ensure that it does not currently exist

On Error Resume Next

ThisDrawing.SelectionSets("TempSSet").Delete

Set objSelectionSet = ThisDrawing.SelectionSets.Add("TempSSet")

'ask user to pick entities on the screen

objSelectionSet.SelectOnScreen

For Each objDrawingObject In objSelectionSet

objDrawingObject.Color = acGreen

objDrawingObject.Update

Next

objSelectionSet.Delete

End Sub

CHAPTER 10 ■ EDIT ING OBJECTS224

5793c10_final.qxd 8/22/05 2:15 AM Page 224

Changing an Object’s TrueColor Property
AutoCAD 2004’s TrueColor property lets you specify RGB color values, Pantone color palette
values, and color-book values. This is a vast improvement for users who need accurate color
matching for precision rendering and presentation graphics. The following example shows
how to create a new Line entity and assign it an RGB color value of 80, 100, 244. Figure 10-10
also shows how the new color palette options appear in AutoCAD 2004.

Sub Example_TrueColor()

' This example draws a line and returns the RGB values

Dim color As AcadAcCmColor

Set color = AcadApplication.GetInterfaceObject("AutoCAD.AcCmColor.16")

Call color.SetRGB(80, 100, 244)

Dim line As AcadLine

Dim startPoint(0 To 2) As Double

Dim endPoint(0 To 2) As Double

startPoint(0) = 1#: startPoint(1) = 1#: startPoint(2) = 0#

endPoint(0) = 5#: endPoint(1) = 5#: endPoint(2) = 0#

Set line = ThisDrawing.ModelSpace.AddLine(startPoint, endPoint)

ZoomAll

CHAPTER 10 ■ EDIT ING OBJECTS 225

Figure 10-10. Color palette options

5793c10_final.qxd 8/22/05 2:15 AM Page 225

line.TrueColor = color

Dim retcolor As AcadAcCmColor

Set retcolor = line.TrueColor

MsgBox "Red = " & retcolor.Red & vbCrLf & _

"Green = " & retcolor.Green & vbCrLf & _

"Blue = " & retcolor.Blue

End Sub

The AutoCAD 2006 developer’s documentation gives more examples for using the
TrueColor object.

Changing an Object’s Color Properties
The AcCmColor object represents colors. Use the AcCmColor object to set colors and perform other
color-related operations on objects. This object belongs to the AutoCAD class AcadAcCmColor.
Invoke this class using one of these two methods:

• GetInterfaceObject ("AutoCAD.AcCmColor.16")

• Dim col As New AcadAcCmColor

The object includes properties for colors, color names, color-book names, and the color
index. The following example shows how to invoke the SetColorBook method to use Pantone
color books on a Circle entity.

Dim fColor As AcadAcCmColor

Set fColor = AcadApplication.GetInterfaceObject("AutoCAD.AcCmColor.16")

Call color.SetRGB(80, 100, 244) _

Call fColor.SetColorBookColor("PANTONE Yellow", _

"Pantone solid colors-uncoated.acb")

objCircle.TrueColor = fColor

The AutoCAD 2004 developer’s documentation gives more examples for using the
AcCmColor object.

Changing an Object’s Layer
By changing a drawing or Group object’s layer, any of the object’s properties that are set to
acByLayer change to reflect the new layer’s attributes. Change an object’s layer by setting its
Layer property to the name of a different layer, as this syntax shows:

Object.Layer = strLayerName

The following code demonstrates the effects of changing a layer. It adds two circles to
layer 0. The first circle is red, while the other circle’s color is left at its default value of ByLayer.
When the circles are moved to a new layer, the first circle stays red while the second adopts the
new layer’s color.

CHAPTER 10 ■ EDIT ING OBJECTS226

5793c10_final.qxd 8/22/05 2:15 AM Page 226

Public Sub ChangeLayer()

Dim objNewLayer As AcadLayer

Dim objCircle1 As AcadCircle

Dim objCircle2 As AcadCircle

Dim dblCenter1(2) As Double

Dim dblCenter2(2) As Double

dblCenter2(0) = 10#

'reference a layer called "New Layer" is it exists or

'add a new layer if it does not

Set objNewLayer = ThisDrawing.Layers.Add("New Layer")

objNewLayer.Color = acBlue

ThisDrawing.ActiveLayer = ThisDrawing.Layers("0")

Set objCircle1 = ThisDrawing.ModelSpace.AddCircle(dblCenter1, 10#)

Set objCircle2 = ThisDrawing.ModelSpace.AddCircle(dblCenter2, 10#)

objCircle1.Color = acRed

objCircle1.Update

objCircle1.Layer = "New Layer"

objCircle2.Layer = "New Layer"

End Sub

Changing an Object’s Linetype
To change the appearance of the lines that represent a drawing object on the screen, reset the
object’s Linetype property to the name of a Linetype object. This property also applies to the
Group and Layer objects. This property has the following syntax:

Object.Linetype = strLinetypeName

This simple code sample sets an object’s linetype to be continuous:

Public Sub ChangeLinetype()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Please pick an object"

If objDrawingObject Is Nothing Then

MsgBox "You did not choose an object"

Exit Sub

End If

CHAPTER 10 ■ EDIT ING OBJECTS 227

5793c10_final.qxd 8/22/05 2:15 AM Page 227

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Pick an entity to change linetype: "

objDrawingObject.Linetype = "Continuous"

objDrawingObject.Update

End Sub

■Tip Always use strict error handling should someone assign a nonexistent linetype to an object. If you
don’t, your programs will crash. Chapter 6 covers Linetype objects in detail.

Changing an Object’s Visibility
Use the Visible property to set whether a drawing object is visible or not. This method is also
available to the Application, Group, and Toolbar objects, although for a Group it is write-only.
Set this property True to make an object visible, and False to hide it. Making an object invisi-
ble can be useful for performing complex entity creation or modification tasks. This property
has the following syntax:

Object.Visible = blnVisible

The following example shows how to implement this method. It hides, and then makes
visible, an object.

Public Sub ToggleVisibility()

Dim objDrawingObject As AcadEntity

Dim varEntityPickedPoint As Variant

On Error Resume Next

ThisDrawing.Utility.GetEntity objDrawingObject, varEntityPickedPoint, _

"Choose an object to toggle visibility: "

If objDrawingObject Is Nothing Then

MsgBox "You did not choose an object"

Exit Sub

End If

objDrawingObject.Visible = False

objDrawingObject.Update

MsgBox "The object was made invisible!"

objDrawingObject.Visible = True

objDrawingObject.Update

MsgBox "Now it is visible again!"

End Sub

CHAPTER 10 ■ EDIT ING OBJECTS228

5793c10_final.qxd 8/22/05 2:15 AM Page 228

■Note Other factors, such as whether the object’s layer is frozen or turned off, can override this property.

The Update Method
This chapter and most of this book use the Update method extensively. It forces the AutoCAD
graphics display engine to regenerate a specified object on the drawing screen. You need to
do this often to accurately reflect changes made to objects.

Summary
This chapter examined several methods and properties you use to edit drawing entities. The
next chapter covers adding dimensions and annotations to AutoCAD drawings.

CHAPTER 10 ■ EDIT ING OBJECTS 229

5793c10_final.qxd 8/22/05 2:15 AM Page 229

5793c10_final.qxd 8/22/05 2:15 AM Page 230

Dimensions and Annotations

Although AutoCAD provides an environment that allows users to make detailed and precise
drawings, it’s often necessary for users to incorporate further information. A typical user will
add textual annotations and measurement annotations (dimensions) to a drawing for manu-
facturing, modeling, engineering, mapping, and surveying purposes and to help clarify design
intent. AutoCAD VBA provides a number of methods to help users create annotations and
dimensions that they normally create through the AutoCAD application interface.

In this chapter you’ll learn how to create dimensions and annotations and add them to
your drawings. You’ll also see how to set up and use different text and dimension styles.

Working with Dimensions
You add dimension entities to drawings to show the dimension or size of different drawing
elements. You can use them to measure angles, distances, and chords. In this section, you’ll
examine each of the seven dimension objects in turn. First, however, you’ll look at the DimStyle
object, which you use to determine the appearance of dimensions, leaders, and geometric
tolerances.

Using the DimStyle Object
The DimStyle object represents some settings that determine the appearance of a dimension,
tolerance, or leader. DimStyle objects are held in the DimStyles collection, and you may access
them via the DimStyles collection’s Item method.

To create a new DimStyle object through code, you need to use the Add method of the
DimStyles collection.

Set DimStyleObject = DimStylesCollection.Add(DimStyleName)

Table 11-1 shows the Add method’s parameter.

Table 11-1. The Add Method’s Parameter

Name Data Type Description

DimStyleName String An identifying name for the new DimStyle object

231

C H A P T E R 1 1

■ ■ ■

5793c11_final.qxd 8/22/05 2:11 AM Page 231

The following code shows how to add a new DimStyle object:

Dim objDimStyle As AcadDimStyle

Set objDimStyle = ThisDrawing.DimStyles.Add("NewDimStyle")

Setting Dimension Styles
A DimStyle object that is newly created using the Add method inherits the dimension styles
of the current active DimStyle object, regardless of any system variable settings that might be
overriding the styles of the active DimStyle object. To set the styles for a DimStyle object, you
need to set the system variables to reflect your required styles and then use the CopyFrom
method explained in the next section.

Using the CopyFrom Method
You use the CopyFrom method to copy to a DimStyle object a set of dimension styles from a
dimension, tolerance, leader, document, or another DimStyle object.

DimStyleObject.CopyFrom SourceObject

The SourceObject parameter is the object whose dimension styles are copied. The styles
copied depend upon the source object used, as shown in Table 11-2.

Table 11-2. The CopyFrom Method’s Parameters

Object Styles Copied

Dimension, Tolerance, Leader The style for that object plus any object overrides

Document The active dimension style settings for the drawing plus any
drawing overrides

DimStyle The style data from that dimension style but no drawing
overrides

The following code creates a new dimension style called NewDimStyle. This object inher-
its all the dimension style properties of the currently active dimension style, except that the
color of dimension lines, extension lines, and dimension text are set to red, blue, and white,
respectively.

Public Sub NewDimStyle

Dim objDimStyle As AcadDimStyle

Set objDimStyle = ThisDrawing.DimStyles.Add("NewDimStyle")

SetVariable "DIMCLRD", acRed

SetVariable "DIMCLRE", acBlue

SetVariable "DIMCLRT", acWhite

SetVariable "DIMLWD", acLnWtByLwDefault

objDimStyle.CopyFrom ThisDrawing

End Sub

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS232

5793c11_final.qxd 8/22/05 2:11 AM Page 232

Using Dimension Styles
You may associate a dimension style with a particular dimension object by setting its
StyleName property, or you may set it to be the currently active style via the ActiveDimStyle
property of the Document object. In the latter case, any objects created after the style is made
active and not specifically associated with a different dimension style will adopt the style of
the active DimStyle object.

■Note No matter which property you use to set the dimension style for an object added to your drawing
through code, the newly created object will not adopt any system variable overrides.

The StyleName Property
You use this property to set the dimension style associated with a dimension, tolerance, or
leader. To set or change the DimStyle used, simply set or reset the value of this property.

Object.StyleName = DimStyleName

Table 11-3 shows the StyleName property’s parameters.

Table 11-3. The StyleName Property’s Parameters

Name Data Type Description

Object Dimension, Leader, or Tolerance object The object to which the dimension
style is linked

DimStyleName String The identifying name of the DimStyle
object

The following example asks the user to choose a dimension and changes the style of the
dimension to one of the existing dimension styles. The StyleName property of the chosen
object is then set appropriately.

Public Sub ChangeDimStyle()

Dim objDimension As AcadDimension

Dim varPickedPoint As Variant

Dim objDimStyle As AcadDimStyle

Dim strDimStyles As String

Dim strChosenDimStyle As String

On Error Resume Next

ThisDrawing.Utility.GetEntity objDimension, varPickedPoint, _

"Pick a dimension whose style you wish to set"

If objDimension Is Nothing Then

MsgBox "You failed to pick a dimension object"

Exit Sub

End If

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 233

5793c11_final.qxd 8/22/05 2:11 AM Page 233

For Each objDimStyle In ThisDrawing.DimStyles

strDimStyles = strDimStyles & objDimStyle.Name & vbCrLf

Next objDimStyle

strChosenDimStyle = InputBox("Choose one of the following " & _

"Dimension styles to apply" & vbCrLf & strDimStyles)

If strChosenDimStyle = "" Then Exit Sub

objDimension.StyleName = strChosenDimStyle

End Sub

The ActiveDimStyle Property
You use the ActiveDimStyle property to make a dimension style the default for any newly
created dimension, tolerance, or leader objects. Unlike the ActiveTextStyle property, the
ActiveDimStyle property doesn’t affect any preexisting objects.

Set DocumentObject.ActiveDimStyle = DimStyleObject

Table 11-4 shows the ActiveTextStyle property’s parameter.

Table 11-4. The ActiveDimStyle Property’s Parameter

Name Data Type Description

DimStyleObject DimStyle object The object holding the setting for the required dimen-
sion style

The following code displays the current dimension style to the user and provides an
opportunity for the user to change it:

Public Sub SetActiveDimStyle()

Dim strDimStyles As String

Dim strChosenDimStyle As String

Dim objDimStyle As AcadDimStyle

For Each objDimStyle In ThisDrawing.DimStyles

strDimStyles = strDimStyles & objDimStyle.Name & vbCrLf

Next

strChosenDimStyle = InputBox("Choose one of the following Dimension " & _

"styles:" & vbCr & vbCr & strDimStyles, "Existing Dimension style is: " & _

ThisDrawing.ActiveDimStyle.Name, ThisDrawing.ActiveDimStyle.Name)

If strChosenDimStyle = "" Then Exit Sub

On Error Resume Next

ThisDrawing.ActiveDimStyle = ThisDrawing.DimStyles(strChosenDimStyle)

If Err Then MsgBox "Dimension style was not recognized"

End Sub

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS234

5793c11_final.qxd 8/22/05 2:11 AM Page 234

Creating Dimensions
Dimension objects are entities that provide information about distances and angles within an
AutoCAD drawing. It makes sense then that, just as for the drawing objects covered in Chap-
ters 7 and 8, the AddDimXXX methods used to add dimensions to drawings are exposed by the
ModelSpace, PaperSpace, and Block objects.

It’s worth noting that not all properties of dimension entities are exposed through the
ActiveX object model. For example, the dimension line control points of DimAligned objects
are available only as DXF 13 and 14 codes. In addition, some dimension objects behave dif-
ferently between AutoCAD 2002 and 2004 (and later versions), and I will emphasize that
developers should research the changes in newer versions, especially with respect to dimen-
sions and dimension styles.

The Dim3PointAngular Object
The Dim3PointAngular object displays the angular distance between three points. You can use
the AddDim3PointAngular method to add this type of dimension to a drawing.

Set Dim3PointAngularObject = _

Object.AddDim3PointAngular(VertexPoint, Point1, Point2, _

TextPosition)

Table 11-5 shows the AddDim3PointAngular method’s parameters.

Table 11-5. The AddDim3PointAngular Method’s Parameters

Name Data Type Description

VertexPoint Variant A three-element array of doubles specifying the WCS position of
the vertex whose angle is to be measured

Point1 Variant A three-element array of doubles specifying the WCS position of
one of the end points

Point2 Variant A three-element array of doubles specifying the WCS position of
the other end point

TextPosition Variant A three-element array of doubles specifying the WCS position of
the text displaying the angle size

Figure 11-1 depicts a three-point angular-style dimension.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 235

5793c11_final.qxd 8/22/05 2:11 AM Page 235

This code illustrates how to implement the AddDim3PointAngular method:

Public Sub Add3PointAngularDimension()

Dim varAngularVertex As Variant

Dim varFirstPoint As Variant

Dim varSecondPoint As Variant

Dim varTextLocation As Variant

Dim objDim3PointAngular As AcadDim3PointAngular

'Define the dimension

varAngularVertex = ThisDrawing.Utility.GetPoint(, _

"Enter the center point: ")

varFirstPoint = ThisDrawing.Utility.GetPoint(varAngularVertex, _

"Select first point: ")

varSecondPoint = ThisDrawing.Utility.GetPoint(varAngularVertex, _

"Select second point: ")

varTextLocation = ThisDrawing.Utility.GetPoint(varAngularVertex, _

"Pick dimension text location: ")

Set objDim3PointAngular = ThisDrawing.ModelSpace.AddDim3PointAngular(_

varAngularVertex, varFirstPoint, varSecondPoint, varTextLocation)

objDim3PointAngular.Update

End Sub

The DimAligned Object
You use the DimAligned object to display the length of a line. Extension lines emanate at right
angles from the ends of the line to be measured to the level of the dimension text. You use the
AddDimAligned method to add this object to your drawing.

Set DimAlignedObject = Object.AddDimAligned(Point1, Point2, TextPosition)

Table 11-6 shows the AddDimAligned method’s parameters.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS236

Figure 11-1. A three-point angular dimension

5793c11_final.qxd 8/22/05 2:11 AM Page 236

Table 11-6. The AddDimAligned Method’s Parameters

Name Data Type Description

Point1 Variant A three-element array of doubles specifying the WCS position of
one end of the line to be measured

Point2 Variant A three-element array of doubles specifying the WCS position of
the other end of the line to be measured

TextPosition Variant A three-element array of doubles specifying the WCS position of
the text to be displayed

Figure 11-2 depicts an aligned-style dimension.

The following example asks users to select the points they would like to dimension. It
then uses the AddDimAligned method to add the dimension. Finally, the units are changed to
engineering units.

Public Sub AddAlignedDimension()

Dim varFirstPoint As Variant

Dim varSecondPoint As Variant

Dim varTextLocation As Variant

Dim objDimAligned As AcadDimAligned

'Define the dimension

varFirstPoint = ThisDrawing.Utility.GetPoint(, "Select first point: ")

varSecondPoint = ThisDrawing.Utility.GetPoint(varFirstPoint, _

"Select second point: ")

varTextLocation = ThisDrawing.Utility.GetPoint(, _

"Pick dimension text location: ")

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 237

Figure 11-2. An aligned dimension

5793c11_final.qxd 8/22/05 2:11 AM Page 237

'Create an aligned dimension

Set objDimAligned = ThisDrawing.ModelSpace.AddDimAligned(varFirstPoint, _

varSecondPoint, varTextLocation)

objDimAligned.Update

MsgBox “Now we will change to Engineering units format”

objDimAligned.UnitsFormat = acDimLEngineering

objDimAligned.Update

End Sub

The DimAngular Object
The DimAngular object is much like the Dim3PointAngular object. It’s designed to hold dimen-
sion text displaying the angle between two lines or spanned by an arc or circle. You use the
AddDimAngular method to create a new DimAngular object.

Set DimAngularObject = Object.AddDimAngular(Vertex, Point1, Point2, TextPosition)

Table 11-7 shows the AddDimAngular method’s parameters.

Table 11-7. The AddDimAngular Method’s Parameters

Name Data Type Description

Vertex Variant A three-element array of doubles specifying the WCS position of
the vertex whose angle is to be measured

Point1 Variant A three-element array of doubles specifying the WCS position of
one of the end points

Point2 Variant A three-element array of doubles specifying the WCS position of
the other end point

TextPosition Variant A three-element array of doubles specifying the WCS position of
the text displaying the angle size

Figure 11-3 depicts an angular dimension for an arc.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS238

5793c11_final.qxd 8/22/05 2:11 AM Page 238

The following code sample shows how to use the AddDimAngular method. Once you’ve
added the new dimension, its units are changed to degrees, minutes, and seconds.

Public Sub AddAngularDimension()

Dim varAngularVertex As Variant

Dim varFirstPoint As Variant

Dim varSecondPoint As Variant

Dim varTextLocation As Variant

Dim objDimAngular As AcadDimAngular

'Define the dimension

varAngularVertex = ThisDrawing.Utility.GetPoint(, _

"Enter the center point: ")

varFirstPoint = ThisDrawing.Utility.GetPoint(varAngularVertex, _

"Select first point: ")

varSecondPoint = ThisDrawing.Utility.GetPoint(varAngularVertex, _

"Select second point: ")

varTextLocation = ThisDrawing.Utility.GetPoint(varAngularVertex, _

"Pick dimension text location: ")

'Create an angular dimension

Set objDimAngular = ThisDrawing.ModelSpace.AddDimAngular(_

varAngularVertex, varFirstPoint, varSecondPoint, varTextLocation)

objDimAngular.AngleFormat = acGrads

objDimAngular.Update

MsgBox "Angle measured in GRADS"

objDimAngular.AngleFormat = acDegreeMinuteSeconds

objDimAngular.TextPrecision = acDimPrecisionFour

objDimAngular.Update

MsgBox "Angle measured in Degrees Minutes Seconds"

End Sub

The DimDiametric Object
The DimDiametric object represents a dimension showing the length of a chord across a circle
or arc. The AddDimDiametric method creates a new diametric dimension.

DimDiametricObject = Object.AddDimDiametric _

(ChordPoint1, ChordPoint2, LeaderLength)

Table 11-8 shows the AddDimDiametric method’s parameters.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 239

5793c11_final.qxd 8/22/05 2:11 AM Page 239

Table 11-8. The AddDimDiametric Method’s Parameters

Name Data Type Description

ChordPoint1 Variant A three-element array of doubles specifying the WCS position
of one end of the chord to be measured

ChordPoint2 Variant A three-element array of doubles specifying the WCS position
of the other end of the chord to be measured

LeaderLength Double The distance from ChordPoint1 to the dimension text

Figure 11-4 depicts a diametric-style dimension.

The following code sample adds a new diametric dimension. The object snap mode set-
ting is changed so that the users can select only the diameter of their chosen circle. After the
dimension has been added, this setting returns to its original value.

Public Sub AddDiametricDimension()

Dim varFirstPoint As Variant

Dim varSecondPoint As Variant

Dim dblLeaderLength As Double

Dim objDimDiametric As AcadDimDiametric

Dim intOsmode As Integer

'get original object snap settings

intOsmode = ThisDrawing.GetVariable("osmode")

ThisDrawing.SetVariable "osmode", 512 ' Near

With ThisDrawing.Utility

varFirstPoint = .GetPoint(, "Select first point on circle: ")

ThisDrawing.SetVariable "osmode", 128 ' Per

varSecondPoint = .GetPoint(varFirstPoint, _

"Select a point opposite the first: ")

dblLeaderLength = .GetDistance(varFirstPoint, _

"Enter leader length from first point: ")

End With

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS240

Figure 11-4. A diametric dimension

5793c11_final.qxd 8/22/05 2:11 AM Page 240

Set objDimDiametric = ThisDrawing.ModelSpace.AddDimDiametric(_

varFirstPoint, varSecondPoint, dblLeaderLength)

objDimDiametric.UnitsFormat = acDimLEngineering

objDimDiametric.PrimaryUnitsPrecision = acDimPrecisionFive

objDimDiametric.FractionFormat = acNotStacked

objDimDiametric.Update

'reinstate original object snap settings

ThisDrawing.SetVariable "osmode", intOsmode

End Sub

The DimOrdinate Object
The DimOrdinate object represents dimensioning text displaying the absolute value of the X-
coordinate or Y-coordinate of a given point. You use the AddDimOrdinate method to create a
new ordinate dimension.

Set DimOrdinateObject = Object.AddDimOrdinate(DefinitionPoint, _

LeaderEndPoint, UseXAxis)

Table 11-9 shows the AddDimOrdinate method’s parameters.

Table 11-9. The AddDimOrdinate Method’s Parameters

Name Data Type Description

DefinitionPoint Variant A three-element array of doubles specifying, with respect to
the WCS, the point whose projection onto the X-axis or Y-axis
is to be measured.

LeaderEndPoint Variant A three-element array of doubles specifying the WCS
position of the dimension text placed at the end of an arrow.

UseXAxis Boolean Determines whether the DefinitionPoint is measured from
the X-axis or Y-axis. If this is set to True, the X-axis is used as
a reference.

Figure 11-5 depicts an ordinate-style dimension.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 241

Figure 11-5. An ordinate dimension

5793c11_final.qxd 8/22/05 2:11 AM Page 241

The following example sets an ordinate dimension for either the X or Y direction:

Public Sub AddOrdinateDimension()

Dim varBasePoint As Variant

Dim varLeaderEndPoint As Variant

Dim blnUseXAxis As Boolean

Dim strKeywordList As String

Dim strAnswer As String

Dim objDimOrdinate As AcadDimOrdinate

strKeywordList = "X Y"

'Define the dimension

varBasePoint = ThisDrawing.Utility.GetPoint(, _

"Select ordinate dimension position: ")

ThisDrawing.Utility.InitializeUserInput 1, strKeywordList

strAnswer = ThisDrawing.Utility.GetKeyword("Along Which Axis? <X/Y>: ")

If strAnswer = "X" Then

varLeaderEndPoint = ThisDrawing.Utility.GetPoint(varBasePoint, _

"Select X point for dimension text: ")

blnUseXAxis = True

Else

varLeaderEndPoint = ThisDrawing.Utility.GetPoint(varBasePoint, _

"Select Y point for dimension text: ")

blnUseXAxis = False

End If

'Create an ordinate dimension

Set objDimOrdinate = ThisDrawing.ModelSpace.AddDimOrdinate(_

varBasePoint, varLeaderEndPoint, blnUseXAxis)

objDimOrdinate.TextSuffix = "units"

objDimOrdinate.Update

End Sub

The DimRadial Object
A radial dimension displays the length of the radius of a circle or arc. You create it using the
AddDimRadial method.

Set DimRadialObject = Object.AddDimRadial (CenterPoint, ChordPoint, LeaderLength)

Table 11-10 shows the AddDimRadial method’s parameters.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS242

5793c11_final.qxd 8/22/05 2:11 AM Page 242

Table 11-10. The AddDimRadial Method’s Parameters

Name Data Type Description

CenterPoint Variant A three-element array of doubles specifying the WCS coor-
dinates of the center of an arc or circle

ChordPoint Variant A three-element array of doubles holding the WCS coordin-
ates of a point on the edge of the circle or arc at which an
arrow and the text will be placed

LeaderLength Double The distance from the text to the ChordPoint

Figure 11-6 depicts a radial-style dimension.

The following example illustrates the AddDimRadial method by adding a radial dimension
to a circle or arc picked by the user:

Public Sub AddRadialDimension()

Dim objUserPickedEntity As Object

Dim varEntityPickedPoint As Variant

Dim varEdgePoint As Variant

Dim dblLeaderLength As Double

Dim objDimRadial As AcadDimRadial

Dim intOsmode As Integer

intOsmode = ThisDrawing.GetVariable("osmode")

ThisDrawing.SetVariable "osmode", 512 ' Near

'Define the dimension

On Error Resume Next

With ThisDrawing.Utility

.GetEntity objUserPickedEntity, varEntityPickedPoint, _

"Pick Arc or Circle:"

If objUserPickedEntity Is Nothing Then

MsgBox "You did not pick an entity"

Exit Sub

End If

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 243

Figure 11-6. A radial dimension

5793c11_final.qxd 8/22/05 2:11 AM Page 243

varEdgePoint = .GetPoint(objUserPickedEntity.Center, _

"Pick edge point")

dblLeaderLength = .GetReal("Enter leader length from this point: ")

End With

'Create the radial dimension

Set objDimRadial = ThisDrawing.ModelSpace.AddDimRadial(_

objUserPickedEntity.Center, varEdgePoint, dblLeaderLength)

objDimRadial.ArrowheadType = acArrowArchTick

objDimRadial.Update

'reinstate original setting

ThisDrawing.SetVariable "osmode", intOsmode

End Sub

The DimRotated Object
The DimRotated object measures the length of the projection of a line onto a direction speci-
fied by an angle from the X-axis.

Set DimRotatedObject = Object.AddDimRotated(Point1, Point2, _

DimLocationPoint, RotationAngle)

Table 11-11 shows the AddDimRotated method’s parameters.

Table 11-11. The AddDimRotated Method’s Parameters

Name Data Type Description

Point1 Variant A three-element array of doubles specifying the WCS coordin-
ates of one end of a line

Point2 Variant A three-element array of doubles specifying the WCS coordin-
ates of the other end of a line

DimLocationPoint Variant A three-element array of doubles specifying the WCS coor-
dinates of a point lying on the line of the arrow and text

RotationAngle Double The angle of projection measured in radians from the
X-axis

Figure 11-7 depicts a rotated-style dimension.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS244

Figure 11-7. A rotated dimension

5793c11_final.qxd 8/22/05 2:11 AM Page 244

The following example illustrates how to add a rotated dimension at a position and angle
chosen by the user:

Public Sub AddRotatedDimension()

Dim varFirstPoint As Variant

Dim varSecondPoint As Variant

Dim varTextLocation As Variant

Dim strRotationAngle As String

Dim objDimRotated As AcadDimRotated

'Define the dimension

With ThisDrawing.Utility

varFirstPoint = .GetPoint(, "Select first point: ")

varSecondPoint = .GetPoint(varFirstPoint, "Select second point: ")

varTextLocation = .GetPoint(, "Pick dimension text location: ")

strRotationAngle = .GetString(False, "Enter rotation angle in degrees")

End With

'Create a rotated dimension

Set objDimRotated = ThisDrawing.ModelSpace.AddDimRotated(varFirstPoint, _

varSecondPoint, varTextLocation, _

ThisDrawing.Utility.AngleToReal(strRotationAngle, acDegrees))

objDimRotated.DecimalSeparator = ","

objDimRotated.Update

End Sub

Using the Tolerance Object
The Tolerance object represents a geometric tolerance in a feature control frame. Tolerances
specify allowable deviations of orientation, location, and so on, from the exact geometry of a
drawing.

Set ToleranceObject = Object.AddTolerance(Text, _

InsertionPoint, TextDirection)

Table 11-12 shows the AddTolerance method’s parameters.

Table 11-12. The AddTolerance Method’s Parameters

Name Data Type Description

Text String The text string to be displayed

InsertionPoint Variant A three-element array of doubles specifying the WCS point
at which the tolerance is inserted

TextDirection Variant A three-element array of doubles specifying the three-
dimensional vector for the direction of the tolerance text

Figure 11-8 depicts a tolerance feature flag.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 245

5793c11_final.qxd 8/22/05 2:11 AM Page 245

This code adds a Tolerance object to model space with the user-chosen text, position, and
direction:

Public Sub CreateTolerance()

Dim strToleranceText As String

Dim varInsertionPoint As Variant

Dim varTextDirection As Variant

Dim intI As Integer

Dim objTolerance As AcadTolerance

strToleranceText = InputBox("Please enter the text for the tolerance")

varInsertionPoint = ThisDrawing.Utility.GetPoint(, _

"Please enter the insertion point for the tolerance")

varTextDirection = ThisDrawing.Utility.GetPoint(varInsertionPoint, _

"Please enter a direction for the tolerance")

For intI = 0 To 2

varTextDirection(intI) = varTextDirection(intI) - varInsertionPoint(intI)

Next

Set objTolerance = ThisDrawing.ModelSpace.AddTolerance(strToleranceText, _

varInsertionPoint, varTextDirection)

End Sub

Table 11-13 shows the formatting codes for Tolerance symbols.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS246

Figure 11-8. A tolerance feature flag

5793c11_final.qxd 8/22/05 2:11 AM Page 246

Table 11-13. Formatting Codes for the Tolerance Feature’s Flag Symbols

Code Symbol

{\Fgdt;a} Angularity symbol (similar to <)

{\Fgdt;b} Perpendicularity symbol (two perpendicular lines)

{\Fgdt;c} Flatness symbol (parallelogram)

{\Fgdt;d} Profile of a surface symbol (closed half-circle)

{\Fgdt;e} Circularity or roundness symbol (single circle)

{\Fgdt;f} Parallelism symbol (//)

{\Fgdt;g} Cylindricity symbol (/O/)

{\Fgdt;h} Circular runout symbol ()

{\Fgdt;i} Symmetry symbol (like a division sign)

{\Fgdt;j} Positional symbol (circle with a cross in it)

{\Fgdt;k} Profile of a line symbol (open half-circle)

{\Fgdt;l} Least material condition symbol (circle with an L in it)

{\Fgdt;m} Maximum material condition symbol (circle with an M in it)

{\Fgdt;n} Diameter symbol

{\Fgdt;o} Square symbol

{\Fgdt;p} Projected tolerance zone symbol (circle with a P in it)

{\Fgdt;q} Centerline symbol

{\Fgdt;r} Concentricity symbol (two concentric circles)

{\Fgdt;s} Regardless of feature size (circle with an S in it)

{\Fgdt;t} Total runout symbol ()

{\Fgdt;u} Straightness symbol (-)

{\Fgdt;v} Counterbore symbol

{\Fgdt;w} Countersink symbol

{\Fgdt;x} Depth symbol

{\Fgdt;y} Conical taper symbol

{\Fgdt;z} Slope symbol

%%v Used to create a vertical separation line between each symbol

Tolerances are related to the dimension objects and so are influenced by several dimen-
sion system variables: DIMCLRD controls the color of the feature control frame, DIMCLRT controls
the color of the tolerance text, DIMGAP controls the gap between the feature control frame and
the text, DIMTXT controls the size of the tolerance text, and DIMTXTSTY controls the style of the
tolerance text.

→→
→

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 247

5793c11_final.qxd 8/22/05 2:11 AM Page 247

Working with Annotations
An annotation is simply explanatory text added to a drawing to clarify some aspect of that draw-
ing. The AutoCAD objects you may use for this purpose are the Text and MText objects, and for
blocks you may use the Attribute and AttributeReference objects (see Chapter 13 for more
information). In addition, you can use the Tolerance object to add text, but it’s more related to
the dimension objects, so I cover it later in the “Adding Annotations” section.. The format and
style of the text is controlled by the TextStyle object as well as a number of system variables.
In this section you’ll concentrate on the TextStyle object and how to set and use text styles.

Using the TextStyle Object
A text style determines the appearance of any text you add to a drawing. TextStyle objects
represent the settings for different styles and are held in the TextStyles collection. When
you first create a drawing, this collection contains only one TextStyle object, named Stan-
dard. You can read the settings for this object through code using the GetFont method and
the Height, Width, ObliqueAngle, and TextGenerationFlag properties outlined in the follow-
ing sections. Alternatively, you can view the settings in the Text Style dialog box, which you
access through the Format ➤ Text Style menu of the AutoCAD interface.

Figure 11-9 shows the Text Style dialog box.

Creating TextStyle Objects
By creating new TextStyle objects for different types of text or information, you can have at
your fingertips all the text styles that you require for a drawing. To create a new TextStyle
object, use the Add method as follows:

Set TextStyleObject = TextStylesCollection.Add(TextStyleName)

Table 11-14 shows the Add method’s parameter.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS248

Figure 11-9. Viewing settings in the Text Style dialog box

5793c11_final.qxd 8/22/05 2:11 AM Page 248

Table 11-14. The Add Method’s Parameter

Name Data Type Description

TextStyleName String An identifying name for the new TextStyle object

If you try to add a TextStyle with the name of an existing TextStyle object, this method
will return a reference to the existing object. The newly created object will have the same set-
tings as the active TextStyle object.

Retrieving and Setting Text Styles
Once you’ve created a new TextStyle object, you’ll need to set its font settings. You may also
want to modify or check the settings of an existing TextStyle object. You can do this through
the SetFont and GetFont methods. In addition, you can use the font settings held within an
.shx file through the FontFile and BigFontFile properties.

The SetFont Method

You use the SetFont method to define the font for a TextStyle object. It sets the typeface, sets
whether text will be bold and/or italicized, and sets the character set and pitch and family
definitions.

TextStyleObject.SetFont TypeFace, Bold, Italic, CharacterSet, PitchAndFamily

■Note Many TrueType fonts are licensed and aren’t provided for public use without explicit permission.
Be sure to comply with any licensing terms if you set a custom font and package the font with your drawing
files to send to customers.

Table 11-15 shows the SetFont method’s parameters.

Table 11-15. The SetFont Method’s Parameters

Name Data Type Description

TypeFace String The name of a font, for example, Times New Roman. If the
TextStyle is determined by an .shx file, this parameter holds
an empty string.

Bold Boolean Determines if the text will be bold. If this value is set to True,
the text will be bold. Otherwise, the text style isn’t bold.

Italic Boolean Determines if the text will be italicized. If this value is set to
True, the text will be italic. Otherwise, the text style isn’t italic.

Continued

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 249

5793c11_final.qxd 8/22/05 2:11 AM Page 249

Table 11-15. (Continued)

Name Data Type Description

CharacterSet Long Specifies the character set for the font. Use the following con-
stants in your application in the declaration section of your
code:
Public Const ANSI_CHARSET = 0
Public Const DEFAULT_CHARSET = 1
Public Const SYMBOL_CHARSET = 2
Public Const SHIFTJIS_CHARSET = 128
Public Const OEM_CHARSET = 255

PitchAndFamily Long Specifies the pitch and family values for the font. The value is
a combination of three different settings for pitch, family, and
optionally the TrueType flag (required only when you’re speci-
fying a TrueType font). Use the following constants in your
application in the declaration section of your code:
' Pitch Values
Public Const DEFAULT_PITCH = 0
Public Const FIXED_PITCH = 1
Public Const VARIABLE_PITCH = 2
' Family Values
Public Const FF_DONTCARE = 0
Public Const FF_ROMAN = 16
Public Const FF_SWISS = 32
Public Const FF_MODERN = 48
Public Const FF_SCRIPT = 64
Public Const FF_DECORATIVE = 80
' TrueType Flag
Public Const TMPF_TRUETYPE = &H4

This example creates a new TextStyle object and sets its font style to bold Greek symbols:

Public Sub AddTextStyle

Dim objTextStyle As AcadTextStyle

Set objTextStyle = ThisDrawing.TextStyles.Add("Bold Greek Symbols")

objTextStyle.SetFont "Symbol", True, False, 0, 0

End Sub

The GetFont Method

The GetFont method works in much the same way as the SetFont method, except it retrieves
the font settings.

TextStyleObject.GetFont TypeFace, Bold, Italic, CharacterSet, PitchAndFamily

Table 11-16 shows the GetFont method’s parameters.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS250

5793c11_final.qxd 8/22/05 2:11 AM Page 250

Table 11-16. The GetFont Method’s Parameters

Name Data Type Description

TypeFace String The name of a font, for example, Times New Roman. If the
TextStyle is determined by a .shx file, this parameter holds
an empty string.

Bold Boolean Determines if the text will be bold. If this value is set to True,
the text will be bold. Otherwise, the text style isn’t bold.

Italic Boolean Determines if the text will be italicized. If this value is set to
True, the text will be italic. Otherwise the text style isn’t italic.

CharacterSet Long See Table 11-15 for a description of this parameter.

PitchAndFamily Long See Table 11-15 for a description of this parameter.

The following example asks users for the name of a text style and then presents them with
the font settings:

Public Sub GetTextSettings()

Dim objTextStyle As AcadTextStyle

Dim strTextStyleName As String

Dim strTextStyles As String

Dim strTypeFace As String

Dim blnBold As Boolean

Dim blnItalic As Boolean

Dim lngCharacterSet As Long

Dim lngPitchandFamily As Long

Dim strText As String

' Get the name of each text style in the drawing

For Each objTextStyle In ThisDrawing.TextStyles

strTextStyles = strTextStyles & vbCr & objTextStyle.Name

Next

' Ask the user to select the Text Style to look at

strTextStyleName = InputBox("Please enter the name of the TextStyle " & _

"whose setting you would like to see" & vbCr & _

strTextStyles,"TextStyles", ThisDrawing.ActiveTextStyle.Name)

' Exit the program if the user input was cancelled or empty

If strTextStyleName = "" Then Exit Sub

On Error Resume Next

Set objTextStyle = ThisDrawing.TextStyles(strTextStyleName)

' Check for existence the text style

If objTextStyle Is Nothing Then

MsgBox "This text style does not exist"

Exit Sub

End If

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 251

5793c11_final.qxd 8/22/05 2:11 AM Page 251

' Get the Font properties

objTextStyle.GetFont strTypeFace, blnBold, blnItalic, lngCharacterSet, _

lngPitchandFamily

' Check for Type face

If strTypeFace = "" Then ' No True type

MsgBox "Text Style: " & objTextStyle.Name & vbCr & _

"Using file font: " & objTextStyle.fontFile, _

vbInformation, "Text Style: " & objTextStyle.Name

Else

' True Type font info

strText = "The text style: " & strTextStyleName & " has " & vbCrLf & _

"a " & strTypeFace & " type face"

If blnBold Then strText = strText & vbCrLf & " and is bold"

If blnItalic Then strText = strText & vbCrLf & " and is italicized"

MsgBox strText & vbCr & "Using file font: " & objTextStyle.fontFile, _

vbInformation, "Text Style: " & objTextStyle.Name

End If

End Sub

The FontFile Property

You use the FontFile property to set the TextStyle object to adopt the font style held in an
.shx file, or vice versa.

TextStyleObject.FontFile = FontFileName

Table 11-17 shows the FontFile property’s parameter.

Table 11-17. The FontFile Property’s Parameter

Name Data Type Description

FontFileName String The path and file name of the required font file

The following code sample sets the font file for a new TextStyle object named Roman to
be the romand.shx file:

Public Sub SetFontFile

Dim objTextStyle As AcadTextStyle

Set objTextStyle = ThisDrawing.TextStyles.Add("Roman")

objTextStyle.fontFile = "romand.shx"

End Sub

To set or retrieve the font settings of an Asian-language, big-font file, use the BigFontFile
property.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS252

5793c11_final.qxd 8/22/05 2:11 AM Page 252

Other TextStyle Properties

You can use some other properties of a TextStyle object to set the way text appears: Height,
Width, ObliqueAngle, and TextGenerationFlag.

Figure 11-10 shows the effects of setting the Height and Width properties. The Height prop-
erty simply holds the height of uppercase text in the current drawing units. The Width property,
on the other hand, sets the character spacing and may lie in the range 0 < Width ≤ 100. A value
of more than 1.0 expands the text; a value of less than 1.0 condenses it.

You can use the ObliqueAngle property to set the angle of slant of the text away from its
vertical axis. You may set it to any value between -858 and 858, with a negative value indicating
a slope to the left. Figure 11-11 shows the result of setting this property.

Finally, the TextGenerationFlag property determines whether the text is written back to
front and/or upside down. This property holds one or a combination of the acTextGeneration
constants given in Table 11-18.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 253

Figure 11-10. Some Height variations

Figure 11-11. Some ObliqueAngle variations

5793c11_final.qxd 8/22/05 2:11 AM Page 253

Table 11-18. TextGeneration’s Constants

Constant Value Description

acTextFlagBackward 2 The letters of the text appear in reverse order.

acTextFlagUpsideDown 4 The text appears upside down.

Figure 11-12 shows an example of each of the possible settings for the TextGenerationFlag
property.

Using a TextStyle
Once you’ve set up all the text fonts and formats for a TextStyle object, you’ll probably want
to use it. You have two ways to associate text to a particular style. The first way is to use the
StyleName property, which sets the style for a particular object. The second way is to make
a TextStyle object active, using the ActiveStyle property of the Document object, and set the
text style for newly created objects and any existing text objects that don’t have their StyleName
property set.

The StyleName Property
You use this property to set the style used with an object. To set or change the TextStyle used with
a Text, MText, Attribute, or AttributeRef object, simply set or reset the value of this property.

Object.StyleName = TextStyleName

Table 11-19 shows the StyleName property’s parameters.

Table 11-19. The StyleName Property’s Parameters

Name Data Type Description

Object Text, MText, Attribute, or The object to which the text style is linked
AttributeRef object

TextStyleName String The identifying name of the TextStyle object

This code changes all text in model space to adopt a user’s chosen text style:

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS254

Figure 11-12. Some TextGenerationFlag variations

5793c11_final.qxd 8/22/05 2:11 AM Page 254

Public Sub ChangeTextStyle()

Dim strTextStyles As String

Dim objTextStyle As AcadTextStyle

Dim objLayer As AcadLayer

Dim strLayerName As String

Dim strStyleName As String

Dim objAcadObject As AcadObject

On Error Resume Next

For Each objTextStyle In ThisDrawing.TextStyles

strTextStyles = strTextStyles & vbCr & objTextStyle.Name

Next

strStyleName = InputBox("Enter name of style to apply:" & vbCr & _

strTextStyles, "TextStyles", ThisDrawing.ActiveTextStyle.Name)

Set objTextStyle = ThisDrawing.TextStyles(strStyleName)

If objTextStyle Is Nothing Then

MsgBox "Style does not exist"

Exit Sub

End If

For Each objAcadObject In ThisDrawing.ModelSpace

If objAcadObject.ObjectName = "AcDbMText" Or _

objAcadObject.ObjectName = "AcDbText" Then

objAcadObject.StyleName = strStyleName

objAcadObject.Update

End If

Next

End Sub

The ActiveTextStyle Property
You use the ActiveTextStyle property to make a text style the default for any newly created
text and for any existing text that doesn’t have a particular text style already associated with it.

Set DocumentObject.ActiveTextStyle = TextStyleObject

Table 11-20 shows the ActiveTextStyle property’s parameter.

Table 11-20. The ActiveTextStyle Property’s Parameter

Name Data Type Description

TextStyleObject TextStyle object The object holding the setting for the required text
style

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 255

5793c11_final.qxd 8/22/05 2:11 AM Page 255

The following example sets the default text style based on user input:

Public Sub SetDefaultTextStyle()

Dim strTextStyles As String

Dim objTextStyle As AcadTextStyle

Dim strTextStyleName As String

For Each objTextStyle In ThisDrawing.TextStyles

strTextStyles = strTextStyles & vbCr & objTextStyle.Name

Next

strTextStyleName = InputBox("Enter name of style to apply:" & vbCr & _

strTextStyles, "TextStyles", ThisDrawing.ActiveTextStyle.Name)

If strTextStyleName = "" Then Exit Sub

On Error Resume Next

Set objTextStyle = ThisDrawing.TextStyles(strTextStyleName)

If objTextStyle Is Nothing Then

MsgBox "This text style does not exist"

Exit Sub

End If

ThisDrawing.ActiveTextStyle = objTextStyle

End Sub

Adding Annotations
To add annotations through VBA code, you need to add a Text, MText, or AttributeReference
object. You may add each of these objects to model space, paper space, or a block definition.
Chapters 8 and 13 provide details of how to add these objects. At this point, it’s worth men-
tioning the Leader object.

Using the Leader Object
A Leader object consists of an arrowhead attached to a spline or to straight-line segments. You
can use this object to associate text with a drawing object. To add a Leader object to your
drawing, use the AddLeader method.

Set LeaderObject = Object.AddLeader(PointsArray, Annotationtype, ArrowType)

Table 11-21 shows the AddLeader method’s parameters.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS256

5793c11_final.qxd 8/22/05 2:11 AM Page 256

Table 11-21. The AddLeader Method’s Parameters

Name Data Type Description

PointsArray Variant A three-element array of doubles specifying the 3-D WCS
coordinates of the vertices of line segments or the fit points of
a spline.

AnnotationType Object The annotation with which the leader is associated. This may
by a Tolerance, MText, or BlockRef object or NULL.

ArrowType Long One of the AcLeaderType constants identifying the appearance
of the leader.

Figure 11-13 shows each of the AcLeaderType constants and its result.

The following example adds a straight-line leader with associated text to model space.
The alignment of the text is set depending on the direction of the leader.

Public Sub CreateStraightLeaderWithNote()

Dim dblPoints(5) As Double

Dim varStartPoint As Variant

Dim varEndPoint As Variant

Dim intLeaderType As Integer

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS 257

Figure 11-13. Some LeaderType variations

5793c11_final.qxd 8/22/05 2:11 AM Page 257

Dim objAcadLeader As AcadLeader

Dim objAcadMtext As AcadMText

Dim strMtext As String

Dim intI As Integer

intLeaderType = acLineWithArrow

varStartPoint = ThisDrawing.Utility.GetPoint(, _

"Select leader start point: ")

varEndPoint = ThisDrawing.Utility.GetPoint(varStartPoint, _

"Select leader end point: ")

For intI = 0 To 2

dblPoints(intI) = varStartPoint(intI)

dblPoints(intI + 3) = varEndPoint(intI)

Next

strMtext = InputBox("Notes:", "Leader Notes")

If strMtext = "" Then Exit Sub

' Create the text for the leader

Set objAcadMtext = ThisDrawing.ModelSpace.AddMText(varEndPoint, _

Len(strMtext) * ThisDrawing.GetVariable("dimscale"), strMtext)

' Flip the alignment direction of the text

If varEndPoint(0) > varStartPoint(0) Then

objAcadMtext.AttachmentPoint = acAttachmentPointMiddleLeft

Else

objAcadMtext.AttachmentPoint = acAttachmentPointMiddleRight

End If

objAcadMtext.InsertionPoint = varEndPoint

'Create the leader object

Set objAcadLeader = ThisDrawing.ModelSpace.AddLeader(dblPoints, _

objAcadMtext, intLeaderType)

objAcadLeader.Update

End Sub

Summary
In this chapter you examined the AutoCAD VBA objects for creating textual and dimension
annotations. You use these objects to clarify a drawing’s purpose and display the size and
orientation of drawing elements. You also looked in detail at how to set up text and dimension
styles using the TextStyle and DimStyle objects.

CHAPTER 11 ■ DIMENSIONS AND ANNOTATIONS258

5793c11_final.qxd 8/22/05 2:11 AM Page 258

Selection Sets and Groups

AutoCAD allows users to perform many operations on arbitrary sets of entities. The user
builds these sets of entities either on an as-needed basis as a selection set or more perma-
nently as a group. Selection sets (also referred to as PickSets) are transient and are destroyed
when AutoCAD closes a drawing. Groups, on the other hand, are stored persistently in the
drawing file.

This chapter covers the following topics:

• Creating and manipulating selection sets and groups

• Filtering sets of entities using selection set filters

• Interacting with users by building dynamic selection sets

• Working with the PickFirst selection set

• Manipulating groups

Selection Sets
A selection set is a temporary collection of drawing entities. With a selection set, users can
perform an operation such as move, copy, or delete on a number of entities at once, rather
than on one entity at a time.

Each AutoCAD drawing has a SelectionSets collection that contains SelectionSet
objects. You can create any number of selection sets by adding new SelectionSet objects to
the SelectionSets collection. Because selection sets aren’t persistent, and so disappear when
the drawing is closed, the SelectionSets collection will always be empty when a drawing is
first opened or created.

Adding a SelectionSet Object
Selection sets are usually added to the collection on an as-needed basis. You can create as
many as you need, but they’re typically transient—you create them on demand and then dis-
card them. You use the Add method (see Table 12-1 for parameter details) of the SelectionSets
collection to create a SelectionSet object.

Set SelectionSetObject = SelectionSetsCollection.Add(SelectionSetName)

Table 12-1 explains this method’s parameter.
259

C H A P T E R 1 2

■ ■ ■

5793c12_final.qxd 8/22/05 2:10 AM Page 259

Table 12-1. The Add Method Parameter

Name Data Type Description

SelectionSetName String Name of the newly created selection set

The Name parameter is simply used as a handle for the newly created selection set; it’s never
shown in the user interface. If a SelectionSet object already exists in the current drawing with
that name, an exception is raised. Using the Item method, you can use the Name parameter to
retrieve the selection set during the same session in which it was created.

The following example attempts to add a selection set using a name obtained from the user:

Public Sub TestAddSelectionSet()

Dim objSS As AcadSelectionSet

Dim strName As String

On Error Resume Next

'' get a name from user

strName = InputBox("Enter a new selection set name: ")

If "" = strName Then Exit Sub

'' create it

Set objSS = ThisDrawing.SelectionSets.Add(strName)

'' check if it was created

If objSS Is Nothing Then

MsgBox "Unable to Add '" & strName & "'"

Else

MsgBox "Added selection set '" & objSS.Name & "'"

End If

End Sub

Try adding a few selection sets. You’ll access them again in the next example.

Accessing and Iterating Selection Sets
As I mentioned previously, you access the SelectionSets collection via a Document object. In
the following code, ThisDrawing is used as the active document:

Dim objSelections As AcadSelectionSets

Set objSelections = ThisDrawing.SelectionSets

To set a reference to an existing SelectionSet object, use the Item method of the
SelectionSets collection:

Dim objSelection As AcadSelectionSet

Set objSelection = objSelections.Item(2)

Set objSelection = objSelections.Item("My SelectionSet")

CHAPTER 12 ■ SELECTION SETS AND GROUPS260

5793c12_final.qxd 8/22/05 2:10 AM Page 260

The parameter of this method is either a number representing the position of the desired
SelectionSet object within the SelectionSets collection, or a string representing the name
of the desired SelectionSet object. If you use an index number, it must be between 0 and
SelectionSets.Count minus 1. The Count property returns the total number of SelectionSet
objects in the collection.

As with other AutoCAD collections, Item is the default method for SelectionSets. This
means that you may omit the method name and the parameter is passed straight to the
SelectionSets reference. This is often preferred because it’s simpler to type and read, but
you should avoid using default methods as Microsoft is moving away from implicitness to
explicitness in programming technologies such as .NET. The following code does the same
thing as the earlier example using the default method to specify the SelectionSet object:

Dim objSelection As AcadSelectionSet

Set objSelection = objSelections(2)

Set objSelection = objSelections("My SelectionSet")

While this example works, it is recommended that you explicitly indicate the method or prop-
erty instead of relying on a default method or property.

Iterating the SelectionSets Collection
Situations will arise in which a programmer needs to step through each item in a collection
one at a time—perhaps to check or alter some property of every element. Like all collections
in VBA, SelectionSets has built-in support for iteration using a For ... Each loop.

The following example iterates the SelectionSets collection and displays the name of all the
SelectionSet objects in a message box. Try it after running the previous TestAddSelectionSet
example.

Public Sub ListSelectionSets()

Dim objSS As AcadSelectionSet

Dim strSSList As String

For Each objSS In ThisDrawing.SelectionSets

strSSList = strSSList & vbCr & objSS.Name

Next

MsgBox strSSList, , "List of Selection Sets"

End Sub

Selecting Entities
Newly created SelectionSet objects are empty. A SelectionSet is populated either by adding
an array of objects, which I describe how to do later in this chapter, or by using one of the
SelectXXX methods I describe in this section. There are SelectXXX methods for obtaining enti-
ties by specific point, by window, by arbitrary fence or polygon, by dynamic user selection,
and by filtering the entities using specific criteria.

CHAPTER 12 ■ SELECTION SETS AND GROUPS 261

5793c12_final.qxd 8/22/05 2:10 AM Page 261

The Select Method
The Select method (see Table 12-2 for parameter details) is the basic way to add entities to
SelectionSet objects. It allows you to select the previous selection set, the last visible entity,
everything in the current space, or rectangular region.

SelectionSetObject.Select Mode [, Point1, Point2] _

[, FilterCodes, FilterValues]

The Select method has several modes of operation specified by the Mode parameter. Auto-
CAD provides the following AcSelect enum constants for use with this parameter, as shown in
Table 12-3.

Table 12-2. Select Method Parameters

Name Data Type Description

Mode Long Determines the selection mode to be used. It must be one of
the AcSelect constants described in Table 12-3.

Point1 Variant An optional three-element array of doubles indicating the first
corner of a rectangular region. It must be used in conjunction
with Point2.

Point2 Variant An optional three-element array of doubles indicating the other
corner of a rectangular region. It must be used in conjunction
with Point1.

FilterCodes Variant An optional array of integer entity selection filter codes. It must
be used in conjunction with, and have the same length as,
FilterValues.

FilterValues Variant An optional array of variant entity selection filter values. It must
be used in conjunction with, and have the same length as,
FilterCodes.

Table 12-3. Select Method Modes

Constant Value Description

acSelectionSetWindow 0 Entities completely contained within a window
specified by Point1 and Point2 are selected.

acSelectionSetCrossing 1 Entities contained or crossing over a window specified
by Point1 and Point2 are selected.

acSelectionSetPrevious 3 Entities from the most recent selection set in the
current space are selected. Point1 and Point2 aren’t
used.

acSelectionSetLast 4 The most recently created entity within the current
viewport is selected. Point1 and Point2 aren’t used.

acSelectionSetAll 5 All entities in the current space are selected. Point1
and Point2 aren’t used.

■Note The Select method is capable of selecting entities on all layers, even if a certain layer is frozen or
locked.

CHAPTER 12 ■ SELECTION SETS AND GROUPS262

5793c12_final.qxd 8/22/05 2:10 AM Page 262

The following example creates a new selection set and then populates it based on user
input. Try each of the modes to see how they differ.

Public Sub TestSelect()

Dim objSS As AcadSelectionSet

Dim varPnt1 As Variant

Dim varPnt2 As Variant

Dim strOpt As String

Dim lngMode As Long

On Error GoTo Done

With ThisDrawing.Utility

'' get input for mode

.InitializeUserInput 1, "Window Crossing Previous Last All"

strOpt = .GetKeyword(vbCr & _

"Select [Window/Crossing/Previous/Last/All]: ")

'' convert keyword into mode

Select Case strOpt

Case "Window": lngMode = acSelectionSetWindow

Case "Crossing": lngMode = acSelectionSetCrossing

Case "Previous": lngMode = acSelectionSetPrevious

Case "Last": lngMode = acSelectionSetLast

Case "All": lngMode = acSelectionSetAll

End Select

'' create a new selectionset

Set objSS = ThisDrawing.SelectionSets.Add("TestSelectSS")

'' if it's window or crossing, get the points

If "Window" = strOpt Or "Crossing" = strOpt Then

'' get first point

.InitializeUserInput 1

varPnt1 = .GetPoint(, vbCr & "Pick the first corner: ")

'' get corner, using dashed lines if crossing

.InitializeUserInput 1 + IIf("Crossing" = strOpt, 32, 0)

varPnt2 = .GetCorner(varPnt1, vbCr & "Pick other corner: ")

'' select entities using points

objSS.Select lngMode, varPnt1, varPnt2

Else

'' select entities using mode

objSS.Select lngMode

End If

CHAPTER 12 ■ SELECTION SETS AND GROUPS 263

5793c12_final.qxd 8/22/05 2:10 AM Page 263

'' highlight the selected entities

objSS.Highlight True

'' pause for the user

.GetString False, vbCr & "Enter to continue"

'' unhighlight the entities

objSS.Highlight False

End With

Done:

'' if the selectionset was created, delete it

If Not objSS Is Nothing Then

objSS.Delete

End If

End Sub

Selection Set Filters

You use the optional FilterCodes and FilterValues parameters to filter the selection of enti-
ties based on some criteria. Common criteria include objects with a specific color or linetype,
or objects on a particular layer.

The FilterCodes parameter is an array of integers that specifies the entity group codes
to filter. Entity group codes are available for every entity property. See the AutoCAD DXF Ref-
erence for a complete listing of the available group codes. The FilterValues parameter is an
array of variants that specifies the corresponding values for each entity group code present in
the FilterCodes parameter. Because these two arrays have a one-to-one mapping, they must
be of the same length.

The following example filters all the entities into a selection set based on a layer name
entered by the user:

Public Sub TestSelectionSetFilter()

Dim objSS As AcadSelectionSet

Dim intCodes(0) As Integer

Dim varCodeValues(0) As Variant

Dim strName As String

On Error GoTo Done

With ThisDrawing.Utility

strName = .GetString(True, vbCr & "Layer name to filter: ")

If "" = strName Then Exit Sub

'' create a new selectionset

Set objSS = ThisDrawing.SelectionSets.Add("TestSelectionSetFilter")

CHAPTER 12 ■ SELECTION SETS AND GROUPS264

5793c12_final.qxd 8/22/05 2:10 AM Page 264

'' set the code for layer

intCodes(0) = 8

'' set the value specified by user

varCodeValues(0) = strName

'' filter the objects

objSS.Select acSelectionSetAll, , , intCodes, varCodeValues

'' highlight the selected entities

objSS.Highlight True

'' pause for the user

.Prompt vbCr & objSS.Count & " entities selected"

.GetString False, vbLf & "Enter to continue "

'' unhighlight the entities

objSS.Highlight False

End With

Done:

'' if the selection was created, delete it

If Not objSS Is Nothing Then

objSS.Delete

End If

End Sub

When multiple filter codes are specified, they’re implicitly combined using a logical AND
operator. You can explicitly control how codes contribute to the selection criteria by using
filter operators. The filter operators are designated by a special group code of –4 and special
string keywords for the values. You use filter operators in pairs surrounding a number of filter
codes known as operands.

Table 12-4 lists the SelectionSet filter operators, their meanings, and the required num-
ber of operands.

CHAPTER 12 ■ SELECTION SETS AND GROUPS 265

Table 12-4. SelectionSet Filter Operators

Filter Operator Start and End Value Number of Operands Description

“<AND” … One or more A logical AND of all the operands. If
"AND>" a criterion matches all of the oper-

ands, it will be included. This is the
default for multiple criteria when no
filter operators are specified.

“<OR” … One or more A logical OR of all the operands.
"OR>" If a criterion matches any of the

operands, it will be included.

Continued

5793c12_final.qxd 8/22/05 2:10 AM Page 265

Table 12-4. (Continued)

Filter Operator Start and End Value Number of Operands Description

“<XOR” … Exactly two A logical XOR of two operands.
"XOR>" If a criterion matches one but not

the other, it will be included.

“<NOT” … Exactly one A logical NOT of a single operand.
"NOT>" If a criterion doesn’t match the

operand, it will be included.

CHAPTER 12 ■ SELECTION SETS AND GROUPS266

The following example uses filter operators to limit the selection to lines, arcs, and circles
that are not on a specified layer:

Public Sub TestSelectionSetOperator()

Dim objSS As AcadSelectionSet

Dim intCodes() As Integer

Dim varCodeValues As Variant

Dim strName As String

On Error GoTo Done

With ThisDrawing.Utility

strName = .GetString(True, vbCr & "Layer name to exclude: ")

If "" = strName Then Exit Sub

'' create a new selectionset

Set objSS = ThisDrawing.SelectionSets.Add("TestSelectionSetOperator")

'' using 9 filters

ReDim intCodes(9): ReDim varCodeValues(9)

'' set codes and values - indented for clarity

intCodes(0) = -4: varCodeValues(0) = "<and"

intCodes(1) = -4: varCodeValues(1) = "<or"

intCodes(2) = 0: varCodeValues(2) = "line"

intCodes(3) = 0: varCodeValues(3) = "arc"

intCodes(4) = 0: varCodeValues(4) = "circle"

intCodes(5) = -4: varCodeValues(5) = "or>"

intCodes(6) = -4: varCodeValues(6) = "<not"

intCodes(7) = 8: varCodeValues(7) = strName

intCodes(8) = -4: varCodeValues(8) = "not>"

intCodes(9) = -4: varCodeValues(9) = "and>"

'' filter the objects

objSS.Select acSelectionSetAll, , , intCodes, varCodeValues

'' highlight the selected entities

objSS.Highlight True

5793c12_final.qxd 8/22/05 2:10 AM Page 266

'' pause for the user

.Prompt vbCr & objSS.Count & " entities selected"

.GetString False, vbLf & "Enter to continue "

'' unhighlight the entities

objSS.Highlight False

End With

Done:

'' if the selection was created, delete it

If Not objSS Is Nothing Then

objSS.Delete

End If

End Sub

The group code values can contain wild-card expressions if the code represents a string
property. You can often use wild-card expressions to make filter criteria more succinct. For
example, the preceding filter took nine group codes to define. By using wild cards, you can
reduce it to just two:

ReDim intCodes(1): ReDim varCodeValues(1)

intCodes(0) = 0: varCodeValues(0) = "line,arc,circle"

intCodes(1) = 8: varCodeValues(1) = "~" & strName

See the AutoCAD 2006 Customization Guide for more details on wild-card expressions.

The SelectOnScreen Method
You use this method to obtain a selection of entities interactively from the user (see Table 12-5
for parameter details). A Select Objects prompt is shown at the command line, where all the
standard selection-set options such as Window, Crossing, and Last are available to the user for
dynamic selection.

SelectionSetObject.SelectOnScreen [, FilterCodes, FilterValues]

Table 12-5. SelectOnScreen Method Parameters

Name Data Type Description

FilterCodes Variant An optional array of integer entity selection filter codes. This
must be used in conjunction with, and have the same length
as, FilterValues.

FilterValues Variant An optional array of variant entity selection filter values. This
must be used in conjunction with, and have the same length
as, FilterCodes.

Like the Select method, SelectOnScreen can filter the selected entities using criteria spec-
ified in the FilterCodes and FilterValues parameters. See the “Selection Set Filters” section
for a full description of filtering.

CHAPTER 12 ■ SELECTION SETS AND GROUPS 267

5793c12_final.qxd 8/22/05 2:10 AM Page 267

The following example gets a selection of entities dynamically from the user:

Public Sub TestSelectOnScreen()

Dim objSS As AcadSelectionSet

On Error GoTo Done

With ThisDrawing.Utility

'' create a new selectionset

Set objSS = ThisDrawing.SelectionSets.Add("TestSelectOnScreen")

'' let user select entities interactively

objSS.SelectOnScreen

'' highlight the selected entities

objSS.Highlight True

'' pause for the user

.Prompt vbCr & objSS.Count & " entities selected"

.GetString False, vbLf & "Enter to continue "

'' unhighlight the entities

objSS.Highlight False

End With

Done:

'' if the selection was created, delete it

If Not objSS Is Nothing Then

objSS.Delete

End If

End Sub

The SelectAtPoint Method
The SelectAtPoint method (see Table 12-6 for parameter details) selects a single entity that
passes through a specified point. Unlike most of the other SelectXXX methods (except the
acSelectionSetLast mode of Select), it selects only a single entity.

SelectionSet.SelectAtPoint Point [,FilterCodes, FilterValues]

CHAPTER 12 ■ SELECTION SETS AND GROUPS268

5793c12_final.qxd 8/22/05 2:10 AM Page 268

Table 12-6. SelectAtPoint Method Parameters

Name Data Type Description

Point Variant A three-element array of doubles indicating the point through
which the selected entity must pass.

FilterCodes Variant An optional array of integer entity selection filter codes. This
must be used in conjunction with, and have the same length
as, FilterValues.

FilterValues Variant An optional array of variant entity selection filter values. This
must be used in conjunction with, and have the same length
as, FilterCodes.

Like the other Select methods, SelectAtPoint can filter the selected entities using criteria
specified in the FilterCodes and FilterValues parameters. (This was covered earlier in the
“Selection Set Filters” section.)

The following example selects an entity passing through a point chosen by the user:

Public Sub TestSelectAtPoint()

Dim varPick As Variant

Dim objSS As AcadSelectionSet

On Error GoTo Done

With ThisDrawing.Utility

'' create a new selectionset

Set objSS = ThisDrawing.SelectionSets.Add("TestSelectAtPoint")

'' get a point of selection from the user

varPick = .GetPoint(, vbCr & "Select entities at a point: ")

'' let user select entities interactively

objSS.SelectAtPoint varPick

'' highlight the selected entities

objSS.Highlight True

'' pause for the user

.Prompt vbCr & objSS.Count & " entities selected"

.GetString False, vbLf & "Enter to continue "

'' unhighlight the entities

objSS.Highlight False

End With

Done:

CHAPTER 12 ■ SELECTION SETS AND GROUPS 269

5793c12_final.qxd 8/22/05 2:10 AM Page 269

'' if the selection was created, delete it

If Not objSS Is Nothing Then

objSS.Delete

End If

End Sub

The SelectByPolygon Method
This method (see Table 12-7 for parameter details) selects entities by using a boundary that
may be either a closed polygon or an open figure called a fence. In the case of a closed poly-
gon, you can further limit entities to only those lying completely within the polygon
(Window-Polygon) or those that pass through the boundary, as well (Crossing-Polygon).

SelectionSetObject.SelectByPolygon Mode, Vertices _

[, FilterType, FilterData]

Table 12-7. SelectByPolygon Method Parameters

Name Data Type Description

Mode Long Determines the selection mode to be used. It must be one of
the AcSelect constants described in Table 12-8.

Vertices Variant A required array of doubles specifying a list of 3-D vertex points
in WCS coordinates. It’s a simple array with a single dimension
composed of alternating X, Y, and Z values (i.e., p1x, p1y, p1z,
p2x, p2y, p2z, etc.).

FilterType Variant An optional array of integer entity selection filter codes. This
must be used in conjunction with, and have the same length
as, FilterData.

FilterData Variant An optional array of variant entity selection filter values. This
must be used in conjunction with, and have the same length
as, FilterType.

The SelectByPolygon method has several modes of operation specified by the Mode
parameter. AutoCAD provides the AcSelect constants listed in Table 12-8 for use with this
parameter.

Table 12-8. SelectByPolygon Method Modes

Constant Value Description

acSelectionSetFence 2 Entities crossing a multisegment fence specified
by Vertices. At least two vertices must be
specified.

acSelectionSetWindowPolygon 6 Entities completely contained within a polygon
specified by the Vertices are selected. At least
three vertices must be specified.

acSelectionSetCrossingPolygon 7 Entities contained within or crossing a polygon
specified by the Vertices are selected. At least
three vertices must be specified.

CHAPTER 12 ■ SELECTION SETS AND GROUPS270

5793c12_final.qxd 8/22/05 2:10 AM Page 270

Like the other Select methods, SelectByPolygon can filter the selected entities using crite-
ria specified in the FilterCodes and FilterValues parameters. See the “Selection Set Filters”
section for a full description of filtering.

The following example selects entities based on a user-specified boundary and mode:

Public Sub TestSelectByPolygon()

Dim objSS As AcadSelectionSet

Dim strOpt As String

Dim lngMode As Long

Dim varPoints As Variant

On Error GoTo Done

With ThisDrawing.Utility

'' create a new selectionset

Set objSS = ThisDrawing.SelectionSets.Add("TestSelectByPolygon1")

'' get the mode from the user

.InitializeUserInput 1, "Fence Window Crossing"

strOpt = .GetKeyword(vbCr & "Select by [Fence/Window/Crossing]: ")

'' convert keyword into mode

Select Case strOpt

Case "Fence": lngMode = acSelectionSetFence

Case "Window": lngMode = acSelectionSetWindowPolygon

Case "Crossing": lngMode = acSelectionSetCrossingPolygon

End Select

'' let user digitize points

varPoints = InputPoints()

'' select entities using mode and points specified

objSS.SelectByPolygon lngMode, varPoints

'' highlight the selected entities

objSS.Highlight True

'' pause for the user

.Prompt vbCr & objSS.Count & " entities selected"

.GetString False, vbLf & "Enter to continue "

'' unhighlight the entities

objSS.Highlight False

End With

Done:

CHAPTER 12 ■ SELECTION SETS AND GROUPS 271

5793c12_final.qxd 8/22/05 2:10 AM Page 271

'' if the selection was created, delete it

If Not objSS Is Nothing Then

objSS.Delete

End If

End Sub

This example uses a helper function named InputPoints to obtain the boundary points.
Here’s the code for this function:

Function InputPoints() As Variant

Dim varStartPoint As Variant

Dim varNextPoint As Variant

Dim varWCSPoint As Variant

Dim lngLast As Long

Dim dblPoints() As Double

On Error Resume Next

'' get first points from user

With ThisDrawing.Utility

.InitializeUserInput 1

varStartPoint = .GetPoint(, vbLf & "Pick the start point: ")

'' setup initial point

ReDim dblPoints(2)

dblPoints(0) = varStartPoint(0)

dblPoints(1) = varStartPoint(1)

dblPoints(2) = varStartPoint(2)

varNextPoint = varStartPoint

'' append vertexes in a loop

Do

'' translate picked point to UCS for basepoint below

varWCSPoint = .TranslateCoordinates(varNextPoint, acWorld, _

acUCS, True)

'' get user point for new vertex, use last pick as basepoint

varNextPoint = .GetPoint(varWCSPoint, vbCr & _

"Pick another point <exit>: ")

'' exit loop if no point picked

If Err Then Exit Do

'' get the upper bound

lngLast = UBound(dblPoints)

'' expand the array

ReDim Preserve dblPoints(lngLast + 3)

CHAPTER 12 ■ SELECTION SETS AND GROUPS272

5793c12_final.qxd 8/22/05 2:10 AM Page 272

'' add the new point

dblPoints(lngLast + 1) = varNextPoint(0)

dblPoints(lngLast + 2) = varNextPoint(1)

dblPoints(lngLast + 3) = varNextPoint(2)

Loop

End With

'' return the points

InputPoints = dblPoints

End Function

Figure 12-1 illustrates the results of the three selection options. The solid shapes represent
AutoCAD drawing objects, and the dashed line represents the path of the selecting polygon.

The following parameters are used to define the area selected:

acSelectionSetFence: only the ellipse is selected

acSelectionSetWindowPolygon: the circle and square are both selected

acSelectionSetCrossingPolygon: all objects are selected

Adding and Removing Items
You can add individual entities to and remove individual entities from a selection set by using
the AddItem and RemoveItem methods (see Table 12-9 for parameter details). These methods
take an array of entities as a parameter. Both methods will raise exceptions if they’re unable
to add or remove all the entities in the array.

SelectionSetObject.AddItem(Entities)

SelectionSetObject.RemoveItem(Entities)

CHAPTER 12 ■ SELECTION SETS AND GROUPS 273

Figure 12-1. TestSelectByPolygon example output

5793c12_final.qxd 8/22/05 2:10 AM Page 273

Table 12-9.The AddItem and RemoveItem Method Parameter

Name Data Type Description

Entities Array of AcadEntity objects The entities to add to or remove from the selection
set

The following example adds and removes entities in a selection set until the user is satis-
fied with his or her choice:

Public Sub TestSelectAddRemoveClear()

Dim objSS As AcadSelectionSet

Dim objSStmp As AcadSelectionSet

Dim strType As String

Dim objEnts() As AcadEntity

Dim intI As Integer

On Error Resume Next

With ThisDrawing.Utility

'' create a new selectionset

Set objSS = ThisDrawing.SelectionSets.Add("ssAddRemoveClear")

If Err Then GoTo Done

'' create a new temporary selection

Set objSStmp = ThisDrawing.SelectionSets.Add("ssAddRemoveClearTmp")

If Err Then GoTo Done

'' loop until the user has finished

Do

'' clear any pending errors

Err.Clear

'' get input for type

.InitializeUserInput 1, "Add Remove Clear Exit"

strType = .GetKeyword(vbCr & "Select [Add/Remove/Clear/Exit]: ")

'' branch based on input

If "Exit" = strType Then

'' exit if requested

Exit Do

ElseIf "Clear" = strType Then

'' unhighlight the main selection

objSS.Highlight False

CHAPTER 12 ■ SELECTION SETS AND GROUPS274

5793c12_final.qxd 8/22/05 2:10 AM Page 274

'' clear the main set

objSS.Clear

'' otherwise, we're adding/removing

Else

'' clear the temporary selection

objSStmp.Clear

objSStmp.SelectOnScreen

'' highlight the temporary selection

objSStmp.Highlight True

'' convert temporary selection to array

'' resize the entity array to the selection size

ReDim objEnts(objSStmp.Count - 1)

'' copy entities from the selection to entity array

For intI = 0 To objSStmp.Count - 1

Set objEnts(intI) = objSStmp(intI)

Next

'' add/remove items from main selection using entity array

If "Add" = strType Then

objSS.AddItems objEnts

Else

objSS.RemoveItems objEnts

End If

'' unhighlight the temporary selection

objSStmp.Highlight False

'' highlight the main selection

objSS.Highlight True

End If

Loop

End With

Done:

'' if the selections were created, delete them

If Not objSS Is Nothing Then

'' unhighlight the entities

objSS.Highlight False

CHAPTER 12 ■ SELECTION SETS AND GROUPS 275

5793c12_final.qxd 8/22/05 2:10 AM Page 275

'' delete the main selection

objSS.Delete

End If

If Not objSStmp Is Nothing Then

'' delete the temporary selection

objSStmp.Delete

End If

End Sub

The Clear, Delete, and Erase Methods
The remaining methods deal with clearing all entities from the selection, deleting the
SelectionSet object itself, and erasing all the selected entities.

The Clear method simply clears the contents of a SelectionSet object. Entities that
were in the selection are still present in the AutoCAD drawing—they’re just no longer in the
selection set.

SelectionSetObject.Clear

The Delete method deletes a SelectionSet object by removing it from the SelectionSets
collection. Entities that were in the selection are still present in the AutoCAD drawing—the
selection set is just deleted. Most of the examples in this chapter have used Delete after
the program is complete.

SelectionSetObject.Delete

The Erase method erases the contents of a SelectionSet object from the AutoCAD draw-
ing. Entities that were in the selection are immediately erased, but the SelectionSet object is
still active and new entities may be added to it.

SelectionSetObject.Erase

The following example erases a selection of entities based on user input:

Public Sub TestSelectErase()

Dim objSS As AcadSelectionSet

On Error GoTo Done

With ThisDrawing.Utility

'' create a new selectionset

Set objSS = ThisDrawing.SelectionSets.Add("TestSelectErase")

'' let user select entities interactively

objSS.SelectOnScreen

'' highlight the selected entities

objSS.Highlight True

CHAPTER 12 ■ SELECTION SETS AND GROUPS276

5793c12_final.qxd 8/22/05 2:10 AM Page 276

'' erase the selected entities

objSS.Erase

'' prove that the selection is empty (but still viable)

.Prompt vbCr & objSS.Count & " entities selected"

End With

Done:

'' if the selection was created, delete it

If Not objSS Is Nothing Then

objSS.Delete

End If

End Sub

The PickFirstSelectionSet Property
AutoCAD allows users to select entities in either a verb-noun or a noun-verb manner. A verb-
noun selection is one in which a command is issued first, followed by a selection of entities
to work with. A noun-verb selection is one in which entities are selected first and then a com-
mand that uses them is issued. One of the benefits of noun-verb selection is that by performing
only one selection, you can run multiple independent commands in sequence on the same set
of entities without having to explicitly use the Previous option.

The selection of entities built by the user when AutoCAD is idle at the command
prompt is called the PickFirst selection set. This selection set is available via the read-only
PickfirstSelectionSet property of each drawing object. A special SelectionSet named
PICKFIRST is created by AutoCAD whenever the property is accessed. If the user does not
preselect any entities, this selection set will be empty.

Set SelectionSetObject = DocumentObject.PickfirstSelectionSet

The SelectionChanged Event
By using the SelectionChanged event of each Document object, you can receive notification
every time the user adds entities to or removes entities from the PickFirst selection set. This
event is fired any time the PickFirst selection set is altered. Chapter 4 discusses events in
more detail.

To demonstrate that the SelectionChanged event is triggered, the following example,
which you should place in the ThisDrawing module, tells the user how many objects are in the
PickFirst selection set and then changes the highlight of the PickFirst selection set after a half
second.

Private Sub AcadDocument_SelectionChanged()

Dim objSS As AcadSelectionSet

Dim dblStart As Double

'' get the pickfirst selection from drawing

Set objSS = ThisDrawing.PickfirstSelectionSet

CHAPTER 12 ■ SELECTION SETS AND GROUPS 277

5793c12_final.qxd 8/22/05 2:10 AM Page 277

'' highlight the selected entities

objSS.Highlight True

MsgBox "There are " & objSS.Count & " objects in selection set: " & objSS.Name

'' delay for 1/2 second

dblStart = Timer

Do While Timer < dblStart + 0.5

Loop

'' unhighlight the selected entities

objSS.Highlight False

End Sub

Groups
AutoCAD allows you to have a more permanent form of selection set called a group. Just like
SelectionSet objects, Group objects associate an arbitrary set of entities into a collection that
you can use all at once in many operations. You can associate entities with any number of
groups, and you can have any number of entities in a single group.

By default, when an entity that belongs to a group is selected, all the other members of
the group are automatically selected as well. The behavior is controlled by the PICKSTYLE
system variable. See the AutoCAD User’s Guide for details on other possible values for this
variable.

Despite being collected into a group, entities that make up a group are still easily editable
on an individual basis. This is in contrast to blocks in which, once entities are collected into
a Block Definition and then inserted, the entities are quite difficult to edit individually. How-
ever, it’s interesting to note that Group objects can have Xdata attached to them, and they have
available nearly all the same default properties that other entities have, such as Color, Linetype,
Lineweight, PlotStyle, Visible, and even TrueColor.

You normally create and edit groups through the Object Grouping dialog box (see Fig-
ure 12-2), which you can view by typing GROUP at the AutoCAD command prompt.

CHAPTER 12 ■ SELECTION SETS AND GROUPS278

5793c12_final.qxd 8/22/05 2:10 AM Page 278

Adding a Group Object
Just like with selection sets, you use the Add method of the collection to create a new Group
object as detailed in Table 12-10.

Set GroupObject = GroupsCollection.Add(Name)

Table 12-10. The Add Method Parameter

Name Data Type Description

Name String The name of the newly created group

If you try to add a Group object with a name that is already being used, this method will
return a reference to the existing object.

The following example attempts to add a group using a name obtained from the user:

Public Sub TestAddGroup()

Dim objGroup As AcadGroup

Dim strName As String

On Error Resume Next

'' get a name from user

strName = InputBox("Enter a new group name: ")

If "" = strName Then Exit Sub

Set objGroup = ThisDrawing.Groups.Item(strName)

'' create it

If Not objGroup Is Nothing Then

MsgBox "Group already exists"

Exit Sub

End If

Set objGroup = ThisDrawing.Groups.Add(strName)

'' check if it was created

If objGroup Is Nothing Then

MsgBox "Unable to Add '" & strName & "'"

Else

MsgBox "Added group '" & objGroup.Name & "'"

End If

End Sub

Accessing and Iterating Groups
The Groups collection is accessed via a Document object. In this code, ThisDrawing is used as the
active document:

Dim objGroups As AcadGroups

Set objGroups = ThisDrawing.Groups

CHAPTER 12 ■ SELECTION SETS AND GROUPS 279

5793c12_final.qxd 8/22/05 2:10 AM Page 279

To set a reference to an existing Group object, use the Item method of the Groups collection:

Dim objGroup As AcadGroup

Set objGroup = objGroups.Item(2)

Set objGroup = objGroups.Item("My Group")

The parameter of this method is either a number representing the position of the desired
Group object within the Groups collection or a string representing the name of the desired Group
object. If you use an index number, it must be between 0 and N-1, in which N is the total num-
ber of groups in the collection.

Like other AutoCAD collections, Item is the default method for Groups. This means that
the method name may be omitted, and the parameter passed straight to the Groups reference.
Again, however, Microsoft guidelines recommend against using default methods and proper-
ties. You should always make a habit of invoking methods and accessing properties explicitly.

You may iterate through the Groups collection in the same way as you do the SelectionSets
collection discussed at the beginning of this chapter.

Public Sub ListGroups()

Dim objGroup As AcadGroup

Dim strGroupList As String

For Each objGroup In ThisDrawing.Groups

strGroupList = strGroupList & vbCr & objGroup.Name

Next

MsgBox strGroupList, vbOKOnly, "List of Groups"

End Sub

Adding and Removing Items
You can add individual entities to and remove individual entities from a group by using the
AppendItem and RemoveItem methods (see Table 12-11 for parameter details). These methods take
an array of entities as a parameter. Both methods raise exceptions if they’re unable to append or
remove all the entities in the array. So if you try to append three items and one of them is already
a member of the group, an error is raised and none of the items will be appended.

GroupObject.AppendItem(Entities)

GroupObject.RemoveItem(Entities)

Table 12-11. The AppendItem and RemoveItem Method Parameter

Name Data Type Description

Entities Array of AcadEntity objects The entities to append to or remove from the group

■Note The RemoveItem method doesn’t remove the entities from your drawing. It simply dissociates them
from the Group object.

CHAPTER 12 ■ SELECTION SETS AND GROUPS280

5793c12_final.qxd 8/22/05 2:10 AM Page 280

The following example adds or removes entities in a selection set to a user-named group
based on the user’s choices:

Public Sub TestGroupAppendRemove()

Dim objSS As AcadSelectionSet

Dim objGroup As AcadGroup

Dim objEnts() As AcadEntity

Dim strName As String

Dim strOpt As String

Dim intI As Integer

On Error Resume Next

'' set pickstyle to NOT select groups

ThisDrawing.SetVariable "Pickstyle", 2

With ThisDrawing.Utility

'' get group name from user

strName = .GetString(True, vbCr & "Group name: ")

If Err Or "" = strName Then GoTo Done

'' get the existing group or add new one

Set objGroup = ThisDrawing.Groups.Add(strName)

'' pause for the user

.Prompt vbCr & "Group contains: " & objGroup.Count & " entities" & _

vbCrLf

'' get input for mode

.InitializeUserInput 1, "Append Remove"

strOpt = .GetKeyword(vbCr & "Option [Append/Remove]: ")

If Err Then GoTo Done

'' create a new selectionset

Set objSS = ThisDrawing.SelectionSets.Add("TestGroupAppendRemove")

If Err Then GoTo Done

'' get a selection set from user

objSS.SelectOnScreen

'' convert selection set to array

'' resize the entity array to the selection size

ReDim objEnts(objSS.Count - 1)

'' copy entities from the selection to entity array

For intI = 0 To objSS.Count - 1

Set objEnts(intI) = objSS(intI)

Next

CHAPTER 12 ■ SELECTION SETS AND GROUPS 281

5793c12_final.qxd 8/22/05 2:10 AM Page 281

'' append or remove entities based on input

If "Append" = strOpt Then

objGroup.AppendItems objEnts

Else

objGroup.RemoveItems objEnts

End If

'' pause for the user

.Prompt vbCr & "Group contains: " & objGroup.Count & " entities"

'' unhighlight the entities

objSS.Highlight False

End With

Done:

If Err Then MsgBox "Error occurred: " & Err.Description

'' if the selection was created, delete it

If Not objSS Is Nothing Then

objSS.Delete

End If

End Sub

The Delete Method
The Delete method deletes a Group object by removing it from the Groups collection. Entities
that were in the group are still present in the AutoCAD drawing; the Group object is just deleted.
This is somewhat like exploding a Block Insertion, except that when the Group object has been
eliminated, so has its name in the collection stack.

GroupObject.Delete

The following example deletes a group based on user input:

Public Sub TestGroupDelete()

Dim objGroup As AcadGroup

Dim strName As String

On Error Resume Next

With ThisDrawing.Utility

strName = .GetString(True, vbCr & "Group name: ")

If Err Or "" = strName Then Exit Sub

'' get the existing group

Set objGroup = ThisDrawing.Groups.Item(strName)

If Err Then

.Prompt vbCr & "Group does not exist "

Exit Sub

End If

CHAPTER 12 ■ SELECTION SETS AND GROUPS282

5793c12_final.qxd 8/22/05 2:10 AM Page 282

'' delete the group

objGroup.Delete

If Err Then

.Prompt vbCr & "Error deleting group "

Exit Sub

End If

'' pause for the user

.Prompt vbCr & "Group deleted"

End With

End Sub

Summary
In this chapter you’ve seen how to build SelectionSet collections and SelectionSet objects,
filter their content using specific criteria, allow the user to create dynamic selections, and
handle PickFirst selections. You’ve also learned how to make Group objects for a more persist-
ent type of entity association and manipulation capabilities.

CHAPTER 12 ■ SELECTION SETS AND GROUPS 283

5793c12_final.qxd 8/22/05 2:10 AM Page 283

5793c12_final.qxd 8/22/05 2:10 AM Page 284

Blocks, Attributes, and
External References

Blocks collect any number of AutoCAD entities into a single container object. Create a
BlockReference object to insert the Block container object (also known as a block definition)
into model space, paper space, or another block definition. Because the BlockReference
object refers to the block definition’s geometry, it is an efficient means for managing drawing
data:

• You can add, move, copy, and so on, the entity collection as a whole.

• You can create a library of commonly used geometry ready for reuse.

• You can save memory by storing all block references in one block definition.

• You can make global changes by redefining the block definition at any time—all block
references immediately reflect the changes.

Blocks differ from Group objects in several ways:

• Blocks are more distinctly named and constructed.

• You can also use ObjectDBX to import and export them between drawings because
they contain entity construct data, whereas Group objects maintain only a list of entities
that belong to them.

• AutoCAD lets you create Block objects and programmatically add them to your draw-
ing, much as users do through the AutoCAD user interface.

• The number of entities in a block definition has no limit, and the number of block
references has no limit.

When you define a block, you can use it as often as you need. You can create drawings
faster because you don’t have to create the individual objects in the block.

Attributes let you attach text to blocks. Like the blocks to which they are attached, attributes
have both a definition and a reference. The Attribute object is the definition and is associated
with a Block object. This attribute definition is the template for creating AttributeReference
objects associated with new BlockReference objects.

285

C H A P T E R 1 3

■ ■ ■

5793c13_final.qxd 8/22/05 2:07 AM Page 285

While the geometry for each BlockReference is identical, the associated Attribute
objects may differ. You can make the Attribute object visible, give it all the font characteris-
tics of AutoCAD Text entities, or make it invisible if the text stores only data.

This chapter explains the following:

• How to create and manipulate Block objects

• How to insert a Block object into an AutoCAD drawing

• How to work with external reference files

• How to create Attribute objects

• How to insert Block objects with attributes

Blocks and Block References
The Block object represents a block definition, which contains a name and a set of entities.
Block objects have two elements:

• A block definition, which is the abstract database structure that defines a Block
object’s entities

• A block reference (or block insertion), which is the actual insertion in a drawing

Changing a block definition also changes every block reference in the drawing. When you
explode, modify, and re-create a block in a drawing, AutoCAD rebuilds the block definition in
the drawing database. You can, however, directly modify the block definition database pro-
grammatically without having to do anything in the graphical interface.

Three kinds of blocks exist:

Simple block: The most common type of block definition, a simple block is a collection
of objects that forms a new Block object. You can populate a simple block either by using
new geometric entities, by copying existing drawing objects into it, or by inserting another
AutoCAD drawing into it. You create references to simple blocks with the InsertBlock
method, which returns a new BlockReference object. You can control the insertion point,
scales, and rotation angle of this reference, or instance, in the drawing.

Externally referenced block: An externally referenced block is linked to another drawing file on
disk. When someone makes changes to the drawing on disk, AutoCAD shows the changes the
next time you generate the reference. Because the block definition is not in the current file,
you can’t modify its contents from the current drawing. You can get around this in the graphi-
cal environment using AutoCAD 2002 (and later) commands such as REFEDIT.

Layout block: Layout blocks contain the geometry associated with the Layout objects,
which are represented as tabs at the bottom of the drawing window. You create layout
blocks using the Layouts collection’s Add method, which returns a new Layout object.
You can use this object’s Block property to access the layout block.

AutoCAD creates several layouts, which have the layout blocks listed in Table 13-1.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES286

5793c13_final.qxd 8/22/05 2:07 AM Page 286

Table 13-1. The Created Layouts

Layout Name Purpose

*MODEL_SPACE The model space layout. This corresponds to the
ModelSpace collection.

*PAPER_SPACE The active paper space layout. This corresponds to the
PaperSpace collection.

*PAPER_SPACE0 through *PAPER_SPACEn The first through last paper space layouts created.

■Note When a paper space layout becomes active, it is renamed *PAPER_SPACE.

Use the IsLayout and IsXRef properties to identify the block definition type. If both of
these properties are False, then the Block object is a simple block.

Users usually create simple block definitions using the Block Definition dialog box, as
shown in Figure 13-1. Use the BLOCK command to open it.

All of the GUI’s functionality is available in the Block object’s properties and methods.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 287

Figure 13-1. Creating simple block definitions
with the Block Definition dialog box

5793c13_final.qxd 8/22/05 2:07 AM Page 287

Accessing Block Objects
AutoCAD Document objects have a Blocks collection that contains all the drawing’s Block defi-
nition objects. Access the Blocks collection with a Document object. The following code uses
ThisDrawing as the active document:

Dim objBlocks As AcadBlocks

Set objBlocks = ThisDrawing.Blocks

MsgBox "There are " & objBlocks.Count & " Block objects"

To set a reference to an existing Block object, use the Blocks collection’s Item method:

Dim objBlock As AcadBlock

Set objBlock = ThisDrawing.Blocks.Item(2)

Set objBlock = ThisDrawing.Blocks.Item("My Block")

As in other AutoCAD collections, Item is the default method for Blocks, so you can omit
the method name and pass the parameter straight to the Blocks reference.

■Note Even though the following method is simpler to type and read, it goes against Microsoft program-
ming guidelines and is no longer supported in the .NET and VSA programming environments.

The following code performs the same task as the previous example but instead uses the
default method to specify the Block object:

Dim objBlock As AcadBlock

Set objBlock = ThisDrawing.Blocks(2)

Set objBlock = ThisDrawing.Blocks("My Block")

Iterating the Blocks Collection
As in all Visual Basic collections, the Blocks collection supports iteration using a For ... Each
loop. The following example iterates through the Blocks collection, displaying each Block object’s
name in a message box:

Public Sub ListBlocks()

Dim objBlock As AcadBlock

Dim strBlockList As String

strBlockList = "List of blocks: "

For Each objBlock In ThisDrawing.Blocks

strBlockList = strBlockList & vbCr & objBlock.Name

Next

MsgBox strBlockList

End Sub

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES288

5793c13_final.qxd 8/22/05 2:07 AM Page 288

Figure 13-2 shows this code’s result for a newly created
drawing.

Try adding a new layout to AutoCAD and then running this
code again. It adds a new block. AutoCAD links these new Block
objects to the different Layout objects and holds the geometry of
the various drawing layouts.

Creating Blocks
You can create as many blocks as you need. You can create a
simple block definition in two ways. The first uses the Blocks collection’s Add method to create
an empty Block object. You can then add entities to this new definition. The second uses the
InsertBlock method of ModelSpace, PaperSpace, or a Block object to both create a block defini-
tion and insert a block reference from an external drawing file.

Using the Add Method
Use the Blocks collection’s Add method to add a new Block object. The method takes a single
string parameter—the new block’s name. It returns a reference to the new Block object. If the
parameter is not a valid block name, Add raises an exception. If you try to name a new block
the same as an existing block, Add returns a reference to the existing Block object. This method
has the following syntax:

Set BlockObject = BlocksCollection.Add(InsertionPoint, BlockName)

Table 13-2 explains this method’s parameters.
When you create this object, it does not contain any entities. You can add them with the

AddXXX methods discussed in the next section and in more detail in Chapters 8 and 9.

Table 13-2. The Add Method’s Parameters

Name Data Type Description

InsertionPoint Variant A three-element array of doubles that specifies the block’s
insertion base point in WCS coordinates

BlockName String The new Block object’s name

The following example adds a simple block definition to the Blocks collection and then
adds a circle to it. The user can then insert the new block in the normal way.

Public Sub AddBlock()

Dim dblOrigin(2) As Double

Dim objBlock As AcadBlock

Dim strName As String

'' get a name from user

strName = InputBox("Enter a new block name: ")

If "" = strName Then Exit Sub ' exit if no old name

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 289

Figure 13-2. Viewing
the block code output

5793c13_final.qxd 8/22/05 2:07 AM Page 289

'' set the origin point

dblOrigin(0) = 0: dblOrigin(1) = 0: dblOrigin(2) = 0

''check if block already exists

On Error Resume Next

Set objBlock = ThisDrawing.Blocks.Item(strName)

If Not objBlock Is Nothing Then

MsgBox "Block already exists"

Exit Sub

End If

'' create the block

Set objBlock = ThisDrawing.Blocks.Add(dblOrigin, strName)

'' then add entities (circle)

objBlock.AddCircle dblOrigin, 10

End Sub

AddXXX Methods

Use the AddXXX methods to add drawing entities to a Block object and therefore populate
a new Block object. You’ve already seen a simple example of this in the AddBlock example.
Chapters 8 and 9 cover the AddXXX methods fully.

CopyObject Method

Another way to populate a Block object with new entities is to use the Document object’s
CopyObject method to add duplicate entities. This method copies objects from one container
to another. It also returns a variant array of the objects created during the copy. These new
objects are exact duplicates, with the same relative positions, sizes, scales, and properties.
This method has the following syntax:

varCopies = Owner.CopyObjects(Objects [, NewOwner] [, IdMap])

Table 13-3 explains this method’s parameters.

Table 13-3. The CopyObject Method’s Parameters

Name Data Type Description

Owner Document, PaperSpace, The current containing owner of the objects to copy.
ModelSpace, or Block objects

Objects Variant An array of objects to copy. The objects must all
belong to the Owner object.

NewOwner Variant Optional. Specifies the objects’ new owner. If null,
the objects are copied to the Owner object. This can
also be another Document object.

IdMap Variant Optional. An array that holds IDPair objects.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES290

5793c13_final.qxd 8/22/05 2:07 AM Page 290

The IdMap array is most useful for copying objects between databases or drawing files. The
IDPair object describes how objects map from source to destination, including nonprimary
but referenced objects. A full description of the IDPair object and its use is beyond the scope
of this chapter. You will not need this optional functionality when you create blocks.

The following example creates and populates a block definition by copying the specified
entities into the block:

Public Sub TestCopyObjects()

Dim objSS As AcadSelectionSet

Dim varBase As Variant

Dim objBlock As AcadBlock

Dim strName As String

Dim strErase As String

Dim varEnt As Variant

Dim objSourceEnts() As Object

Dim varDestEnts As Variant

Dim dblOrigin(2) As Double

Dim intI As Integer

'choose a selection set name that you use only as temporary storage and

'ensure that it does not currently exist

On Error Resume Next

ThisDrawing.SelectionSets.Item("TempSSet").Delete

Set objSS = ThisDrawing.SelectionSets.Add("TempSSet")

objSS.SelectOnScreen

'' get the other user input

With ThisDrawing.Utility

.InitializeUserInput 1

strName = .GetString(True, vbCr & "Enter a block name: ")

.InitializeUserInput 1

varBase = .GetPoint(, vbCr & "Pick a base point: ")

.InitializeUserInput 1, "Yes No"

strErase = .GetKeyword(vbCr & "Erase originals [Yes/No]? ")

End With

'' set WCS origin

dblOrigin(0) = 0: dblOrigin(1) = 0: dblOrigin(2) = 0

'' create the block

Set objBlock = ThisDrawing.Blocks.Add(dblOrigin, strName)

'' put selected entities into an array for CopyObjects

ReDim objSourceEnts(objSS.Count - 1)

For intI = 0 To objSS.Count - 1

Set objSourceEnts(intI) = objSS(intI)

Next

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 291

5793c13_final.qxd 8/22/05 2:07 AM Page 291

'' copy the entities into block

varDestEnts = ThisDrawing.CopyObjects(objSourceEnts, objBlock)

'' move copied entities so that base point becomes origin

For Each varEnt In varDestEnts

varEnt.Move varBase, dblOrigin

Next

'' if requested, erase the originals

If strErase = "Yes" Then

objSS.Erase

End If

'' we're done - prove that we did it

ThisDrawing.SendCommand "._-insert" & vbCr & strName & vbCr

'' clean up selection set

objSS.Delete

End Sub

■Note If you try to copy the container object to itself, it reproduces itself an infinite number of times.
You can’t execute this method at the same time you iterate through a collection. An iteration opens the work
space as read-only, while this method tries to perform a read-write operation. Complete any iteration before
you call this method. The CopyObjects operation copies objects that the Objects parameter’s primary
objects own or reference.

Renaming a Block Object
To rename a block definition, assign a new string value to its Name property. Block references to
the block definition are automatically adjusted. Take care to address other possible exceptions
that may be thrown, such as an invalid name, existing name, and so on.

■Note Renaming an AutoCAD-defined layout block or any anonymous block, which is a block whose name
begins with an asterisk (*), may crash AutoCAD.

The following example renames a Block definition based on user input:

Public Sub RenameBlock()

Dim strName As String

Dim objBlock As AcadBlock

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES292

5793c13_final.qxd 8/22/05 2:07 AM Page 292

On Error Resume Next ' handle exceptions inline

strName = InputBox("Original Block name: ")

If "" = strName Then Exit Sub ' exit if no old name

Set objBlock = ThisDrawing.Blocks.Item(strName)

If objBlock Is Nothing Then ' exit if not found

MsgBox "Block '" & strName & "' not found"

Exit Sub

End If

strName = InputBox("New Block name: ")

If "" = strName Then Exit Sub ' exit if no new name

objBlock.Name = strName ' try and change name

If Err Then ' check if it worked

MsgBox "Unable to rename block: " & vbCr & Err.Description

Else

MsgBox "Block renamed to '" & strName & "'"

End If

End Sub

Deleting a Block Object
The Delete method removes a Block object from the Blocks collection. This method takes no
parameters and returns nothing. It has the following syntax:

BlockObject.Delete

You can delete a block whenever you choose—unless the block can’t be deleted. You can’t
delete a block when the following is true:

A BlockReference object references it: If a BlockReference object references a block defini-
tion in model space, in any paper space layout, or in any other block definition, you can’t
delete it. You have no definitive way to tell which entities reference a specific block, short
of exhaustively searching each of these collections. If you delete all references or make
them reference a different block, you can then delete the block definition. Keep in mind
that deleting a Block object does not delete the block definition table entry. To completely
remove a block definition, invoke a purge operation on the document.

It depends on an Xref: You create a block that depends on an Xref when you attach and
activate an external reference file. You don’t need to delete these blocks, however, because
they’re simply duplications of the blocks in the external drawing. AutoCAD doesn’t save
them with the current drawing.

■Note AutoCAD creates certain blocks for its own purposes, such as the special layout blocks created for
each layout. Deleting an AutoCAD-defined layout block or any other block whose name begins with an aster-
isk (*) can crash AutoCAD.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 293

5793c13_final.qxd 8/22/05 2:07 AM Page 293

The following example deletes a block based on user input. Try it on some blocks created
with the AddBlock code sample. In general, whenever you delete a collection member, such a
block definition, execute a purge to clean up your drawing database. You’ll see that you can’t
delete the block definition until you remove all the block references.

Public Sub DeleteBlock()

Dim strName As String

Dim objBlock As AcadBlock

On Error Resume Next ' handle exceptions inline

strName = InputBox("Block name to delete: ")

If "" = strName Then Exit Sub ' exit if no old name

Set objBlock = ThisDrawing.Blocks.Item(strName)

If objBlock Is Nothing Then ' exit if not found

MsgBox "Block '" & strName & "' not found"

Exit Sub

End If

objBlock.Delete ' try to delete it

If Err Then ' check if it worked

MsgBox "Unable to delete Block: " & vbCr & Err.Description

Else

MsgBox "Block '" & strName & "' deleted"

End If

End Sub

Using the InsertBlock Method
The InsertBlock method of ModelSpace, PaperSpace, and Block objects serves two purposes.
Its first purpose is to create a BlockReference object. Its second purpose is to create a block
definition from a drawing file on disk. When you give it an external file name, InsertBlock
imports the external drawing, creating a new Block object with the drawing’s contents and
inserting that file as a block reference.

■Note This operation imports any other blocks and drawing components (for example, layers and text
styles) defined in the external drawing file.

Defining and Manipulating Blocks
After you define a block, you can use a number of methods to change the block’s composition,
select objects from the block, and break the block down into its parts.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES294

5793c13_final.qxd 8/22/05 2:07 AM Page 294

Using the Item Method
Use the Item method to access the objects in the block definition object. This method has the
following syntax:

Set objEntity = BlockObject.Item(Index)

This method has one parameter, Index; this is an Integer that gives the element’s position
in the Block collection object.

Because the Item method is the Block object’s default method, you can omit it and use the
following syntax. But it’s best to avoid this in favor of using explicit references to all properties
and methods (since Microsoft programming technologies are dropping this feature to gain
performance, security, and consistency). For example, .NET and VSA no longer let you use
default methods and properties.

Set objEntity = BlockObject(Index)

Using the InsertBlock Method
Use the InsertBlock method to add a BlockReference object to a drawing or to nest a block in
another Block object. This can be either a block in the Blocks collection or an external drawing
file. In either case, this method returns a BlockReference object. The PaperSpace, ModelSpace,
and Block objects expose this method.

Set BlockReferenceObject = Object.InsertBlock(InsertionPoint, BlockName, _

Xscale, Yscale, ZScale, RotationAngle)

Table 13-4 explains this method’s parameters.

Table 13-4. The InsertBlock Method’s Parameters

Name Data Type Description

InsertionPoint Variant A three-element array of doubles that specifies the 3-D WCS
coordinates where the block will be inserted into Object.

BlockName String The name of a Block object in the Blocks collection or the
path and file name of an AutoCAD drawing file to import.

Xscale Double A scaling factor for the block’s X direction. It may not be 0.
Negative numbers mirror the insertion on this axis.

Yscale Double A scaling factor for the block’s Y direction. It may not be 0.
Negative numbers mirror the insertion on this axis.

Zscale Double A scaling factor for the block’s Z direction. It may not be 0.
Negative numbers mirror the insertion on this axis.

RotationAngle Double The rotation angle relative to the WCS X-axis, expressed in
radians.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 295

5793c13_final.qxd 8/22/05 2:07 AM Page 295

The following example creates a block reference based on user input:

Public Sub TestInsertBlock()

Dim strName As String

Dim varInsertionPoint As Variant

Dim dblX As Double

Dim dblY As Double

Dim dblZ As Double

Dim dblRotation As Double

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

strName = .GetString(True, vbCr & "Block or file name: ")

.InitializeUserInput 1

varInsertionPoint = .GetPoint(, vbCr & "Pick the insert point: ")

.InitializeUserInput 1 + 2

dblX = .GetDistance(varInsertionPoint, vbCr & "X scale: ")

.InitializeUserInput 1 + 2

dblY = .GetDistance(varInsertionPoint, vbCr & "Y scale: ")

.InitializeUserInput 1 + 2

dblZ = .GetDistance(varInsertionPoint, vbCr & "Z scale: ")

.InitializeUserInput 1

dblRotation = .GetAngle(varInsertionPoint, vbCr & "Rotation angle: ")

End With

'' create the object

On Error Resume Next

ThisDrawing.ModelSpace.InsertBlock varInsertionPoint, strName, dblX, _

dblY, dblZ, dblRotation

If Err Then MsgBox "Unable to insert this block."

End Sub

Try this example with the name of a block in the current drawing and with an external file
name (including the .dwg file extension).

To give the user a friendlier way to input the path and file name, you can build a GUI
with a UserForm and use a Windows CommonDialog control. This control is not available on the
UserForm Toolbox, but you can add it by right-clicking the Toolbox, selecting Additional Con-
trols, and checking the Microsoft Common Dialog Control, Version 6.0 option.

If you add a CommandButton control named cmdInsertBlock and a CommonDialog control
named dlgOpenFile to a UserForm, as shown in Figure 13-3, you could use the following code
to see the familiar Open dialog box, as shown in Figure 13-4, when you choose a drawing file.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES296

5793c13_final.qxd 8/22/05 2:07 AM Page 296

Private Sub CommandButton1_Click()

Dim objBlockRef As AcadBlockReference

Dim varInsertionPoint As Variant

Dim dblX As Double

Dim dblY As Double

Dim dblZ As Double

Dim dblRotation As Double

'' get input from user

dlgOpenFile.Filter = "AutoCAD Blocks (*.DWG) | *.dwg"

dlgOpenFile.InitDir = Application.Path

dlgOpenFile.ShowOpen

If dlgOpenFile.FileName = "" Then Exit Sub

Me.Hide

With ThisDrawing.Utility

.InitializeUserInput 1

varInsertionPoint = .GetPoint(, vbCr & "Pick the insert point: ")

.InitializeUserInput 1 + 2

dblX = .GetDistance(varInsertionPoint, vbCr & "X scale: ")

.InitializeUserInput 1 + 2

dblY = .GetDistance(varInsertionPoint, vbCr & "Y scale: ")

.InitializeUserInput 1 + 2

dblZ = .GetDistance(varInsertionPoint, vbCr & "Z scale: ")

.InitializeUserInput 1

dblRotation = .GetAngle(varInsertionPoint, vbCr & "Rotation angle: ")

End With

'' create the object

On Error Resume Next

Set objBlockRef = ThisDrawing.ModelSpace.InsertBlock _

(varInsertionPoint, dlgOpenFile.FileName, dblX, _

dblY, dblZ, dblRotation)

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 297

Figure 13-3. Creating a UserForm with a CommandButton
and a CommonDialog control

5793c13_final.qxd 8/22/05 2:07 AM Page 297

If Err Then

MsgBox "Unable to insert this block"

Exit Sub

End If

objBlockRef.Update

Me.Show

End Sub

To control the displayed file types, set the CommonDialog control’s Filter property. You
must hide the form before you can access the AutoCAD interface, because AutoCAD 2006 VBA
UserForms are modal by default. The alternative is to set the ShowModal property of the UserForm
to False.

Deleting a Block Reference
As with any other entity, use the Delete method to delete block references. This method
removes only the BlockReference object, not the Block definition object. This method has the
following syntax:

BlockReferenceObject.Delete

Using the Explode Method
The BlockReference object exposes the Explode method, which breaks down the block refer-
ence into its geometry. It returns an array of the block reference’s objects. You can then select,
move, copy, and so on, each entity individually. This method has the following syntax:

varArray = BlockReferenceObject.Explode

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES298

Figure 13-4. Viewing the Open dialog box when choosing a drawing file

5793c13_final.qxd 8/22/05 2:07 AM Page 298

■Note This method actually creates a new copy of the block definition’s entities and leaves the original
unexploded block reference. If you don’t want the reference, you must delete it yourself.

■Note In versions of AutoCAD before 2004, the Explode method explodes even nested MText objects
into individual Text objects. The Explode method in AutoCAD 2004 and later leaves nested MText
objects intact.

The following example explodes a block reference and moves the resulting entities to
a new location:

Public Sub TestExplode()

Dim objBRef As AcadBlockReference

Dim varPick As Variant

Dim varNew As Variant

Dim varEnts As Variant

Dim intI As Integer

On Error Resume Next

'' get an entity and new point from user

With ThisDrawing.Utility

.GetEntity objBRef, varPick, vbCr & "Pick a block reference: "

If Err Then Exit Sub

varNew = .GetPoint(varPick, vbCr & "Pick a new location: ")

If Err Then Exit Sub

End With

'' explode the blockref

varEnts = objBRef.Explode

If Err Then

MsgBox "Error has occurred: " & Err.Description

Exit Sub

End If

'' move resulting entities to new location

For intI = 0 To UBound(varEnts)

varEnts(intI).Move varPick, varNew

Next

End Sub

Using the WBlock Method
This method’s name means write block. This Document object method saves a SelectionSet
object’s contents to disk as a new drawing file. You can import this file into other drawings as

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 299

5793c13_final.qxd 8/22/05 2:07 AM Page 299

a block definition using InsertBlock, as described earlier. The WBlock method returns nothing
but has the following syntax:

DocumentObject.WBlock FileName, SelectionSet

Table 13-5 explains this method’s parameters.

Table 13-5. The WBlock Method’s Parameters

Name Data Type Description

FileName String The new drawing file’s name. If you don’t specify an
extension, the method uses .dwg.

SelectionSet SelectionSet object A selection set containing the entities to write to the
new file.

The method uses the selected entities’ WCS origin as the base point for the drawing file.
You may want to relocate the entities before you use WBlock so that the new drawing has a
meaningful base point.

The following example asks the user for a selection set of entities, a file name, and a base
point to use as the new file origin. It then moves the entities to the WCS origin using the
selected base point. Next, it writes the entities to the file using the WBlock method. Finally, it
moves the entities back to their original locations.

Public Sub TestWBlock()

Dim objSS As AcadSelectionSet

Dim varBase As Variant

Dim dblOrigin(2) As Double

Dim objEnt As AcadEntity

Dim strFilename As String

'choose a selection set name that you use only as temporary storage and

'ensure that it does not currently exist

On Error Resume Next

ThisDrawing.SelectionSets("TempSSet").Delete

Set objSS = ThisDrawing.SelectionSets.Add("TempSSet")

objSS.SelectOnScreen

With ThisDrawing.Utility

.InitializeUserInput 1

strFilename = .GetString(True, vbCr & "Enter a filename: ")

.InitializeUserInput 1

varBase = .GetPoint(, vbCr & "Pick a base point: ")

End With

'' WCS origin

dblOrigin(0) = 0: dblOrigin(1) = 0: dblOrigin(2) = 0

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES300

5793c13_final.qxd 8/22/05 2:07 AM Page 300

'' move selection to the origin

For Each objEnt In objSS

objEnt.Move varBase, dblOrigin

Next

'' wblock selection to file name

ThisDrawing.Wblock strFilename, objSS

'' move selection back

For Each objEnt In objSS

objEnt.Move dblOrigin, varBase

Next

'' clean up selection set

objSS.Delete

End Sub

Using MInsertBlock Objects
An MInsertBlock object contains a planar array of block references in rows and columns. This
section tells how to add and modify MInsertBlock objects.

The AddMInsertBlock method works much like InsertBlock, except that the resulting
entity is an MInsertBlock object. Just like InsertBlock, this method lets you specify a new
entity’s insertion point, scale, and rotation angle. It has additional parameters for the arrayed
rows and columns. The method has the following syntax:

Set MInsertBlockObject = Object.AddMInsertBlock(InsertionPoint, BlockName, _

XScale, YScale, ZScale, RotationAngle, Rows, Columns, RowSpacing, _

ColumnSpacing)

Table 13-6 explains this method’s parameters.

Table 13-6. The AddMInsertBlock Method’s Parameters

Name Data Type Description

InsertionPoint Variant A three-element array of doubles that specifies the 3-D WCS
coordinates where the Xref will be inserted into the Object.

BlockName String The name of a Block object in the Blocks collection or the path
and file name for an AutoCAD drawing file to import.

Xscale Double A scaling factor for the Xref’s X direction. It may not be 0.
Negative numbers mirror the insertion on this axis.

Yscale Double A scaling factor for the Xref’s Y direction. It may not be 0.
Negative numbers mirror the insertion on this axis.

Zscale Double A scaling factor for the Xref’s Z direction. It may not be 0.
Negative numbers mirror the insertion on this axis.

RotationAngle Double The rotation angle relative to the WCS X-axis, expressed in
radians.

Continued

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 301

5793c13_final.qxd 8/22/05 2:07 AM Page 301

Table 13-6. Continued

Name Data Type Description

Rows Long A positive number that sets the number of rows.

Columns Long A positive number that sets the number of columns.

RowSpacing Double A nonzero number that specifies the spacing of rows in the
array. A negative number creates rows in a negative X direction.

ColumnSpacing Double A nonzero number that specifies the spacing of columns in the
array. A negative number creates columns in a negative Y
direction.

The following example creates an MInsertBlock based on user input:

Public Sub TestAddMInsertBlock()

Dim strName As String

Dim varInsertionPoint As Variant

Dim dblX As Double

Dim dblY As Double

Dim dblZ As Double

Dim dR As Double

Dim lngNRows As Long

Dim lngNCols As Long

Dim dblSRows As Double

Dim dblSCols As Double

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

strName = .GetString(True, vbCr & "Block or file name: ")

.InitializeUserInput 1

varInsertionPoint = .GetPoint(, vbCr & "Pick the insert point: ")

.InitializeUserInput 1 + 2

dblX = .GetDistance(varInsertionPoint, vbCr & "X scale: ")

.InitializeUserInput 1 + 2

dblY = .GetDistance(varInsertionPoint, vbCr & "Y scale: ")

.InitializeUserInput 1 + 2

dblZ = .GetDistance(varInsertionPoint, vbCr & "Z scale: ")

.InitializeUserInput 1

dR = .GetAngle(varInsertionPoint, vbCr & "Rotation angle: ")

.InitializeUserInput 1 + 2 + 4

lngNRows = .GetInteger(vbCr & "Number of rows: ")

.InitializeUserInput 1 + 2 + 4

lngNCols = .GetInteger(vbCr & "Number of columns: ")

.InitializeUserInput 1 + 2

dblSRows = .GetDistance(varInsertionPoint, vbCr & "Row spacing: ")

.InitializeUserInput 1 + 2

dblSCols = .GetDistance(varInsertionPoint, vbCr & "Column spacing: ")

End With

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES302

5793c13_final.qxd 8/22/05 2:07 AM Page 302

'' create the object

ThisDrawing.ModelSpace.AddMInsertBlock varInsertionPoint, strName, _

dblX, dblY, dblZ, dR, lngNRows, lngNCols, dblSRows, dblSCols

End Sub

While the MInsertBlock object is similar to a BlockReference, because it’s an array, it has
these extra properties: Row, Column, RowSpacing, and ColumnSpacing.

The following example adjusts an MInsertBlock object’s array properties. Try it on the
object you created in the previous example.

Public Sub TestEditobjMInsertBlock()

Dim objMInsert As AcadMInsertBlock

Dim varPick As Variant

Dim lngNRows As Long

Dim lngNCols As Long

Dim dblSRows As Double

Dim dblSCols As Double

On Error Resume Next

'' get an entity and input from user

With ThisDrawing.Utility

.GetEntity objMInsert, varPick, vbCr & "Pick an MInsert: "

If objMInsert Is Nothing Then

MsgBox "You did not choose an MInsertBlock object"

Exit Sub

End If

.InitializeUserInput 1 + 2 + 4

lngNRows = .GetInteger(vbCr & "Number of rows: ")

.InitializeUserInput 1 + 2 + 4

lngNCols = .GetInteger(vbCr & "Number of columns: ")

.InitializeUserInput 1 + 2

dblSRows = .GetDistance(varPick, vbCr & "Row spacing: ")

.InitializeUserInput 1 + 2

dblSCols = .GetDistance(varPick, vbCr & "Column spacing: ")

End With

'' update the objMInsert

With objMInsert

.Rows = lngNRows

.Columns = lngNCols

.RowSpacing = dblSRows

.ColumnSpacing = dblSCols

.Update

End With

End Sub

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 303

5793c13_final.qxd 8/22/05 2:07 AM Page 303

Introducing Dynamic Blocks
AutoCAD 2006 introduces dynamic blocks, which are more flexible and sophisticated than
normal blocks. Since dynamic blocks may not be created programmatically, you will need to
refer to the AutoCAD help files for instructions on how to create dynamic blocks.

■Note You cannot create dynamic blocks through code using VBA. All of their properties, except for the
Value property, are read-only.

You must follow a series of steps in order to access the properties of a dynamic block.
The programming interface for dynamic block access is somewhat unconventional.

With the code example that follows, you can accomplish these steps:

1. Obtain a block reference object.

2. Cast the block reference to an IAcadBlockReference2 object type.

3. Check the block reference to determine if it is dynamic.

4. If the block is dynamic, retrieve the dynamic properties of the block reference.

5. Iterate through each of the dynamic properties retrieving the PropertyName value and
the associated Value property for display in the Immediate window.

Here’s the code that accomplishes these steps:

Public Sub GetDynamicBlockProps()

Dim oBlockRef As IAcadBlockReference2

Dim Point As Variant

Dim oEntity As AcadEntity

Dim Props As Variant

Dim Index As Long

On Error Resume Next

ThisDrawing.Utility.GetEntity oEntity, Point, "Select block ..."

If oEntity.ObjectName = "AcDbBlockReference" Then

Set oBlockRef = oEntity

Else

'no block reference selected

Exit Sub

End If

With oBlockRef

If .IsDynamicBlock = True Then

Props = .GetDynamicBlockProperties

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES304

5793c13_final.qxd 8/22/05 2:07 AM Page 304

For Index = LBound(Props) To UBound(Props)

Dim oProp As AcadDynamicBlockReferenceProperty

Set oProp = Props(Index)

'is the value an array for an insertion point

If IsArray(oProp.Value) Then

Dim SubIndex As Long

For SubIndex = LBound(oProp.Value) To UBound(oProp.Value)

Debug.Print oProp.PropertyName & ", " & oProp.Value(SubIndex)

Next SubIndex

Else

Debug.Print oProp.PropertyName & ", " & oProp.Value

End If

Next Index

End If

End With

End Sub

■Note When writing values to the Value property, no error will be raised if the value could not be set.
Therefore, you will need to ensure the values you are attempting to write are the correct data types before
attempting to write them to the Value property.

Using External References
External references, or Xrefs, are blocks that are not permanently loaded into the current
drawing file. Instead, Xrefs refer to an external drawing file for their geometry (which is how
they get their name).

External references share many properties and methods with simple blocks, and for many
purposes you can treat them as simple blocks. But sometimes you might also need to use
external references’ special capabilities. This section explains the following Xref methods:

• Attaching and detaching

• Loading and unloading

• Binding

Attaching External References
The AttachExternalReference method works much like InsertBlock, except that the resulting
entity is an external reference instead of a block reference. Just like InsertBlock, the PaperSpace,
ModelSpace, and Block objects expose this method and let you specify the insertion point, scale,
and rotation angle in the drawing.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 305

5793c13_final.qxd 8/22/05 2:07 AM Page 305

Set ExternalReferenceObject = Object.AttachExternalReference(FileName, _

BlockName, InsertionPoint, Xscale, Yscale, Zscale, _

RotationAngle, Overlay)

Table 13-7 explains this method’s parameters.

Table 13-7. The AttachExternalReference Method’s Parameters

Name Data Type Description

FileName String The external AutoCAD drawing file’s name. You must specify
the .dwg extension. Optionally, you can specify a path to the
file. If you don’t, AutoCAD tries to find the file in the system
search path.

BlockName String A name for the internal Block object that will point to the
external drawing file.

InsertionPoint Variant A three-element array of doubles that specifies the 3-D WCS
coordinates where the Xref will be inserted into the Object.

Xscale Double A nonzero number representing the scaling factor for the
Xref’s X direction. Negative numbers mirror the insertion on
this axis.

Yscale Double A nonzero number representing the scaling factor for the
Xref’s Y direction. Negative numbers mirror the insertion on
this axis.

Zscale Double A nonzero number representing the scaling factor for the
Xref’s Z direction. Negative numbers mirror the insertion on
this axis.

RotationAngle Double The rotation angle relative to the WCS X-axis, expressed in
radians.

Overlay Boolean Controls how the Xref is attached. If True, the Xref is brought
in as an overlay. Overlay external references aren’t visible if the
current drawing is attached as an Xref to another drawing. In
this way, overlay Xrefs can reduce the need to detach Xrefs
before sharing drawings. If this parameter is False, the Xref is
an attachment.

The following example creates an Xref based on user input:

Public Sub TestAttachExternalReference()

Dim strPath As String

Dim strName As String

Dim varInsertionPoint As Variant

Dim dblX As Double

Dim dblY As Double

Dim dblZ As Double

Dim dblRotation As Double

Dim strInput As String

Dim blnOver As Boolean

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES306

5793c13_final.qxd 8/22/05 2:07 AM Page 306

'' get input from user

With ThisDrawing.Utility

.InitializeUserInput 1

strPath = .GetString(True, vbCr & "External file name: ")

.InitializeUserInput 1

strName = .GetString(True, vbCr & "Block name to create: ")

.InitializeUserInput 1

varInsertionPoint = .GetPoint(, vbCr & "Pick the insert point: ")

.InitializeUserInput 1 + 2

dblX = .GetDistance(varInsertionPoint, vbCr & "X scale: ")

.InitializeUserInput 1 + 2

dblY = .GetDistance(varInsertionPoint, vbCr & "Y scale: ")

.InitializeUserInput 1 + 2

dblZ = .GetDistance(varInsertionPoint, vbCr & "Z scale: ")

.InitializeUserInput 1

dblRotation = .GetAngle(varInsertionPoint, vbCr & "Rotation angle: ")

.InitializeUserInput 1, "Attach Overlay"

strInput = .GetKeyword(vbCr & "Type [Attach/Overlay]: ")

blnOver = IIf("Overlay" = strInput, True, False)

End With

'' create the object

ThisDrawing.ModelSpace.AttachExternalReference strPath, strName, _

varInsertionPoint, dblX, dblY, dblZ, dblRotation, blnOver

End Sub

Detaching External References
You can detach an external reference from the current drawing using the Block object’s Detach
method. It has this syntax:

BlockObject.Detach

■Note When you detach an Xref’s block definition, the method also removes all associated
ExternalReference objects from the drawing. This includes linetypes, text styles, dim styles, nested
block definitions, and layers.

Unloading External References
You can also unload external references without detaching them from the current drawing.
Use the Block object’s Unload method. It has this syntax:

BlockObject.Unload

Though not visible, unloaded Xrefs are still associated with the current drawing. To regen-
erate them, reload them.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 307

5793c13_final.qxd 8/22/05 2:07 AM Page 307

Reloading External References
Use the Block object’s Reload method to reload an external reference whenever you want, even
if the Xref is already loaded. Reload an already-loaded Xref when you modify the underlying
drawing and then want to update the in-memory copy in the current drawing. This method
has the following syntax:

BlockObject.Reload

The following example demonstrates the Detach, Reload, and Unload methods using an
external reference:

Public Sub TestExternalReference()

Dim strName As String

Dim strOpt As String

Dim objBlock As AcadBlock

On Error Resume Next '' get input from user

With ThisDrawing.Utility

'' get the block name

.InitializeUserInput 1

strName = .GetString(True, vbCr & "External reference name: ")

If Err Then Exit Sub

'' get the block definition

Set objBlock = ThisDrawing.Blocks.Item(strName)

'' exit if not found

If Err Then

MsgBox "Unable to get block " & strName

Exit Sub

End If

'' exit if not an xref

If Not objBlock.IsXRef Then

MsgBox "That is not an external reference"

Exit Sub

End If

'' get the operation

.InitializeUserInput 1, "Detach Reload Unload"

strOpt = .GetKeyword(vbCr & "Option [Detach/Reload/Unload]: ")

If Err Then Exit Sub

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES308

5793c13_final.qxd 8/22/05 2:07 AM Page 308

'' perform operation requested

If strOpt = "Detach" Then

objBlock.Detach

ElseIf strOpt = "Reload" Then

objBlock.Reload

Else

objBlock.Unload

End If

End With

End Sub

Binding External References
Use the Block object’s Bind method to convert external references to simple blocks. This opera-
tion builds an internal copy of the external drawing file in much the same way the InsertBlock
method does using an external file name. Instead of referring to the external drawing database,
Bind converts any former ExternalReference objects to simple block references. This method
has the following syntax:

BlockObject.Bind(Merge)

This method has one parameter, Merge, which is a Boolean. When it’s True, the method
merges dependent symbol table entries in the external file with the current drawing’s entries.
When it’s False, the method prefixes them to avoid collision with any other entry name in the
current drawing. The prefix has the form BlockNameXEntryName, where the following is true:

• BlockName is the block definition name for the current drawing’s external reference.

• X is an automatically generated integer that makes the name unique in the current
drawing.

• EntryName is the name of the symbol table entry in the externally referenced drawing file.

■Note If Merge is set to True and an entry is already present in the current drawing, the method maps the
external entry to the current drawing entry. This is identical behavior to inserting block definitions that con-
tain duplicate layers, linetypes, or text styles in the current drawing.

The following example binds the specified external reference using either style:

Public Sub TestBind()

Dim strName As String

Dim strOpt As String

Dim objBlock As AcadBlock

On Error Resume Next

'' get input from user

With ThisDrawing.Utility

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 309

5793c13_final.qxd 8/22/05 2:07 AM Page 309

'' get the block name

.InitializeUserInput 1

strName = .GetString(True, vbCr & "External reference name: ")

If Err Then Exit Sub

'' get the block definition

Set objBlock = ThisDrawing.Blocks.Item(strName)

'' exit if not found

If Err Then

MsgBox "Unable to get block " & strName

Exit Sub

End If

'' exit if not an xref

If Not objBlock.IsXRef Then

MsgBox "That is not an external reference"

Exit Sub

End If

'' get the option

.InitializeUserInput 1, "Prefix Merge"

strOpt = .GetKeyword(vbCr & "Dependent entries [Prefix/Merge]: ")

If Err Then Exit Sub

'' perform the bind, using option entered

objBlock.Bind ("Merge" = strOpt)

End With

End Sub

Attributes
Attributes let you attach text to blocks. Each attribute has an identifier called the Tag, a
prompt string called the Prompt, and a string field of user data called the Value. You can make
this text either visible with all the font characteristics of standard AutoCAD text entities or
invisible if the text is used to store data.

■Note When a user inserts a block that contains attributes, AutoCAD asks the user to enter attribute val-
ues. See the AutoCAD User’s Guide for an explanation of system variables that change this default behavior.

Creating Attributes
Like the blocks to which they are attached, attributes have both a definition and a reference.
The Attribute object is the definition, and it’s associated with a Block object. This attribute

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES310

5793c13_final.qxd 8/22/05 2:07 AM Page 310

definition provides the template for creating AttributeReference objects associated with new
BlockReference objects.

Using the AddAttribute Method
Use the AddAttribute method of a PaperSpace, ModelSpace, or Block object to create a new
Attribute object. This attribute definition specifies the corresponding AttributeReference’s
characteristics. The most important characteristics are passed as parameters to this method,
including Prompt to display when inserting a block, Tag to identify the attribute, and Value (the
default) to assign the attribute. This method has the following syntax:

Set AttributeObject = Object.AddAttribute(Height, Mode, Prompt, _

InsertionPoint, Tag, Value)

Table 13-8 explains this method’s attributes.

Table 13-8. The AddAttribute Method’s Parameters

Name Data Type Description

Height Double The attribute definition’s text size in the current drawing units.

Mode Long How the Attribute object behaves when a block containing
this attribute definition is inserted. Table 13-9 lists this
parameter’s values.

Prompt String The method displays this prompt when a block containing
this attribute definition is inserted. If null, the method
displays the Tag parameter instead.

InsertionPoint Variant A three-element array of doubles that specifies the attribute’s
location in the block or drawing. It is a 3-D WCS coordinate.

Tag String An identifier used to access a specific attribute. It may contain
any characters except spaces and exclamation points.
AutoCAD converts it to uppercase.

Value String The attribute’s default value.

AutoCAD provides several AcAttributeMode constants for the Mode parameter, which you
can specify in any combination. Table 13-9 lists these values.

Table 13-9. The Mode Parameter’s Values

Constant Value Description

acAttributeModeNormal 0 The default mode, in which none of the other modes is
applied.

acAttributeModeInvisible 1 When the block is inserted, the attribute’s values aren’t
visible. The ATTDISP system variable overrides this mode
setting.

acAttributeModeConstant 2 Each inserted block’s attribute values are fixed. AutoCAD
does not prompt for the attribute.

acAttributeModeVerify 4 When you insert the block, AutoCAD asks you to verify
that the attribute value is correct.

acAttributeModePreset 8 AutoCAD inserts the block with its default attribute val-
ues. You can’t edit these values.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 311

5793c13_final.qxd 8/22/05 2:07 AM Page 311

The user can establish a preferred global mode for new attributes. The AFLAGS system vari-
able stores this preferred global mode. You can access and set it using the GetVariable and
SetVariable methods, which Appendix C discusses.

The following example creates a simple block containing an attribute of each type and
then interactively inserts it:

Public Sub TestAddAttribute()

Dim dblOrigin(2) As Double

Dim dblEnt(2) As Double

Dim dblHeight As Double

Dim lngMode As Long

Dim strTag As String

Dim strPrompt As String

Dim strValue As String

Dim objBlock As AcadBlock

Dim objEnt As AcadEntity

'' create the block

dblOrigin(0) = 0: dblOrigin(1) = 0: dblOrigin(2) = 0

Set objBlock = ThisDrawing.Blocks.Add(dblOrigin, "Affirmations")

'' delete existing entities (in case we've run before)

For Each objEnt In objBlock

objEnt.Delete

Next

'' create an ellipse in the block

dblEnt(0) = 4: dblEnt(1) = 0: dblEnt(2) = 0

objBlock.AddEllipse dblOrigin, dblEnt, 0.5

'' set the height for all attributes

dblHeight = 0.25

dblEnt(0) = -1.5: dblEnt(1) = 0: dblEnt(2) = 0

'' create a regular attribute

lngMode = acAttributeModeNormal

strTag = "Regular"

strPrompt = "Enter a value"

strValue = "I'm regular"

dblEnt(1) = 1

objBlock.AddAttribute dblHeight, lngMode, strPrompt, dblEnt, strTag, _

strValue

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES312

5793c13_final.qxd 8/22/05 2:07 AM Page 312

'' create an invisible attribute

lngMode = acAttributeModeInvisible

strTag = "Invisible"

strPrompt = "Enter a hidden value"

strValue = "I'm invisible"

dblEnt(1) = 0.5

objBlock.AddAttribute dblHeight, lngMode, strPrompt, dblEnt, strTag, _

strValue

'' create a constant attribute

lngMode = acAttributeModeConstant

strTag = "Constant"

strPrompt = "Don't bother"

strValue = "I'm set"

dblEnt(1) = 0

objBlock.AddAttribute dblHeight, lngMode, strPrompt, dblEnt, strTag, _

strValue

'' create a verify attribute

lngMode = acAttributeModeVerify

strTag = "Verify"

strPrompt = "Enter an important value"

strValue = "I'm important"

dblEnt(1) = -0.5

objBlock.AddAttribute dblHeight, lngMode, strPrompt, dblEnt, strTag, _

strValue

'' create a preset attribute

lngMode = acAttributeModePreset

strTag = "Preset"

strPrompt = "No question"

strValue = "I've got values"

dblEnt(1) = -1

objBlock.AddAttribute dblHeight, lngMode, strPrompt, dblEnt, strTag, _

strValue

'' now insert block interactively using sendcommand

ThisDrawing.SendCommand "._-insert" & vbCr & "Affirmations" & vbCr

End Sub

Neither constant nor preset attributes prompt for values. The Verify attribute prompt
repeats. Only four attributes are visible in the drawing, as shown in Figure 13-5. The Invisible
attribute is present but hidden.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 313

5793c13_final.qxd 8/22/05 2:07 AM Page 313

If, after you perform an insertion, you run the DDATTE command to review these values in
the Edit Attributes dialog box, four of them are editable, as shown in Figure 13-6. The Constant
attribute is not available, but you can change both the invisible values and the preset values.

In AutoCAD 2005 and 2006, after you perform the insertion, you can double-click the
block to invoke the Enhanced Attribute Editor, as shown in Figure 13-7. You can then review
the attribute values and make changes appropriately.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES314

Figure 13-5. Viewing the code output

Figure 13-6. Editing the four attributes

5793c13_final.qxd 8/22/05 2:07 AM Page 314

Manipulating Attribute References
Although the BlockReference object has identical geometry, each block reference’s
AttributeReference objects may have different values.

You can access these attribute references using the GetAttributes method.

Using the GetAttributes Method
Use the GetAttributes method of a BlockReference or MInsertBlock object to retrieve any
associated AttributeReference objects. It returns an array, varAttributeRefs, that contains
all the nonconstant attributes. This method has the following syntax:

varAttributeRefs = Object.GetAttributes()

The following example uses the Debug window to display information about each
AttributeRef object associated with a block reference. Try it on an attributed block, such as
the one created in the previous example.

Public Sub TestGetAttributes()

Dim varPick As Variant

Dim objEnt As AcadEntity

Dim objBRef As AcadBlockReference

Dim varAttribs As Variant

Dim strAttribs As String

Dim intI As Integer

On Error Resume Next

With ThisDrawing.Utility

'' get an entity from user

.GetEntity objEnt, varPick, vbCr & "Pick a block with attributes: "

If Err Then Exit Sub

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 315

Figure 13-7. Editing attributes in AutoCAD 2005/2006

5793c13_final.qxd 8/22/05 2:07 AM Page 315

'' cast it to a blockref

Set objBRef = objEnt

'' exit if not a block

If objBRef Is Nothing Then

.Prompt vbCr & "That wasn't a block."

Exit Sub

End If

'' exit if it has no attributes

If Not objBRef.HasAttributes Then

.Prompt vbCr & "That block doesn't have attributes."

Exit Sub

End If

'' get the attributerefs

varAttribs = objBRef.GetAttributes

'' show some information about each

strAttribs = "Block Name: " & objBRef.Name & vbCrLf

For intI = LBound(varAttribs) To UBound(varAttribs)

strAttribs = strAttribs & " Tag(" & intI & "): " & _

varAttribs(intI).TagString & vbTab & " Value(" & intI & "): " & _

varAttribs(intI).TextString & vbCrLf

Next

End With

MsgBox strAttribs

End Sub

Using the GetConstantAttributes Method
Use the GetConstantAttributes method of a BlockReference or MInsertBlock object to retrieve
associated constant Attribute objects. This method has the following syntax:

varAttributes = Object.GetConstantAttributes()

It returns an array, varAttributes, that contains the constant attributes.
The following example uses the Debug window to display information about each con-

stant Attribute object associated with a block reference. Try it on a block that has constant
attributes, such as the one created earlier:

Public Sub TestGetConstantAttributes()

Dim varPick As Variant

Dim objEnt As AcadEntity

Dim objBRef As AcadBlockReference

Dim varAttribs As Variant

Dim strAttribs As String

Dim intI As Integer

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES316

5793c13_final.qxd 8/22/05 2:07 AM Page 316

On Error Resume Next

With ThisDrawing.Utility

'' get an entity from user

.GetEntity objEnt, varPick, vbCr & _

"Pick a block with constant attributes: "

If Err Then Exit Sub

'' cast it to a blockref

Set objBRef = objEnt

'' exit if not a block

If objBRef Is Nothing Then

.Prompt vbCr & "That wasn't a block."

Exit Sub

End If

'' exit if it has no attributes

If Not objBRef.HasAttributes Then

.Prompt vbCr & "That block doesn't have attributes."

Exit Sub

End If

'' get the constant attributes

varAttribs = objBRef.GetConstantAttributes

'' show some information about each

strAttribs = "Block Name: " & objBRef.Name & vbCrLf

For intI = LBound(varAttribs) To UBound(varAttribs)

strAttribs = strAttribs & " Tag(" & intI & "): " & _

varAttribs(intI).TagString & vbTab & "Value(" & intI & "): " & _

varAttribs(intI).TextString

Next

End With

MsgBox strAttribs

End Sub

Iterating Attribute Definitions
The BlockReference object exposes methods to retrieve its associated AttributeReference
and Attribute objects. Unfortunately, similar functionality is not available for a Block object’s
attribute definitions. You can see this when you modify a block insertion in a drawing that
contains multiple insertions of the same block. If it contains Attributes and you change the
ATDEF location or properties and redefine the block, the other insertions do not update their
display properties in unison with the changed insertion.

Use the following function to obtain a collection of attributes from a block. The collection
uses the TagString as its key so it can quickly find specific attributes.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 317

5793c13_final.qxd 8/22/05 2:07 AM Page 317

Function GetAttributes(objBlock As AcadBlock) As Collection

Dim objEnt As AcadEntity

Dim objAttribute As AcadAttribute

Dim coll As New Collection

'' iterate the block

For Each objEnt In objBlock

'' if it's an attribute

If objEnt.ObjectName = "AcDbAttributeDefinition" Then

'' cast to an attribute

Set objAttribute = objEnt

'' add attribute to the collection

coll.Add objAttribute, objAttribute.TagString

End If

Next

'' return collection

Set GetAttributes = coll

End Function

This example uses the GetAttributes function to display information about attributes
created in the earlier example code:

Public Sub DemoGetAttributes()

Dim objAttribs As Collection

Dim objAttrib As AcadAttribute

Dim objBlock As AcadBlock

Dim strAttribs As String

'' get the block

Set objBlock = ThisDrawing.Blocks.Item("Affirmations")

'' get the attributes

Set objAttribs = GetAttributes(objBlock)

'' show some information about each

For Each objAttrib In objAttribs

strAttribs = objAttrib.TagString & vbCrLf

strAttribs = strAttribs & "Tag: " & objAttrib.TagString & vbCrLf & _

"Prompt: " & objAttrib.PromptString & vbCrLf & " Value: " & _

objAttrib.TextString & vbCrLf & " Mode: " & _

objAttrib.Mode

MsgBox strAttribs

Next

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES318

5793c13_final.qxd 8/22/05 2:07 AM Page 318

'' find specific attribute by TagString

Set objAttrib = objAttribs.Item("PRESET")

'' prove that we have the right one

strAttribs = "Tag: " & objAttrib.TagString & vbCrLf & "Prompt: " & _

objAttrib.PromptString & vbCrLf & "Value: " & objAttrib.TextString & _

vbCrLf & "Mode: " & objAttrib.Mode

MsgBox strAttribs

End Sub

Inserting Blocks with Attributes
Depending on the setting of the ATTREQ system variable, AutoCAD can automatically handle
retrieving and setting attribute values as user inputs. But if you use the InsertBlock method
to insert a block reference, you are responsible for setting attribute values.

The following example inserts a block and sets several attribute values by locating the
appropriate Tag identifiers. It uses the Affirmations block defined earlier.

Public Sub TestInsertAndSetAttributes()

Dim objBRef As AcadBlockReference

Dim varAttribRef As Variant

Dim varInsertionPoint As Variant

Dim dblX As Double

Dim dblY As Double

Dim dblZ As Double

Dim dblRotation As Double

'' get block input from user

With ThisDrawing.Utility

.InitializeUserInput 1

varInsertionPoint = .GetPoint(, vbCr & "Pick the insert point: ")

.InitializeUserInput 1 + 2

dblX = .GetDistance(varInsertionPoint, vbCr & "X scale: ")

.InitializeUserInput 1 + 2

dblY = .GetDistance(varInsertionPoint, vbCr & "Y scale: ")

.InitializeUserInput 1 + 2

dblZ = .GetDistance(varInsertionPoint, vbCr & "Z scale: ")

.InitializeUserInput 1

dblRotation = .GetAngle(varInsertionPoint, vbCr & "Rotation angle: ")

End With

'' insert the block

Set objBRef = ThisDrawing.ModelSpace.InsertBlock(varInsertionPoint, _

"Affirmations", dblX, dblY, dblZ, dblRotation)

'' iterate the attributerefs

For Each varAttribRef In objBRef.GetAttributes

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES 319

5793c13_final.qxd 8/22/05 2:07 AM Page 319

'' change specific values based on Tag

Select Case varAttribRef.TagString

Case "Regular":

varAttribRef.TextString = "I have new values"

Case "Invisible":

varAttribRef.TextString = "I'm still invisible"

Case "Verify":

varAttribRef.TextString = "No verification needed"

Case "Preset":

varAttribRef.TextString = "I can be changed"

End Select

Next

End Sub

Notice that AutoCAD lets attribute references be changed freely, even if the attribute defi-
nition specifies that a value is preset or should be verified. You can decide to handle attribute
modes in any way you want.

Summary
This chapter explained how to create and manipulate blocks and external references. These
objects give you many ways to efficiently store, manage, share, and use common graphic data.
This chapter also explained how to associate text with graphics using attributes. Because every
block’s attribute reference values are unique, they provide a simple form of nongraphic data
storage inside the AutoCAD drawing.

CHAPTER 13 ■ BLOCKS, ATTRIBUTES, AND EXTERNAL REFERENCES320

5793c13_final.qxd 8/22/05 2:07 AM Page 320

Views and Viewports

A view is a named viewpoint configuration in model space. A View object contains spatial
references to the point of view, the target of view, and other parameters. A user can name and
save a view in his drawing and reuse it later. AutoCAD VBA provides methods and properties
that let you create, set, and delete views.

A viewport, on the other hand, is a bounded area that displays some part of model or
paper space. There are two viewport objects: the Viewport object for model space and the
PViewport object for paper space, used for plotting.

This chapter covers these topics:

• Creating, setting, and deleting views

• Creating model-space viewports

• Creating paper-space viewports

Views
AutoCAD VBA uses a View object to represent a view. When you create a new drawing, no views
are set up. All the views that you save in a drawing become members of the Views collection. The
following code iterates through the Views collection and displays the names of saved views.

Public Sub DisplayViews()

Dim objView As AcadView

Dim strViewNames As String

If ThisDrawing.Views.Count > 0 Then

For Each objView In ThisDrawing.Views

strViewNames = strViewNames & objView.Name & vbCrLf

Next

MsgBox "The following views are saved for this drawing:" & vbCrLf _

& strViewNames

Else

MsgBox "There are no saved View objects in the Views collection."

End If

End Sub

321

C H A P T E R 1 4

■ ■ ■

5793c14_final.qxd 8/22/05 2:04 AM Page 321

Figure 14-1 shows this code’s output. This is equivalent to the views displayed in the View
dialog box’s Named Views tab (see Figure 14-2).

The view named Current is not saved and is not part of the Views collection. Also, the Views
collection is not imported into other drawings when you insert one drawing into another.

Creating a View
To create a new view in the Views collection, use the Add method. It has the following syntax:

Set ViewObject = ViewsCollection.Add(ViewName)

This method has one parameter, ViewName, a String. It contains the new View object’s name.
After you add a View object to the Views collection, set the view’s properties. The Center,

Target, and Direction properties determine the drawing’s viewing angle. Table 14-1 describes
these properties.

CHAPTER 14 ■ VIEWS AND VIEWPORTS322

Figure 14-1. A list of views in a drawing

Figure 14-2. The View dialog box’s Named Views tab

5793c14_final.qxd 8/22/05 2:04 AM Page 322

Table 14-1. View Properties

Property Description

Center The view’s center. A 2-D coordinate.

Target The vector from the view’s Center to its Target is the view’s line of sight. A 3-D WCS
coordinate.

Direction The vector from which the drawing is viewed. A 3-D coordinate.

The Height and Width properties have no effect on the viewport. They only determine the
view’s visible portion in the viewport.

Use the following code to add a view to a drawing. It takes its settings from the active
viewport, so users must set the view they want on-screen and then use this macro to create a
named view for that setup.

Public Sub AddView()

Dim objView As AcadView

Dim objActViewPort As AcadViewport

Dim strNewViewName As String

Dim varCenterPoint As Variant

Dim dblPoint(1) As Double

strNewViewName = InputBox("Enter name for new view: ")

If strNewViewName = "" Then Exit Sub

On Error Resume Next

Set objView = ThisDrawing.Views.Item(strNewViewName)

If objView Is Nothing Then

Set objView = ThisDrawing.Views.Add(strNewViewName)

ThisDrawing.ActiveSpace = acModelSpace

varCenterPoint = ThisDrawing.GetVariable("VIEWCTR")

dblPoint(0) = varCenterPoint(0): dblPoint(1) = varCenterPoint(1)

Set objActViewPort = ThisDrawing.ActiveViewport

'Current view info. is stored in the new AcadView object

With objView

.Center = dblPoint

.Direction = ThisDrawing.GetVariable("VIEWDIR")

.Height = objActViewPort.Height

.Target = objActViewPort.Target

.Width = objActViewPort.Width

End With

CHAPTER 14 ■ VIEWS AND VIEWPORTS 323

5793c14_final.qxd 8/22/05 2:04 AM Page 323

MsgBox "A new view called " & objView.Name & _

" has been added to the Views collection."

Else

MsgBox "This view already exists."

End If

End Sub

The VIEWCTR and VIEWDIR system variables hold center and direction information. Appen-
dix C lists all system variables.

Setting a View as Current
After you create a view, you’ll probably want to use it. Use a Viewport object’s SetView method
to set one of the View objects as the current view. This method has the following syntax:

ViewportObject.SetView ViewObject

The parameter ViewObject is a reference to a View object, not the View object’s name. The
following code asks the user to enter a new view to use. If this view exists in the Views collec-
tion, the code sets it as the current view.

Public Sub SetView()

Dim objView As AcadView

Dim objActViewPort As AcadViewport

Dim strViewName As String

ThisDrawing.ActiveSpace = acModelSpace

Set objActViewPort = ThisDrawing.ActiveViewport

'Redefine the current ViewPort with the View info

strViewName = InputBox("Enter the view you require.")

If strViewName = "" Then Exit Sub

On Error Resume Next

Set objView = ThisDrawing.Views.Item(strViewName)

If Not objView Is Nothing Then

objActViewPort.SetView objView

ThisDrawing.ActiveViewport = objActViewPort

Else

MsgBox "View was not recognized."

End If

End Sub

Deleting a View
When you finish using a view, you can delete it. Use the Delete method as follows:

ViewObject.Delete

CHAPTER 14 ■ VIEWS AND VIEWPORTS324

5793c14_final.qxd 8/22/05 2:04 AM Page 324

The following example illustrates how to implement this method.

Public Sub DeleteView()

Dim objView As AcadView

Dim strViewName As String

Dim strExistingViewNames As String

For Each objView In ThisDrawing.Views

strExistingViewNames = strExistingViewNames & objView.Name & vbCrLf

Next

strViewName = InputBox("Existing Views: " & vbCrLf & _

strExistingViewNames & vbCrLf & _

"Enter the view you wish to delete from the list.")

If strViewName = "" Then Exit Sub

On Error Resume Next

Set objView = ThisDrawing.Views.Item(strViewName)

If Not objView Is Nothing Then

objView.Delete

Else

MsgBox "View was not recognized."

End If

End Sub

Viewports
Viewports are windowed views of your drawing in model and paper space. The ActiveSpace
property determines which type of viewport is in use.

You construct paper-space and model-space viewports differently. The rest of this chapter
explains these two approaches.

The Model-Space Viewport
Model-space viewports give you a number of windows in which to view and edit your model.
The MAXACTVP system variable controls the maximum number of active viewports, and it’s ini-
tially set to 64. Remember, though, that each new viewport adversely affects performance, so
keep the number of active viewports to a minimum.

The following code shows how to create a model-space viewport. The paragraphs after
the code explain this fairly involved procedure.

Public Sub CreateViewport()

Dim objViewPort As AcadViewport

Dim objCurrentViewport As AcadViewport

Dim varLowerLeft As Variant

Dim dblViewDirection(2) As Double

Dim strViewPortName As String

CHAPTER 14 ■ VIEWS AND VIEWPORTS 325

5793c14_final.qxd 8/22/05 2:04 AM Page 325

strViewPortName = InputBox("Enter a name for the new viewport.")

'user cancelled

If strViewPortName = "" Then Exit Sub

'check if viewport already exists

On Error Resume Next

Set objViewPort = ThisDrawing.Viewports.Item(strViewPortName)

If Not objViewPort Is Nothing Then

MsgBox "Viewport already exists"

Exit Sub

End If

'Create a new viewport

Set objViewPort = ThisDrawing.Viewports.Add(strViewPortName)

'Split the screen viewport into 4 windows

objViewPort.Split acViewport4

For Each objCurrentViewport In ThisDrawing.Viewports

If objCurrentViewport.LowerLeftCorner(0) = 0 Then

If objCurrentViewport.LowerLeftCorner(1) = 0 Then

'this takes care of Top view

dblViewDirection(0) = 0

dblViewDirection(1) = 0

dblViewDirection(2) = 1

objCurrentViewport.Direction = dblViewDirection

Else

'this takes care of Front view

dblViewDirection(0) = 0

dblViewDirection(1) = -1

dblViewDirection(2) = 0

objCurrentViewport.Direction = dblViewDirection

End If

End If

If objCurrentViewport.LowerLeftCorner(0) = 0.5 Then

If objCurrentViewport.LowerLeftCorner(1) = 0 Then

'this takes care of the Right view

dblViewDirection(0) = 1

dblViewDirection(1) = 0

dblViewDirection(2) = 0

objCurrentViewport.Direction = dblViewDirection

Else

'this takes care of the Isometric view

dblViewDirection(0) = 1

dblViewDirection(1) = -1

dblViewDirection(2) = 1

objCurrentViewport.Direction = dblViewDirection

End If

End If

CHAPTER 14 ■ VIEWS AND VIEWPORTS326

5793c14_final.qxd 8/22/05 2:04 AM Page 326

Next

'make viewport active to see effects of changes

ThisDrawing.ActiveViewport = objViewPort

End Sub

First, use the Viewports collection’s Add method to create a new viewport. This method has
the following syntax:

Set ViewportObject = ViewportsCollection.Add(ViewportName)

This method has one parameter, ViewportName, a String that contains the new Viewport
object’s name.

Here’s how the example code implements this method:

'Create a new viewport

Set objViewPort = ThisDrawing.Viewports.Add(strViewPortName)

Next, the code uses the Split method to create the windows in the viewport.

ViewportObject.Split NumberOfWindows

The NumberOfWindows parameter must be one of the AutoCAD AcViewportSplitType con-
stants in Table 14-2.

Table 14-2. AcViewportSplitType Constants

Constant Value Description

acViewport2Horizontal 0 Splits the viewport horizontally into two equal sections.

acViewport2Vertical 1 Splits the viewport vertically into two equal sections.

acViewport3Left 2 Splits the viewport into two vertical halves. The left half is
split horizontally into two equal sections.

acViewport3Right 3 Splits the viewport into two vertical halves. The right half is
split horizontally into two equal sections.

acViewport3Horizontal 4 Splits the viewport horizontally into three equal sections.

acViewport3Vertical 5 Splits the viewport vertically into three equal sections.

acViewport3Above 6 Splits the viewport into two horizontal halves. The top half
is a single viewport. The bottom half is split horizontally
into two equal sections.

acViewport3Below 7 Splits the viewport into two horizontal halves. The bottom
half is a single viewport. The top half is split horizontally
into two equal sections.

acViewport4 8 Splits the viewport horizontally and vertically into four
equal sections.

The following example shows how the code sample implements this method. For the
effects of this method to become apparent, reset the viewport as the active viewport. You can
reset the active viewport at the very end of the code, when it’s time to view the changes.

'Split the screen viewport into 4 windows

objViewPort.Split acViewport4

CHAPTER 14 ■ VIEWS AND VIEWPORTS 327

5793c14_final.qxd 8/22/05 2:04 AM Page 327

■Note Although the code calls the Split method, the changes don’t appear until the ActiveViewport
property makes the viewport active. You have to do this even if the viewport was active before the call to
Split. A viewport does not have to be active for this method to work, but you must reset it to active, or
you won’t see the method’s results.

You can identify each viewport using either the LowerLeftCorner or the UpperRightCorner
property, each of which holds a two-element array of doubles. Figure 14-3 applies to the code
sample using acViewport4.

Table 14-3 indicates the coordinates used to create the viewports as shown in Figure 14-3.

Table 14-3. Viewport Coordinates

Viewport LowerLeftCorner Property UpperRightCorner Property

1 (0, 0.5) (0.5, 1)

2 (0.5, 0.5) (1, 1)

3 (0, 0) (0.5, 0.5)

4 (0.5, 0) (1, 0.5)

The following code shows how this section’s example code uses the LowerLeftCorner
property to identify the viewports.

For Each objCurrentViewport In ThisDrawing.Viewports

If objCurrentViewport.LowerLeftCorner(0) = 0 Then

If objCurrentViewport.LowerLeftCorner(1) = 0 Then

'this takes care of Top view

dblViewDirection(0) = 0

dblViewDirection(1) = 0

dblViewDirection(2) = 1

CHAPTER 14 ■ VIEWS AND VIEWPORTS328

Figure 14-3. Viewports

5793c14_final.qxd 8/22/05 2:04 AM Page 328

Else

'this takes care of Front view

dblViewDirection(0) = 0

dblViewDirection(1) = -1

dblViewDirection(2) = 0

objCurrentViewport.Direction = dblViewDirection

End If

End If

If objCurrentViewport.LowerLeftCorner(0) = 0.5 Then

If objCurrentViewport.LowerLeftCorner(1) = 0 Then

'this takes care of the Right view

dblViewDirection(0) = 1

dblViewDirection(1) = 0

dblViewDirection(2) = 0

objCurrentViewport.Direction = dblViewDirection

Else

'this takes care of the Isometric view

dblViewDirection(0) = 1

dblViewDirection(1) = -1

dblViewDirection(2) = 1

objCurrentViewport.Direction = dblViewDirection

End If

End If

Next

Set the Direction property for each viewport. This property has the following syntax:

ViewportObject.Direction = ViewDirection

ViewDirection is a three-element array of doubles that specifies the direction from which
the drawing is viewed for that viewport.

Users typically have a Top, Front, Right, and maybe an isometric view of their drawing. Each
of these views has a specific set of points relative to an imaginary target point at (0, 0, 0), which
defines the direction of view. Table 14-4 lists the standard views and their Direction properties.

Table 14-4. Views and Their Direction Properties

View Direction

Top (0, 0, 1)

Bottom (0, 0, –1)

Front (0, –1, 0)

Back (0, 1, 0)

Left (–1, 0, 0)

Right (1, 0, 0)

Northeast (1, 1, 1)

Northwest (–1, 1, 1)

Southeast (1, –1, 1)

Southwest (–1, –1, 1)

CHAPTER 14 ■ VIEWS AND VIEWPORTS 329

5793c14_final.qxd 8/22/05 2:04 AM Page 329

In this section’s example, the following code sets the Top view’s Direction property:

'this takes care of the Top view

dblViewDirection(0) = 0: dblViewDirection(1) = 0: dblViewDirection(2) = 1

objCurrentViewport.Direction = dblViewDirection

When you finish setting up the viewports, reset the viewport to be the active viewport to see
the effects of your changes. Here’s how to set the active viewport in code using the ActiveViewport
property:

ThisDrawing.ActiveViewport = ViewportObject

At the end of the macro, use the following code to see the code’s effects:

ThisDrawing.ActiveViewport = objViewPort

Figure 14-4 shows the result of running this macro on a drawing.
That may have seemed like a lot of work, but it’s really not as difficult as it looks. Experimen-

tation is your greatest ally when dealing with viewports. Remember to use the LowerLeftCorner
and UpperRightCorner properties to determine which window you are dealing with.

You must activate a viewport before you can change it. To tell which viewport is active, look
for the viewport with the bold border (as in Figure 14-6). Also, only the active viewport contains
the crosshair cursor. When you finish making changes, reset the viewport to see them.

CHAPTER 14 ■ VIEWS AND VIEWPORTS330

Figure 14-4. Four-viewport view

5793c14_final.qxd 8/22/05 2:04 AM Page 330

The Paper-Space Viewport
Paper-space viewports, represented by PViewport objects, are created for plotting purposes
using the AddPViewport method as follows:

Set PViewportObject = PaperSpaceCollection.AddPViewport(CenterPoint, _

Width, Height)

Table 14-5 explains this method’s parameters.

Table 14-5. AddPViewport Method Parameters

Name Data Type Description

CenterPoint Variant A three-element array of doubles that specifies the viewport’s
center coordinates

Width Double A positive number that specifies the viewport’s width

Height Double A positive number that specifies the viewport’s height

There is currently no programmatic means to quickly create, select, or manipulate polyg-
onal PViewports, since they are made up of LwPolyline entities with additional information to
relate the LwPolyline to the Pviewport.

The following example shows how to set up four different viewports for paper space. It’s
quite a long section of code, so the paragraphs that follow split it up into more manageable
chunks and explain each step.

Public Sub CreatePViewports()

Dim objTopVPort As AcadPViewport

Dim objFrontVPort As AcadPViewport

Dim objRightVPort As AcadPViewport

Dim objIsoMetricVPort As AcadPViewport

Dim objLayout As AcadLayout

Dim objAcadObject As AcadObject

Dim dblPoint(2) As Double

Dim dblViewDirection(2) As Double

Dim dblOrigin(1) As Double

Dim dblHeight As Double

Dim dblWidth As Double

Dim varMarginLL As Variant

Dim varMarginUR As Variant

ThisDrawing.ActiveSpace = acPaperSpace

Set objLayout = ThisDrawing.ActiveLayout

dblOrigin(0) = 0: dblOrigin(1) = 0

CHAPTER 14 ■ VIEWS AND VIEWPORTS 331

5793c14_final.qxd 8/22/05 2:04 AM Page 331

objLayout.PlotOrigin = dblOrigin

If objLayout.PlotRotation = ac0degrees Or objLayout.PlotRotation = _

ac180degrees Then

objLayout.GetPaperSize dblWidth, dblHeight

Else

objLayout.GetPaperSize dblHeight, dblWidth

End If

objLayout.GetPaperMargins varMarginLL, varMarginUR

dblWidth = dblWidth - (varMarginUR(0) + varMarginLL(0))

dblHeight = dblHeight - (varMarginUR(1) + varMarginLL(1))

dblWidth = dblWidth / 2#

dblHeight = dblHeight / 2#

'Clear the layout of old PViewports

For Each objAcadObject In ThisDrawing.PaperSpace

If TypeName(objAcadObject) = "IAcadPViewport" Then

objAcadObject.Delete

End If

Next

'create Top Viewport

dblPoint(0) = dblWidth - dblWidth * 0.5 '25

dblPoint(1) = dblHeight - dblHeight * 0.5 '75

dblPoint(2) = 0#

Set objTopVPort = ThisDrawing.PaperSpace.AddPViewport(dblPoint, _

dblWidth, dblHeight)

'need to set view direction

dblViewDirection(0) = 0

dblViewDirection(1) = 0

dblViewDirection(2) = 1

objTopVPort.Direction = dblViewDirection

objTopVPort.Display acOn

ThisDrawing.MSpace = True

ThisDrawing.ActivePViewport = objTopVPort

ThisDrawing.Application.ZoomExtents

ThisDrawing.Application.ZoomScaled 0.5, acZoomScaledRelativePSpace

'create Front Viewport

dblPoint(0) = dblWidth - dblWidth * 0.5

dblPoint(1) = dblHeight + dblHeight * 0.5

dblPoint(2) = 0

CHAPTER 14 ■ VIEWS AND VIEWPORTS332

5793c14_final.qxd 8/22/05 2:04 AM Page 332

Set objFrontVPort = ThisDrawing.PaperSpace.AddPViewport(dblPoint, _

dblWidth, dblHeight)

'need to set view direction

dblViewDirection(0) = 0

dblViewDirection(1) = -1

dblViewDirection(2) = 0

objFrontVPort.Direction = dblViewDirection

objFrontVPort.Display acOn

ThisDrawing.MSpace = True

ThisDrawing.ActivePViewport = objFrontVPort

ThisDrawing.Application.ZoomExtents

ThisDrawing.Application.ZoomScaled 0.5, acZoomScaledRelativePSpace

'create Right Viewport

dblPoint(0) = dblWidth + dblWidth * 0.5

dblPoint(1) = dblHeight - dblHeight * 0.5

dblPoint(2) = 0

Set objRightVPort = ThisDrawing.PaperSpace.AddPViewport(dblPoint, _

dblWidth, dblHeight)

'need to set view direction

dblViewDirection(0) = 1

dblViewDirection(1) = 0

dblViewDirection(2) = 0

objRightVPort.Direction = dblViewDirection

objRightVPort.Display acOn

ThisDrawing.MSpace = True

ThisDrawing.ActivePViewport = objRightVPort

ThisDrawing.Application.ZoomExtents

ThisDrawing.Application.ZoomScaled 0.5, acZoomScaledRelativePSpace

'create Isometric Viewport

dblPoint(0) = dblWidth + dblWidth * 0.5

dblPoint(1) = dblHeight + dblHeight * 0.5

dblPoint(2) = 0

Set objIsoMetricVPort = ThisDrawing.PaperSpace.AddPViewport(dblPoint, _

dblWidth, dblHeight)

CHAPTER 14 ■ VIEWS AND VIEWPORTS 333

5793c14_final.qxd 8/22/05 2:04 AM Page 333

'need to set view direction

dblViewDirection(0) = 1

dblViewDirection(1) = -1

dblViewDirection(2) = 1

objIsoMetricVPort.Direction = dblViewDirection

objIsoMetricVPort.Display acOn

ThisDrawing.MSpace = True

ThisDrawing.ActivePViewport = objIsoMetricVPort

ThisDrawing.Application.ZoomExtents

ThisDrawing.Application.ZoomScaled 0.5, acZoomScaledRelativePSpace

'make paper space active again and we're almost done

ThisDrawing.ActiveSpace = acPaperSpace

ThisDrawing.Application.ZoomExtents

'regen in all viewports

ThisDrawing.Regen acAllViewports

End Sub

First, this code sets the active space to be paper space and uses the active Layout object’s
GetPaperSize method to find the paper’s size. Because the viewports need to stay inside the
plottable area, the code finds out the margins’ size. It uses the GetPaperMargins method, which
returns two two-element arrays that hold the offset of the lower-left and upper-right plot area
from the lower-left and upper-right paper corners.

ThisDrawing.ActiveSpace = acPaperSpace

Set objLayout = ThisDrawing.ActiveLayout

dblOrigin(0) = 0: dblOrigin(1) = 0

objLayout.PlotOrigin = dblOrigin

If objLayout.PlotRotation = ac0degrees Or objLayout.PlotRotation = _

ac180degrees Then

objLayout.GetPaperSize dblWidth, dblHeight

Else

objLayout.GetPaperSize dblHeight, dblWidth

End If

objLayout.GetPaperMargins varMarginLL, varMarginUR

dblWidth = dblWidth - (varMarginUR(0) + varMarginLL(0))

dblHeight = dblHeight - (varMarginUR(1) + varMarginLL(1))

dblWidth = dblWidth / 2#

dblHeight = dblHeight / 2#

Figure 14-5 shows a template of a viewport labeled with the different parameters to create.

CHAPTER 14 ■ VIEWS AND VIEWPORTS334

5793c14_final.qxd 8/22/05 2:04 AM Page 334

The code then halves the width and height dimensions to use as each viewpoint’s size.
It also uses this information to calculate each viewport’s center.

The code then ensures that no old viewports exist, since they’d overlap or interfere with
our new viewport.

'Clear the layout of old PViewports

For Each objAcadObject In ThisDrawing.PaperSpace

If TypeName(objAcadObject) = "IAcadPViewport" Then

objAcadObject.Delete

End If

Next

Now the code creates the viewports. The code is similar for each viewport. Here’s how it
creates the Front viewport:

'create Front Viewport

dblPoint(0) = dblWidth - dblWidth * 0.5

dblPoint(1) = dblHeight + dblHeight * 0.5

dblPoint(2) = 0

Set objFrontVPort = ThisDrawing.PaperSpace.AddPViewport(dblPoint, _

dblWidth, dblHeight)

Next, the code sets the viewport’s viewpoint with the Direction property, as follows:

'need to set view direction

dblViewDirection(0) = 0

dblViewDirection(1) = -1

dblViewDirection(2) = 0

objFrontVPort.Direction = dblViewDirection

Next, the code sets what the viewport displays using the Display method to enable the
viewport display, and then setting the MSpace method to allow editing of model space from
a floating paper-space viewport. Finally, the code sets the drawing to fill the viewport by scal-
ing it to half its size relative to paper-space units.

CHAPTER 14 ■ VIEWS AND VIEWPORTS 335

Figure 14-5. Viewport parameters

5793c14_final.qxd 8/22/05 2:04 AM Page 335

objFrontVPort.Display acOn

ThisDrawing.MSpace = True

ThisDrawing.ActivePViewport = objFrontVPort

ThisDrawing.Application.ZoomExtents

ThisDrawing.Application.ZoomScaled 0.5, acZoomScaledRelativePSpace

After the code sets up all the viewports, the only thing left for it to do is regenerate the
drawing to see all of the changes.

'regen in all viewports

ThisDrawing.Regen acAllViewports

Figure 14-6 shows this code’s result.

AutoCAD gives you a number of properties to control the viewport’s view. You can also
control the layer on which the viewport is created and the linetype used to create the view-
port. For full details, see Appendix A.

Summary
This chapter showed you how to name, define, and save a view for use later. AutoCAD provides
methods and properties that let you create, set, and delete views. Viewports are bounded areas
that display a specific view of your drawing in model space and paper space. This chapter exam-
ined the processes of creating both model-space and paper-space viewports.

CHAPTER 14 ■ VIEWS AND VIEWPORTS336

Figure 14-6. Four-viewport view

5793c14_final.qxd 8/22/05 2:04 AM Page 336

Layout and Plot Configurations

Being able to draw on the screen is great, but eventually you’ll want a hard-copy printout
of your design. For most businesses, this is a requirement as part of the customer-deliverable
product. AutoCAD provides a number of methods to create through code plots of your draw-
ing that the user normally generates using the AutoCAD Plot dialog box interface.

This chapter covers the following topics:

• Examining the Plot and PlotConfiguration objects

• Previewing and plotting a drawing

• Understanding the Layouts collection and the Layout object

• Controlling plot parameters

The Plot Object
The Plot object consists of a number of methods and properties that are used to plot layouts.
The Layout object (discussed later in the chapter) holds the plot settings and visual properties
of a model-space or paper-space block. You access the Plot object via the Document object
using the following syntax:

Set PlotObject = DocumentObject.Plot

To declare and set a reference to the Plot object for the currently active drawing, you
might use this code:

Dim objPlot As AcadPlot

Set objPlot = ThisDrawing.Plot

Through the methods and properties of the Plot object, you can display a plot preview,
plot to a plotting device or to a file, and employ batch-mode plotting. A detailed discussion of
batch-mode plotting falls outside the scope of this book, but Appendix A covers the relevant
properties and methods.

337

C H A P T E R 1 5

■ ■ ■

5793c15_final.qxd 8/22/05 3:22 AM Page 337

Plotting Your Drawing
This section details the various means used to plot your drawings.

The DisplayPlotPreview Method
It’s a good idea to preview your drawing before you print it out. AutoCAD provides a means
of previewing the active layout of your drawing using the DisplayPlotPreview method. This
method displays the Plot Preview box, which must be dismissed by the user rather than through
code. The drawing for which the DisplayPlotPreview method is invoked will become the active
drawing and will remain so even after you’ve dismissed the Plot Preview box.

PlotObject.DisplayPlotPreview Preview

Table 15-1 shows the DisplayPlotPreview property’s parameter.

Table 15-1. The DisplayPlotPreview Property Parameter

Name Data Type Description

Preview Long This determines the kind of preview used. It must be one of the
AcPreviewMode constants described in Table 15-2.

In AutoCAD 2005 and later, there is only one type of Preview mode, full preview, which
takes longer to perform than a partial preview because it requires a regeneration of the draw-
ing, although no optimization or vector sorting takes place. For backward compatibility, two
AcPreviewMode constants are available, though only the full preview is used.

Table 15-2 shows the Preview type’s constants.

Table 15-2. Preview Type Constants

Constant Value Description

acPartialPreview 0 This type of preview shows the effective plot area relative to the
paper size.

acFullPreview 1 This type of preview displays the drawing on screen, as it will
appear when plotted.

The following code allows the user to decide the type of plot preview:

Public Sub PlotPreview()

If MsgBox("A preview of your drawing will be displayed." & _

"Would you like to see a full preview?", vbYesNo) =

vbYes Then

ThisDrawing.Plot.DisplayPlotPreview acFullPreview

Else

ThisDrawing.Plot.DisplayPlotPreview acPartialPreview

End If

End Sub

Figure 15-1 depicts the two different types of plot previews.

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS338

5793c15_final.qxd 8/22/05 3:22 AM Page 338

Plotting with Layouts
Layout configurations that you create to control plot settings and visual properties of model- or
paper-space geometry are held in the Layouts collection. ActiveX layouts differ from their Auto-
CAD user interface counterparts by splitting the standard AutoCAD layout into two objects:
a Layout object containing the visual properties and plot settings as they would appear in the
standard AutoCAD interface, and a Block object containing the geometry.

You access the Layouts collection via the Document object using the following syntax:

Set LayoutsCollection = DocumentObject.Layouts

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS 339

Figure 15-1. Partial versus full plot preview

5793c15_final.qxd 8/22/05 3:22 AM Page 339

To declare and set a reference to the Layouts object for the currently active drawing, you
might use this code:

Dim objLayouts As AcadLayouts

Set objLayouts = ThisDrawing.Layouts

A Layout object has only one Block object associated with it and you access it via the Block
property. Similarly, the one layout is associated with a Block object and you can access it through
the Layout property.

You can access a Layout object using the Item method of the Layouts collection or you can
reference the active layout through the ActiveLayout property of the Document object:

Set LayoutObject = DocumentObject.ActiveLayout

You can use many of the properties and methods of the Layout object to control plotting fea-
tures such as plot rotation and scale. These properties are also exposed by the PlotConfiguration
object and are covered later in this chapter.

The SetLayoutsToPlot Method

You use the SetLayoutsToPlot method to specify the layout or layouts that you want to plot.
You’ll normally use this method prior to a call to the PlotToDevice or PlotToFile method to
override the default plotting of the active layout. After you’ve called either of these plotting
methods, the default returns to the active layout.

PlotObject.SetLayoutsToPlot(Layouts)

Table 15-3 shows the SetLayoutsToPlot method’s parameter.

Table 15-3. The SetLayoutsToPlot Method Parameter

Name Data Type Description

Layouts Variant An array of string names identifying the layouts to plot. If this list is
Null, this method is effectively useless and the default layout to plot
will remain as the active layout.

The following code plots the layouts specified by the user:

Public Sub PlotLayouts()

Dim objLayout As AcadLayout

Dim strLayoutList() As String

Dim intCount As Integer

Dim objPlot As AcadPlot

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS340

5793c15_final.qxd 8/22/05 3:22 AM Page 340

intCount = -1

For Each objLayout In ThisDrawing.Layouts

If MsgBox("Do you wish to plot the layout: " _

& objLayout.Name, vbYesNo) = vbYes Then

intCount = intCount + 1

ReDim Preserve strLayoutList(intCount)

strLayoutList(intCount) = objLayout.Name

End If

Next objLayout

Set objPlot = ThisDrawing.Plot

objPlot.SetLayoutsToPlot strLayoutList

objPlot.PlotToDevice

End Sub

The PlotToDevice Method

You may print or plot a layout of the active drawing to a file by any device connected to your sys-
tem using the PlotToDevice method. This method plots using the current configuration or using
configuration settings held in a PC3 file. You can specify the device through the ConfigName prop-
erty for the Layout or PlotConfiguration objects. This method returns a value of True if the plot
was successful; otherwise, it returns False.

By default, this method will print the currently active layout. If you want to print a differ-
ent selection of layouts, you need to call the SetLayoutsToPlot method, described previously,
to specify the required layouts.

blnPlotSuccessful = PlotObject.PlotToDevice [PlotConfiguration]

Table 15-4 shows the PlotToDevice method’s parameter.

Table 15-4. The PlotToDevice Method Parameter

Name Data Type Description

PlotConfiguration String This optional parameter specifies the full path and file
name of a PC3 file to use instead of the current configura-
tion. If the file isn’t found, AutoCAD will search the printer
configuration path for the file. If this parameter isn’t pro-
vided or is invalid, the current configuration will be used.

You can look at the available printers using the Options dialog box inside AutoCAD, as
shown in Figure 15-2. The Plotting tab displays all the available printer device names. Unfor-
tunately, AutoCAD doesn’t provide a means to see this list programmatically.

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS 341

5793c15_final.qxd 8/22/05 3:22 AM Page 341

The PlotToFile Method

This method works in a similar way to the PlotToDevice method except that it plots layouts
of the active drawing to a specified file. The default layout to be plotted is the active layout,
but this may be overridden by the SetLayoutsToPlot method given earlier in this chapter.
This method returns a Boolean indicating whether the plot to file was successful. A value of
True indicates success.

blnPlotSuccessful = PlotObject.PlotToFile _

(PlotFile [, PlotConfiguration])

Table 15-5 shows the PlotToFile method’s parameters.

Table 15-5. PlotToFile Method Parameters

Name Data Type Description

PlotFile String The name of the file that the layout or layouts is plotted to.
When you’re plotting multiple layouts, it’s possible for the
file name for each plot to be generated from the drawing
and layout names. This automatic generation of plot file
names will occur if a path but no file name is supplied.
Otherwise, the last layout specified will be plotted to the
file name provided.

PlotConfiguration String This optional parameter specifies the full path and file
name of a PC3 file to use instead of the current configura-
tion. If the file isn’t found, AutoCAD will search the printer
configuration path for the file. If this parameter isn’t pro-
vided or is invalid, the current configuration will be used.

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS342

Figure 15-2. The Plotting tab of the Options dialog box

5793c15_final.qxd 8/22/05 3:22 AM Page 342

It isn’t necessary to provide an extension for the plot file. However, if an extension isn’t
provided, then the generated extension depends upon the default extension for the driver or
device specified in the PlotConfiguration parameter. If a file extension is provided, it will be
overwritten for certain raster output drivers that replace user-provided extensions with .gif.

Some plot configurations will invoke a plot to file indirectly, such as Adobe Acrobat PDF
or the newer Microsoft Document Imaging (MDI) output. For example, a PC3 configuration like
a PDF or MDI will still work with PlotToDevice, but it will then hand the request to the Adobe
rendering service to produce the PDF output or the MDI rendering service for producing MDI
or TIFF documents.

Plot Configurations
When you plot a drawing, its appearance depends upon the plot configuration you use.
AutoCAD provides the PlotConfiguration object to hold the settings for a particular config-
uration. A plot configuration is similar to a layout, as it contains the same plot information,
and its corresponding AutoCAD objects expose almost identical properties and methods.
However, a PlotConfiguration object isn’t associated with any Block Definition, and so con-
sists of a collection of plot settings that you may use with any geometry.

PlotConfiguration Objects
You can have as many PlotConfiguration objects as you need, identified by a name and held
in the PlotConfigurations collection. You access this collection through the Document object
as follows:

Set PlotConfigurationsCollection = DocumentObject.PlotConfigurations

A PlotConfiguration object belongs either to model space or paper space (layouts) only,
not both. Additionally, when you import a PlotConfiguration object by way of a PageSetup
import (by command or programmatically), it will apply and attach only to the appropriate
working space that it’s related to in the source drawing. To create a new PlotConfiguration
object, you use the Add method, which for the PlotConfigurations collection takes the syntax
shown here:

Set PlotConfigurationObject = PlotConfigurationsCollection.Add(Name[, ModelType])

Table 15-6 shows the Add method’s parameters.

Table 15-6. Add Method Parameters

Name Data Type Description

Name String The identifying name of the new PlotConfiguration object.

ModelType Boolean An optional parameter that determines which layouts the plot
configuration may apply to. If this is set to True, the configuration
applies only to model space; otherwise, it applies to all layouts. The
default is False.

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS 343

5793c15_final.qxd 8/22/05 3:22 AM Page 343

To create a new PlotConfiguration object named PlotConfig1 that applies only to model
space, you could use the following code:

Public Sub AddPConfig()

Dim objPlotConfigs As AcadPlotConfigurations

Dim objPlotConfig As AcadPlotConfiguration

Set objPlotConfigs = ThisDrawing.PlotConfigurations

Set objPlotConfig = objPlotConfigs.Add("PlotConfig1", True)

End Sub

Each of the properties and methods discussed in the sections that follow determine the
appearance of a plot. Both the PlotConfiguration and the Layout objects expose them, although
for a Layout object they apply only to the individual layout. Remember, a Layout object defines
a specific view of your drawing geometry for plotting, whereas a PlotConfiguration object is
generic and not associated with any particular view or drawing-view layout. Effectively, they
both achieve the same result but with the capability to use completely different input data.

When I present the syntax of each method or property in the sections that follow, I use
the word “object” to refer to either the PlotConfiguration or Layout object.

The PlotType Property
You use this property to read or set how much of a drawing or layout is plotted. Modifications
to this property come into effect only after the drawing is regenerated.

Object.PlotType = lngPlotType

The PlotType property holds one of the AcPlotType constants listed in Table 15-7.

Table 15-7. AcPlotType Constants

Constant Value Description

acDisplay 0 Everything within the current display is printed.

acExtents 1 Everything within the extents of the currently selected space is printed.

acLimits 2 Everything within the limits of the current space is printed.

acView 3 The view named by the ViewToPlot property is printed. You must call
the ViewToPlot property before you can set PlotType to acView.

acWindow 4 Everything in the window specified by the SetWindowToPlot method is
printed. You must call the SetWindowToPlot method before you can set
the PlotType to acWindow.

acLayout 5 Everything within the margins of the specified paper size is printed.
The origin is calculated from the (0, 0) coordinate location of the lay-
out. This option doesn’t apply to model space.

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS344

5793c15_final.qxd 8/22/05 3:22 AM Page 344

The ViewToPlot Property
AutoCAD allows you to plot a previously named view by setting the ViewToPlot property to
the name of the view you want to use. For this to have an effect, it’s then necessary to set the
PlotType property of the Layout or PlotConfiguration object to acView. You supply the view
name as a string.

Object.ViewToPlot = strViewName

I discuss how to manipulate views through code in Chapter 14. To view the currently avail-
able views through the AutoCAD user interface, navigate to the View dialog box via the View ➤
Named Views menu. Figure 15-3 shows the View dialog box.

The following code example sets the view to be plotted based on user input and then
plots that view to file:

Public Sub PlotView()

Dim intCount As Integer

Dim strViewToPlot As String

Dim objView As AcadView

Dim strFilename As String

strViewToPlot = InputBox("Enter name of view to plot: ", "Plot View")

On Error Resume Next

Set objView = ThisDrawing.Views(strViewToPlot)

If objView Is Nothing Then

MsgBox "This view does not exist"

Exit Sub

End If

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS 345

Figure 15-3. The View dialog box

5793c15_final.qxd 8/22/05 3:22 AM Page 345

strFilename = InputBox("Enter a filename to plot to")

If strFilename = "" Then Exit Sub

'set view to plot

ThisDrawing.ModelSpace.Layout.ViewToPlot = strViewToPlot

ThisDrawing.ModelSpace.Layout.PlotType = acView

'Initiate the plot

ThisDrawing.Plot.PlotToFile strFilename

End Sub

The SetWindowToPlot Method
AutoCAD allows you to plot part of a layout within a rectangular window by using the
SetWindowToPlot method to set the coordinates defining the lower-left and upper-right
coordinates of the window. For this method to have an effect, it’s necessary to set the
PlotType property of the Layout or PlotConfiguration object to acWindow.

Object.SetWindowToPlot(LowerLeftCorner, UpperRightCorner)

Table 15-8 shows the SetWindowToPlot method’s parameters.

Table 15-8. SetWindowToPlot Method Parameters

Name Data Type Description

LowerLeftCorner Variant A two-element array of doubles specifying in paper units the
X and Y values, measured from the origin, for the lower-left
corner of the window to be plotted

UpperRightCorner Variant A two-element array of doubles specifying in paper units the
X and Y values, measured from the origin, for the upper-right
corner of the window to be plotted

The following example illustrates how to implement this method by retrieving a window
to plot from the user and then plotting that part of the drawing to file:

Public Sub PlotWindow()

Dim varLowerLeftCorner As Variant

Dim varUpperRightCorner As Variant

Dim dblLowerLeftCorner(1) As Double

Dim dblUpperRightCorner(1) As Double

Dim intCount As Integer

Dim strFilename As String

'set the plot type

varLowerLeftCorner = ThisDrawing.Utility.GetPoint(, _

"Select lower-left corner of window: ")

varUpperRightCorner = ThisDrawing.Utility.GetCorner(varLowerLeftCorner, _

"Select upper-right corner of window: ")

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS346

5793c15_final.qxd 8/22/05 3:22 AM Page 346

For intCount = 0 To 1

dblLowerLeftCorner(intCount) = CDbl(varLowerLeftCorner(intCount))

dblUpperRightCorner(intCount) = CDbl(varUpperRightCorner(intCount))

Next intCount

ThisDrawing.ActiveLayout.SetWindowToPlot dblLowerLeftCorner, _

dblUpperRightCorner

ThisDrawing.ActiveLayout.PlotType = acWindow

'initiate the plot

strFilename = InputBox("Enter a filename to plot to")

If strFilename = "" Then Exit Sub

ThisDrawing.Plot.PlotToFile strFilename

End Sub

Controlling Plot Parameters
A number of parameters are normally set using the Plot dialog box shown in Figure 15-4.
AutoCAD provides a means to control these settings programmatically. In this section I cover
the options that are most commonly modified.

All the methods and properties for controlling the plot parameters are available to both
the PlotConfiguration and Layout objects. Consequently, when I present the syntax in the
following sections, I use the word “object” to denote either object.

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS 347

Figure 15-4. The Plot dialog box

5793c15_final.qxd 8/22/05 3:22 AM Page 347

The CanonicalMediaName Property
You can read or set the paper size to be used when plotting using the CanonicalMediaName
property of the Layout or PlotConfiguration object. You specify the paper size by a name
given as a string, and changes to this property won’t take effect until the drawing has been
regenerated.

Object.CanonicalMediaName = strPaperSize

This code snippet shows how to read the current setting of the paper size for the active
layout of a drawing:

Public Sub PaperSizeNames()

MsgBox "The paper size for the active layout is " & _

ThisDrawing.ActiveLayout.CanonicalMediaName

End Sub

The result of this code may be similar to that shown in Figure 15-5.

The GetCanonicalMediaNames Method
You can use the GetCanonicalMediaNames method to retrieve the names of the available paper
sizes for a specified plot device. The return value for this method is an array of strings holding
the names of the available paper sizes.

varPaperSizeNames = Object.GetCanonicalMediaNames()

It’s advisable to call the RefreshPlotDeviceInfo method before you use this method for
the first time, and each time you’re changing the default plot device. This ensures that the plot,
paper size names, and plot style table information accurately reflect the current system state.

The GetPaperSize Method
Although you can read the CanonicalMediaName property to find out the name of the paper
size to be used, you may want to know the actual width and height dimensions. The
GetPaperSize method retrieves the width and height of the configured paper, given in the
current paper units.

Object.GetPaperSize Width, Height

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS348

Figure 15-5. PaperSizeNames output

5793c15_final.qxd 8/22/05 3:22 AM Page 348

Table 15-9 shows the GetPaperSize method’s parameters.

Table 15-9. GetPaperSize Method Parameters

Name Data Type Description

Width Double The width of the paper in units specified by the PaperUnits prop-
erty of the layout or plot configuration

Height Double The height of the paper in units specified by the PaperUnits prop-
erty of the layout or plot configuration

The following code example incorporates the property and methods associated with the
paper size. First, the available paper sizes for the current layout are retrieved and displayed to
the user. If the user then enters one of these in an input box, the dimensions of the chosen
paper size display.

Public Sub PaperSize()

Dim varPaperSizeNames As Variant

Dim strPaperSizeNames As String

Dim intCount As Integer

Dim strChoosenPaperSize As String

varPaperSizeNames = ThisDrawing.ActiveLayout.GetCanonicalMediaNames

strPaperSizeNames = "These are the paper sizes available:" & vbCrLf

For intCount = 0 To UBound(varPaperSizeNames)

strPaperSizeNames = strPaperSizeNames & _

varPaperSizeNames(intCount) & ", "

Next intCount

strPaperSizeNames = strPaperSizeNames & vbCrLf & " Please choose one."

strChoosenPaperSize = InputBox(strPaperSizeNames, "Pick a paper size")

For intCount = 0 To UBound(varPaperSizeNames)

If StrComp(strChoosenPaperSize, varPaperSizeNames(intCount), 1) = 0 _

Then GoTo DisplaySize

Next intCount

MsgBox "You did not enter a valid paper size name."

Exit Sub

DisplaySize:

Dim dblPaperWidth As Double

Dim dblPaperHeight As Double

Dim lngPaperUnits As Long

Dim strPaperUnits As String

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS 349

5793c15_final.qxd 8/22/05 3:22 AM Page 349

ThisDrawing.ActiveLayout.GetPaperSize dblPaperWidth, dblPaperHeight

lngPaperUnits = ThisDrawing.ActiveLayout.PaperUnits

Select Case lngPaperUnits

Case 0

strPaperUnits = "inches"

dblPaperWidth = dblPaperWidth / 25.4

dblPaperHeight = dblPaperHeight / 25.4

Case 1

strPaperUnits = "millimeters"

End Select

MsgBox dblPaperWidth & " by " & dblPaperHeight & " " & strPaperUnits

End Sub

The Plot Scale
You normally draw an AutoCAD drawing in units that reflect the true size of the object being
represented. Therefore, when you print your drawing you’ll probably need to scale the plot so
that it fits comfortably onto the paper. There are two types of plot scales, and both give the ratio
of the plot size to drawing size. The first is the standard scale and it’s set to one of AutoCAD’s
predefined scales. The second, custom scale, can be set to any value.

The StandardScale Property

You can use the StandardScale property to set the plot scale to one of the predefined AutoCAD
scales.

Object.StandardScale = lngAcPlotScale

This must be one of the AcPlotScale constants detailed in Table 15-10.

Table 15-10. AcPlotScale Constants

Constant Value Description

acScaleToFit 0 Scale to Fit

ac1_128in_1ft 1 1/128′′ : 1′
ac1_64in_1ft 2 1/64′′ : 1′
ac1_32in_1ft 3 1/32′′ : 1′
ac1_16in_1ft 4 1/16′′ : 1′
ac3_32in_1ft 5 3/32′′ : 1′
ac1_8in_1ft 6 1/8′′ : 1′
ac3_16in_1ft 7 3/16′′ : 1′
ac1_4in_1ft 8 1/4′′ : 1′
ac3_8in_1ft 9 3/8′′ : 1′
ac1_2in_1ft 10 1/2′′ : 1′
ac3_4in_1ft 11 3/4′′ : 1′
ac1in_1ft 12 1′′ : 1′
ac3in_1ft 13 3′′ : 1′

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS350

5793c15_final.qxd 8/22/05 3:22 AM Page 350

Constant Value Description

ac6in_1ft 14 6′′ : 1′
ac1ft_1ft 15 1′ : 1′
ac1_1 16 1:1

ac1_2 17 1:2

ac1_4 18 1:4

ac1_8 19 1:8

ac1_10 20 1:10

ac1_16 21 1:16

ac1_20 22 1:20

ac1_30 23 1:30

ac1_40 24 1:40

ac1_50 25 1:50

ac1_100 26 1:100

ac2_1 27 2:1

ac4_1 28 4:1

ac8_1 29 8:1

ac10_1 30 10:1

ac100_1 31 100:1

The GetCustomScale Method

You use this method to examine the scale for a layout or plot configuration.

Object.GetCustomScale(Numerator, Denominator)

Table 15-11 shows the GetCustomScale method’s parameters.

Table 15-11. GetCustomScale Method Parameters

Name Data Type Description

Numerator Double The numerator in the scale ratio. This value represents the
number of inches or millimeters for the plot. The unit of
measurement is held in the PaperUnits parameter.

Denominator Double The denominator in the scale ratio. This value represents the
number of drawing units used to scale to the measurement
given in the numerator.

You can use the following code to retrieve the scales used in each of the layouts of your
drawing:

Public Sub GetScales()

Dim objLayout As AcadLayout

Dim dblNumerator As Double

Dim dblDenominator As Double

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS 351

5793c15_final.qxd 8/22/05 3:22 AM Page 351

For Each objLayout In ThisDrawing.Layouts

'Get custom scale information

objLayout.GetCustomScale dblNumerator, dblDenominator

If objLayout.PaperUnits = acInches Then

MsgBox "The scale of " & objLayout.Name & _

" is " & dblNumerator & " inches = " & _

dblDenominator & " Drawing Units"

ElseIf objLayout.PaperUnits = acMillimeters Then

MsgBox "The scale of " & objLayout.Name & _

" is " & dblNumerator & " millimeters = " & _

dblDenominator & " Drawing Units"

Else

MsgBox "The scale of " & objLayout.Name & " is " & _

dblNumerator & " pixels = " & dblDenominator & _

" Drawing Units"

End If

Next

End Sub

The SetCustomScale Method

This method works in a similar way to GetCustomScale, described previously, except it sets the
plot scale. Any changes you make through this method become effective only after the draw-
ing has been regenerated.

Object.SetCustomScale(Numerator, Denominator)

Table 15-12 shows the SetCustomScale method’s parameters.

Table 15-12. SetCustomScale Method Parameters

Name Data Type Description

Numerator Double A positive value representing the number of inches or milli-
meters of the plot. The unit of measurement is held in the
PaperUnits parameter.

Denominator Double A positive value representing the number of drawing units for
the drawing that will be scaled to the measurement given in the
numerator.

The UseStandardScale Property

You use this property to read or set whether a plot should use a standard or custom scale. It
holds a Boolean value that is set to True if a standard scale is in use or False if a custom plot
scale is in use.

Object.UseStandardScale = blnStandardScale

The following code sample employs the UseStandardScale property to retrieve the type
of scale used for each layout and displays that information to the user:

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS352

5793c15_final.qxd 8/22/05 3:22 AM Page 352

Public Sub UseStandardScale()

Dim objLayout As AcadLayout

For Each objLayout In ThisDrawing.Layouts

If objLayout.UseStandardScale Then

MsgBox "The scale of " & objLayout.Name & " is a Standard scale"

Else

MsgBox "The scale of " & objLayout.Name & " is a Custom scale"

End If

Next

End Sub

The PlotRotation Property
If you want to plot a layout at an angle other than the default of 08, then you’ll need to specify
the angle of rotation using the PlotRotation property. This property allows you to select pre-
defined angles of 08, 908, 1808, and 2708, measured counterclockwise in the XY plane from
the X-axis of the WCS. Changes to the PlotRotation property won’t take effect until the draw-
ing has been regenerated.

Object.PlotRotation = lngAcPlotRotation

Any AcPlotRotation constant shown in Table 15-13 is an acceptable value for this property.

Table 15-13. AcPlotRotation Constants

Constant Value Description

ac0degrees 0 The layout and plot have the same orientation.

ac90degrees 1 The plot is rotated by an angle of 90° from the layout.

ac180degrees 2 The plot is rotated by an angle of 180° from the layout.

ac270degrees 3 The plot is rotated by an angle of 270° from the layout.

In the following code sample, the user is asked at which angle he or she would like to
preview the active layout. The preview then displays, and finally the PlotRotation property
returns to its original value.

Public Sub PlotAngle()

Dim strPlotAngle As String

Dim lngStoreAngle As Long

lngStoreAngle = ThisDrawing.ActiveLayout.PlotRotation

strPlotAngle = InputBox("For a plot preview please enter the angle" & _

"(in degrees: 0, 90, 180 or 270) that you would like" & _

" your layout plotted at", , "0")

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS 353

5793c15_final.qxd 8/22/05 3:22 AM Page 353

Select Case strPlotAngle

Case "0"

ThisDrawing.ActiveLayout.PlotRotation = ac0degrees

Case "90"

ThisDrawing.ActiveLayout.PlotRotation = ac90degrees

Case "180"

ThisDrawing.ActiveLayout.PlotRotation = ac180degrees

Case "270"

ThisDrawing.ActiveLayout.PlotRotation = ac270degrees

Case Else

MsgBox "You entered an invalid value"

Exit Sub

End Select

ThisDrawing.Regen acActiveViewport

ThisDrawing.Plot.DisplayPlotPreview acFullPreview

ThisDrawing.ActiveLayout.PlotRotation = lngStoreAngle

ThisDrawing.Regen acActiveViewport

End Sub

Summary
In this chapter you explored several topics specific to plotting. This is one area in which Auto-
CAD 2000 and later versions are vastly different from previous versions. In AutoCAD 2000 and
higher, Autodesk added a lot of plotting power, and when you’re programming your plotting
applications, the use of plot configuration files can reduce the amount of hard coding required
by taking advantage of the features built into the AutoCAD product. Some differences exist
between AutoCAD 2000, 2000i, 2002, 2004, 2005, and 2006 as far as programmatic capabilities
with respect to plotting and plot configuration management, be sure to refer to the appropriate
documentation for your platform.

CHAPTER 15 ■ LAYOUT AND PLOT CONFIGURATIONS354

5793c15_final.qxd 8/22/05 3:22 AM Page 354

Controlling Menus and
Toolbars

AutoCAD 2000 (and higher) gives you the ability to control the menus and toolbars pro-
grammatically. You can manipulate existing menus or create new entries using the objects
exposed by the AutoCAD object model. Although you can’t create a completely new menu
structure programmatically, you can make changes to the existing menus.

This chapter covers the following topics in detail:

• Loading, saving, and unloading menu groups

• Assigning accelerator keys

• Manipulating the menu bar

• Creating and editing menus

• Creating and editing toolbars

• Floating and docking toolbars

In AutoCAD 2006, the menu system has been radically changed. The system looks the
same externally, but the internal functioning of the system and the files the system uses have
been overhauled. Fortunately, this is invisible to most VBA programs, as most of the objects
and methods have not changed. However, if you want your programs to work with both 2006
and earlier releases, you should know about some of the differences.

• In AutoCAD 2005 and earlier, the menus are stored in .mnu, .mns, .mnc, and .mnr files.
AutoCAD 2006 uses just .cui and .mnr files. In AutoCAD 2006, when a partial menu is
loaded using the MENULOAD command or the CUILOAD command, a pointer to the partial
menu is stored in the current main .cui file.

• AutoCAD 2006 can load existing .mnu or .mns files, at which point they are converted to
.cui files. Subsequent modification to the menus in AutoCAD 2006 will update only the
.cui files.

• .cui files are stored in XML format. Although XML documentation is readily available,
the .cui file structure itself is not documented. Unlike the situation with .mnu and .mns
from earlier releases, Autodesk strongly discourages creating or editing .cui files manu-
ally. Instead, users are expected to use AutoCAD 2006’s new CUI command to perform
all .cui file modifications using a dialog box interface.

355

C H A P T E R 1 6

■ ■ ■

5793c16_final.qxd 8/22/05 1:57 AM Page 355

• AutoCAD 2006 introduces the concept of work spaces. These are collections of menu
settings, specifying the order of pull-downs, location, and visibility of toolbars, and so
on. The work spaces are stored in the current main .cui file. Unfortunately, there is no
ActiveX access to work spaces.

• In AutoCAD 2005 and earlier, there is only one main menu and many partial menus.
In AutoCAD 2006, there are Main and Enterprise (read-only) menus, each of which can
have partial menus attached. To attach menus to the Enterprise menu, it is necessary to
temporarily make it the Main menu while using the CUILOAD command. Unfortunately,
there is no ActiveX access to the Enterprise menu setting. The user has to change this
in the Options dialog box.

In summary, the AutoCAD 2006 menu overhaul, while introducing some useful concepts,
has placed various obstacles in the way of the VBA programmer’s ability to safely make changes
to the menu system. In light of these problems, you may want to consider using AutoCAD’s CUI
interface to create partial menus for your users, rather than doing it under program control as
described in this chapter. If you still want VBA control over your AutoCAD 2006 menus, read on.

■Note This chapter’s content is specific to AutoCAD 2000 and later. The previous object models didn’t
expose any objects to deal with menus and toolbars.

I will start this chapter with the MenuGroups collection because it’s the parent object of the
MenuGroup object, which in turn is the parent object of the ToolBars and PopupMenus collections.
The MenuBar collection holds all the PopupMenu objects that are currently displayed in the AutoCAD
menu bar.

The MenuGroups Collection
The menus loaded into the current session of AutoCAD are contained in the MenuGroups col-
lection. These menus, grouped into MenuGroup objects, may or may not be visible on the menu
bar, but they’re all still contained within this collection. Each MenuGroup object provides access
to the toolbars and pop-up menus available within an AutoCAD session.

Loading Menu Groups
You can use the Load method of the MenuGroups collection to load a new menu group con-
tained in a menu file (.mnc, .mns, .mnu, or .cui) into an AutoCAD session.

Set MenuGroupObject = MenuGroupsCollection.Load (MenuFileName [,BaseMenu])

Table 16-1 shows the Load method’s parameters.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS356

5793c16_final.qxd 8/22/05 1:57 AM Page 356

Table 16-1. The Load Method’s Parameters

Name Data Type Description

MenuFileName String The path and file name of the menu file to be loaded.

BaseMenu Boolean This optional parameter determines whether the menu group
is loaded as a base or partial menu. If it’s set to True, then the
menu group is loaded as a base menu. Otherwise, the menu
group is loaded as a partial menu. The default is False.

Using the Load method with the BaseMenu parameter set to True equates to executing the
MENU command inside the AutoCAD application and selecting a file through the Select Cus-
tomization File dialog box (see Figure 16-1). Alternatively, you can execute the MENULOAD or
CUILOAD command and check the Replace All option in the Menu Customization dialog box
(see Figure 16-2). The newly loaded menu file becomes the only loaded menu group and
completely replaces the previous menu bar.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 357

Figure 16-1. Using the Select Customization File dialog box to load a menu file

5793c16_final.qxd 8/22/05 1:57 AM Page 357

Alternatively, using the Load method with the BaseMenu parameter set to False equates to
executing the MENULOAD or CUILOAD command inside the AutoCAD application and selecting a
file through the Menu Customization dialog box. The menu group is loaded in addition to the
already existing menu groups.

To find out what type of menu groups are loaded into an AutoCAD session, you can exam-
ine the Type property for each MenuGroup object.

lngMenuGroupType = MenuGroupObject.Type

This read-only property holds one of the AcMenuGroupType constants listed in Table 16-2.

Table 16-2. The AcMenuGroupType Constants

Constant Value Description

AcBaseMenuGroup 0 The menu group is a base menu group.

AcPartialMenuGroup 1 The menu group is a partial menu group.

The following code lists all the currently loaded menu groups and their types:

Public Sub ListMenuGroups()

Dim objMenuGroup As AcadMenuGroup

Dim strMenuGroupNames As String

strMenuGroupNames = "The following menu groups are currently loaded, "

For Each objMenuGroup In Application.MenuGroups

If objMenuGroup.Type = acBaseMenuGroup Then

strMenuGroupNames = strMenuGroupNames & vbCrLf & _

objMenuGroup.Name & ": Base menu"

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS358

Figure 16-2. Using the Menu Customization dialog box to load a menu group

5793c16_final.qxd 8/22/05 1:57 AM Page 358

Else

strMenuGroupNames = strMenuGroupNames & vbCrLf & _

objMenuGroup.Name & ": Partial menu"

End If

Next

MsgBox strMenuGroupNames

End Sub

For my setup, this code yields the result shown in Figure 16-3.
Note that the MenuGroups collection doesn’t

expose an Add method, so you can’t create new
menu groups through code. However, you can
copy an .mns file, give it a new file name, and then
load and edit it as you require. You can also write a
new .mnu or .mns file and load it entirely from VBA.
It’s usually best to work with partial menus and
avoid modifying or replacing the AutoCAD menu
system entirely, for two main reasons:

• You don’t want to upset your users (cus-
tomers) by changing the familiar menu
system entirely.

• Keeping your menus separate avoids the possibility of an AutoCAD service pack wiping
out your hard work.

Until you feel confident with the material covered in this chapter, you should make a copy
of an existing menu group file, unload the original, and load and use this copy to try the code
in this chapter. You can then unload the copy and reload the original to restore your original
AutoCAD menu structure.

■Note You can’t edit image menu items, screen menus, or tablet menus programmatically. However, you
can load and unload these menu types using AutoCAD VBA.

The MenuGroup Object
Once you’ve loaded a menu group, its corresponding MenuGroup object is added to the Menu-
Groups collection. A MenuGroup object contains two collections, PopupMenus and Toolbars. All
the menus within a menu group are members of the PopupMenus collection, and all the tool-
bars are members of the Toolbars collection. You access these two collections via the Menus
and Toolbars properties of the MenuGroup object with the following syntax:

Set PopupMenusCollection = MenuGroupObject.Menus

Set ToolbarsCollection = MenuGroupObject.Toolbars

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 359

Figure 16-3. Viewing the
ListMenuGroups() code output

5793c16_final.qxd 8/22/05 1:57 AM Page 359

The following code sample sets a reference to the MenuGroup object representing the ACAD
menu group if it’s loaded into the current session. It then displays a list of each of the menus
and toolbars that make up this menu group. Here I used the NameNoMnemonic property of the
menus to display their names rather than the Name property because I didn’t want to show all
the accelerator keys and hot keys.

Public Sub ListMenusAndToolbars()

Dim objMenuGroup As AcadMenuGroup

Dim objPopupMenu As AcadPopupMenu

Dim objToolBar As AcadToolbar

Dim strMenusAndToolbars As String

On Error Resume Next

Set objMenuGroup = ThisDrawing.Application.MenuGroups.Item("ACAD")

If objMenuGroup Is Nothing Then

MsgBox "ACAD menu group is not loaded"

Exit Sub

End If

strMenusAndToolbars = _

"The ACAD menu group comprises the following menus: " & vbCrLf

For Each objPopupMenu In objMenuGroup.Menus

strMenusAndToolbars = strMenusAndToolbars & _

objPopupMenu.NameNoMnemonic & ", "

Next

strMenusAndToolbars = strMenusAndToolbars & vbCrLf & vbCrLf & _

" and the following toolbars: " & vbCrLf

For Each objToolBar In objMenuGroup.Toolbars

strMenusAndToolbars = strMenusAndToolbars & objToolBar.Name & ", "

Next

MsgBox strMenusAndToolbars

End Sub

Figure 16-4 shows the result of this code. As you can see, the File, Edit, and View menus
(as well as the Draw, Modify, and Dimension toolbars) belong to this group. Note that many of
these menus and toolbars aren’t normally visible when you use the AutoCAD interface.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS360

Figure 16-4. Viewing the loaded menu group

5793c16_final.qxd 8/22/05 1:57 AM Page 360

Saving Menu Groups
In versions up to AutoCAD 2005, you have two methods for saving a menu group: Save and
SaveAs.

■Note AutoCAD 2006 does not support saving menu groups.

As you would expect, Save saves the menu group to the file it’s already associated with,
and SaveAs allows you to save the menu group under a new name.

MenuGroupObject.Save MenuFileType

MenuGroupObject.SaveAs FileName, MenuFileType

Table 16-3 shows the SaveAs method’s parameters.

Table 16-3. The SaveAs Method’s Parameters

Name Data Type Description

MenuFileType Long Determines whether the menu group is saved as a source or a
compiled file. It must take one of the AcMenuFileType constants
in Table 16-4.

FileName String The full path and file name for the file to save to. The menu
group then adopts this new name.

Table 16-4 presents the AcMenuFileType constants.

Table 16-4. The AcMenuFileType Constants

Constant Value Description

acMenuFileCompiled 0 A compiled menu file (.mnc extension)

acMenuFileSource 1 A source menu file (.mns extension)

You can use the following code to take a compiled menu and save it as an .mns file, ensur-
ing that the user doesn’t overwrite the ACAD menu group file:

Public Sub SaveMenuGroupAsSource()

Dim strMenuGroup As String

Dim strSaveto As String

Dim objMenuGroup As AcadMenuGroup

strMenuGroup = InputBox("Enter the name of the menu group you" & _

" wish to save")

If strMenuGroup = "" Then Exit Sub

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 361

5793c16_final.qxd 8/22/05 1:57 AM Page 361

On Error Resume Next

Set objMenuGroup = ThisDrawing.Application.MenuGroups.Item(strMenuGroup)

If objMenuGroup Is Nothing Then

MsgBox "The menu group was not recognized"

Exit Sub

End If

strSaveto = InputBox("Enter the filename to save" & strMenuGroup & " to")

If UCase(strSaveto) = "ACAD" Then

MsgBox "You should not overwrite the ACAD file"

Exit Sub

End If

objMenuGroup.SaveAs strSaveto, acMenuFileSource

End Sub

Unloading Menu Groups
If you’re sure that you no longer require a menu group, you can unload it from the AutoCAD
session using the Unload method, which is the programmatic counterpart to using the MENULOAD
and MENUUNLOAD commands.

MenuGroupObject.Unload

When you unload a menu group, any references you’ve set up through code to the menus
and toolbars contained in that group become invalid. It’s wise, therefore, to release all such
references before you use this method.

Accelerator Keys
You can include accelerator keys in the name of a menu or menu item. You do this by placing
an ampersand (&) before the character you want to be the accelerator key. For example, set-
ting a menu name to &File causes it to appear as File and allows it to be quickly accessed by
pressing Alt+F.

Changing the Menu Bar
As I pointed out earlier, AutoCAD 2000 and later allow you to completely replace the current
menu bar with a new menu group by loading it as the base menu. The individual menus that
the menu bar displays are contained in the MenuBar collection. You can add, rearrange, and
remove menus within a menu group from the menu bar, and it’s this modification of the
menu bar that you’ll consider next.

AutoCAD 2006 introduces the concept of work spaces, which are stored in the current
.cui file. Work spaces contain the status of the various interface elements, including the lay-
out of the toolbars and pull-down menus. AutoCAD 2006’s default state after installation has
no current work space, and it is important that one should be set before doing any menu

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS362

5793c16_final.qxd 8/22/05 1:57 AM Page 362

customization. Also, any menu changes need to be saved in a work space, or they will be lost.
AutoCAD 2006 provides no API for work spaces, so it is up to the user to do this using the
WORKSPACE or WSSAVE command.

■Note Changes will affect the .mns, .mnc, and .mnr files, leaving the .mnu file unchanged as a crude
kind of backup file. In AutoCAD 2006, the changes will affect the .cui file directly. Bugs in AutoCAD 2006
have been known to corrupt the .cui file, making it important to back up any .cui file before modifying it.
Innocent changes your program makes to the menu might trigger the complete collapse of AutoCAD’s menu
system, rendering AutoCAD practically unusable. It is important to provide the user with an escape route
from such a situation.

Adding Menus to the Menu Bar
You can add a new menu to the menu bar in two ways. The first uses the InsertInMenuBar
method of the PopupMenu object to be inserted. When a menu not displayed on the AutoCAD
menu bar is added to the menu bar, its OnMenuBar property changes from False to True.

PopupMenuObject.InsertInMenuBar(Index)

■Note AutoCAD 2006’s default state has no current work space, so you should set one before customizing
any menus. See the AutoCAD User’s Guide for details about creating a work space. Work spaces cannot be
created using VBA.

Table 16-5 shows the InsertInMenuBar method’s parameters.

Table 16-5. The InsertInMenuBar Method’s Parameters

Name Data Type Description

Index Variant The position within the menu bar where the pop-up menu will be added.
It can be either an integer between 0 and N, where N is the number of
objects in the menu bar, or a string giving the name of an existing menu
(including the & accelerator key character) that the new item will be
placed directly before. If the menu specified by the index doesn’t exist,
then the new menu is added at the end of the menu bar.

This example places a user-named menu at the beginning of the menu bar:

Public Sub InsertMenu1()

Dim objMenuGroup As AcadMenuGroup

Dim strMenuGroupNames As String

Dim strChosenMenuGroup As String

Dim objMenu As AcadPopupMenu

Dim strMenuNames As String

Dim strChosenMenu As String

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 363

5793c16_final.qxd 8/22/05 1:57 AM Page 363

strMenuGroupNames = "Choose one of the loaded menu groups: " & vbCrLf

For Each objMenuGroup In ThisDrawing.Application.MenuGroups

strMenuGroupNames = strMenuGroupNames & objMenuGroup.Name & vbCrLf

Next objMenuGroup

strChosenMenuGroup = InputBox(strMenuGroupNames, "Choose a menu group")

If strChosenMenuGroup = "" Then Exit Sub

On Error Resume Next

Set objMenuGroup = ThisDrawing.Application.MenuGroups.Item(strChosenMenuGroup)

If objMenuGroup Is Nothing Then

MsgBox "The menu group you chose does not exist"

Exit Sub

End If

strMenuNames = "Choose a menu to add to the menu bar:" & vbCrLf

For Each objMenu In objMenuGroup.Menus

strMenuNames = strMenuNames & objMenu.Name & vbCrLf

Next objMenu

strChosenMenu = InputBox(strMenuNames, "Choose a menu")

If strChosenMenu = "" Then Exit Sub

' check if menu is already on menu bar

Set objMenu = ThisDrawing.Application.MenuBar.Item(strChosenMenu)

If Not objMenu Is Nothing Then

MsgBox "This menu is already present on the menu bar"

Exit Sub

End If

Set objMenu = objMenuGroup.Menus.Item(strChosenMenu)

If objMenu Is Nothing Then

MsgBox "The menu you chose does not exist"

Exit Sub

End If

objMenu.InsertInMenuBar 0

End Sub

This example places a user-named menu just before an existing menu, also chosen by the
user:

Public Sub InsertMenu2()

Dim objMenuGroup As AcadMenuGroup

Dim strMenuGroupNames As String

Dim strChosenMenuGroup As String

Dim objMenu As AcadPopupMenu

Dim strMenuNames As String

Dim strChosenMenu As String

Dim strMenuPosition As String

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS364

5793c16_final.qxd 8/22/05 1:57 AM Page 364

strMenuGroupNames = "Choose one of the loaded menu groups: " & vbCrLf

For Each objMenuGroup In ThisDrawing.Application.MenuGroups

strMenuGroupNames = strMenuGroupNames & objMenuGroup.Name & vbCrLf

Next

strChosenMenuGroup = InputBox(strMenuGroupNames, "Choose a menu group")

If strChosenMenuGroup = "" Then Exit Sub

On Error Resume Next

Set objMenuGroup = ThisDrawing.Application.MenuGroups.Item(strChosenMenuGroup)

If objMenuGroup Is Nothing Then

MsgBox "The menu group you chose does not exist"

Exit Sub

End If

strMenuNames = "Choose a menu to add to the menu bar:" & vbCrLf

For Each objMenu In objMenuGroup.Menus

strMenuNames = strMenuNames & objMenu.Name & vbCrLf

Next

strChosenMenu = InputBox(strMenuNames, "Choose a menu")

If strChosenMenu = "" Then Exit Sub

Set objMenu = objMenuGroup.Menus.Item(strChosenMenu)

If objMenu Is Nothing Then

MsgBox "The menu you chose does not exist"

Exit Sub

End If

strMenuPosition = InputBox("Enter name of menu you wish to place it" & _

" before (including accelerator keys)")

objMenu.InsertInMenuBar strMenuPosition

End Sub

Figure 16-5 shows the result of adding the Context Menu for Viewport Object menu of the
Viewport menu group before the Draw menu of the ACAD menu group. Note that if the exist-
ing menu on the menu bar wasn’t recognized, then the new menu will be placed at the end of
the menu bar.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 365

Figure 16-5. Setting menu indices

5793c16_final.qxd 8/22/05 1:57 AM Page 365

AutoCAD 2006 does this automatically, defaulting to placing all menus on the end. If this is
not the desired location, you need to remove them and place them in the right place. AutoCAD
2005 and earlier do not automatically insert the menus.

The second way to add a menu to the menu bar employs the InsertMenuInMenuBar
method of a PopupMenus collection.

PopupMenusCollection.InsertMenuInMenuBar MenuName, Index

Table 16-6 shows the InsertMenuInMenuBar method’s parameters.

Table 16-6. The InsertMenuInMenuBar Method’s Parameters

Name Data Type Description

MenuName String The identifying name of the pop-up menu to be added to the menu
bar.

Index Variant The position within the menu bar where the pop-up menu will be
added. It can be either an integer between 0 and N, where N is the
number of objects in the menu bar, or a string giving the name of an
existing menu (including the & accelerator key character) that the
new item will be placed directly before. If the menu specified by the
index doesn’t exist, then the new menu is added at the end of the
menu bar.

The following example again adds a user-chosen menu to the menu bar. If the menu that
the user has chosen isn’t recognized, no error is raised; it’s simply not added to the menu bar.

Public Sub InsertMenu3()

Dim objMenuGroup As AcadMenuGroup

Dim strMenuGroupNames As String

Dim strChosenMenuGroup As String

Dim objMenu As AcadPopupMenu

Dim strMenuNames As String

Dim strChosenMenu As String

Dim strMenuPosition As String

strMenuGroupNames = "Choose one of the loaded menu groups: " & vbCrLf

For Each objMenuGroup In ThisDrawing.Application.MenuGroups

strMenuGroupNames = strMenuGroupNames & objMenuGroup.Name & vbCrLf

Next

strChosenMenuGroup = InputBox(strMenuGroupNames, "Choose a menu group")

If strChosenMenuGroup = "" Then Exit Sub

On Error Resume Next

Set objMenuGroup = ThisDrawing.Application.MenuGroups.Item(strChosenMenuGroup)

If objMenuGroup Is Nothing Then

MsgBox "The menu group you chose does not exist"

Exit Sub

End If

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS366

5793c16_final.qxd 8/22/05 1:57 AM Page 366

strMenuNames = "Choose a menu to add to the menu bar:" & vbCrLf

For Each objMenu In objMenuGroup.Menus

strMenuNames = strMenuNames & objMenu.Name & vbCrLf

Next

strChosenMenu = InputBox(strMenuNames, "Choose a menu")

If strChosenMenu = "" Then Exit Sub

strMenuPosition = InputBox("Enter name of menu you wish to place it" & _

" before (including accelerator keys)")

objMenuGroup.Menus.InsertMenuInMenuBar strChosenMenu, strMenuPosition

End Sub

You can use the specified position and order in which menus are added to the menu bar
to arrange/rearrange the menus that make up your menu bar.

Removing Menus
Just as with adding menus to the menu bar, you have two ways to remove them: the
RemoveFromMenuBar method of a PopupMenu object and the RemoveMenuFromMenuBar method
of a PopupMenus collection. The first method takes the following simple syntax:

PopupMenuObject.RemoveFromMenuBar

This code iterates through the menus on the menu bar and removes those that the user
specifies:

Sub RemoveMenus()

Dim objMenu As AcadPopupMenu

For Each objMenu In ThisDrawing.Application.MenuBar

If MsgBox("Remove " & objMenu.Name & "?", vbYesNo) = vbYes Then

objMenu.RemoveFromMenuBar

end if

Next

End Sub

When you use the second method, you need to specify which menu you want to remove.

PopupMenusCollection.RemoveMenuFromMenuBar Index

Table 16-7 shows the RemoveMenuFromMenuBar method’s parameters.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 367

5793c16_final.qxd 8/22/05 1:57 AM Page 367

Table 16-7. The RemoveMenuFromMenuBar Method’s Parameters

Name Data Type Description

Index Variant The position within the menu bar of the menu to be removed. It can be
either an integer between 0 and N-1, where N is the number of objects
in the menu bar, or a string giving the name of the menu (including the
& accelerator key character). If the menu specified by the index doesn’t
exist, then this method does nothing.

To allow the user to choose a menu to remove, you use this code:

Public Sub RemoveMenu()

Dim objMenuGroup As AcadMenuGroup

Dim strMenuGroupNames As String

Dim strChosenMenuGroup As String

Dim strOnMenuBar As String

Dim objMenu As AcadPopupMenu

Dim strChosenMenu As String

strMenuGroupNames = "Choose one of the loaded menu groups: " & vbCrLf

For Each objMenuGroup In ThisDrawing.Application.MenuGroups

strMenuGroupNames = strMenuGroupNames & objMenuGroup.Name & vbCrLf

Next

strChosenMenuGroup = InputBox(strMenuGroupNames, "Choose a menu group")

If strChosenMenuGroup = "" Then Exit Sub

On Error Resume Next

Set objMenuGroup = ThisDrawing.Application.MenuGroups.Item(strChosenMenuGroup)

If objMenuGroup Is Nothing Then

MsgBox "The menu group you chose does not exist"

Exit Sub

End If

strOnMenuBar = "the following menus with the " & objMenuGroup.Name & _

" menu group are displayed in the menu bar." & vbCrLf

For Each objMenu In objMenuGroup.Menus

If objMenu.OnMenuBar = True Then

strOnMenuBar = strOnMenuBar & objMenu.Name & vbCrLf

end if

Next

strOnMenuBar = strOnMenuBar & "Please choose a menu to remove"

strChosenMenu = InputBox(strOnMenuBar)

objMenuGroup.Menus.RemoveMenuFromMenuBar strChosenMenu

End Sub

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS368

5793c16_final.qxd 8/22/05 1:57 AM Page 368

■Note Removed menus are still available in their designated menu group even though they’re no longer
visible to the user.

Editing Menus
Programmatically, you can create and customize two types of menus: pull-down and shortcut
menus. You access pull-down menus via the AutoCAD menu bar, and you access shortcut menus
by pressing Shift and right-clicking. Both types of menus are displayed as cascading-style menus.

Pull-down menu structures are limited to 999 items, and shortcut menu structures are
limited to 499 items. These limits include everything in the menu structure. AutoCAD will
ignore any menu items beyond these limits. Figure 16-6 reveals how the numbering of menu
items works. You can see that the separators count as menu items.

If the space available on the graphics screen is smaller than that required to display the
menu structure, the menu will be truncated to fit within the available space. In addition, arrows
will be placed at the top and bottom to allow navigation of the menu.

Creating New Menus
You can add a new menu, represented by a PopupMenu object, to a PopupMenus collection using
the Add method.

Set PopupMenuObject = PopupMenusCollection.Add(MenuName)

Table 16-8 shows the Add method’s parameter.

Table 16-8. The Add Method’s Parameter

Name Data Type Description

MenuName String The identifying name of the newly created PopupMenu object

The MenuName parameter may be a simple string such as VBATestMenu or one containing
special characters such as an ampersand (&) placed before a character specifying it as the
accelerator key. By setting the menu name to &VBATestMenu, it will appear as VBATestMenu

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 369

Figure 16-6. Figuring out the numbering of a menu bar

5793c16_final.qxd 8/22/05 1:57 AM Page 369

in the menu bar; you can view it by pressing Alt+V. For a complete list of special codes, please
see the AutoCAD Customization Guide.

The following example illustrates how to create a new Apress menu and how to define
a shortcut for the r character within it (see Figure 16-7):

Public Sub CreateApressMenu1()

Dim objMenus As AcadPopupMenus

Dim objMyMenu As AcadPopupMenu

Dim strNewMenuName As String

Dim objMyMenuItem As AcadPopupMenuItem

Set objMenus = ThisDrawing.Application.MenuGroups.Item(0).Menus

On Error Resume Next

Set objMyMenu = objMenus.Item("Ap&ress")

If Not objMyMenu Is Nothing Then

MsgBox "Menu already exists"

Exit Sub

End If

Set objMyMenu = objMenus.Add("Ap&ress")

objMyMenu.InsertInMenuBar ThisDrawing.Application.MenuBar.Count

Set objMyMenuItem = objMyMenu.AddMenuItem(0, "Add &Circle", _

"-vbarun AddCircle ")

End Sub

Note that the Apress menu has an accelerator key of r. The accelerator keys in PopupMenu
names are no longer underlined by default. To see the underline, users must hold the Alt key.
Users can select the Apress menu by pressing Alt+R. In this example, I also added an item to
the menu to avoid problems caused by adding empty menus.

Next you’ll look at some specifics of how to add items to a menu.

Adding New Menu Items
You can add a new item, represented by a PopupMenuItem object, to a menu through the
AddMenuItem method of the PopupMenu object.

Set PopupMenuItemObject = PopupMenuObject.AddMenuItem(Index, Label, Macro)

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS370

Figure 16-7. Creating a custom menu

5793c16_final.qxd 8/22/05 1:57 AM Page 370

Table 16-9 shows the AddMenuItem method’s parameters.

Table 16-9. The AddMenuItem Method’s Parameters

Name Data Type Description

Index Variant The position within the menu where the pop-up menu item will be
added. It can be either an integer between 0 and N, where N is the
number of objects in the menu, or a string giving the name of an existing
menu item (including the & accelerator key character) that the new item
will be placed directly before. If the menu item specified by the index
doesn’t exist, then the new menu item is added at the end of the menu.

Label String A label for the menu item. The label may contain DIESEL string expres-
sions, which conditionally change the label each time it’s displayed. Labels
also identify the accelerator keys.

Macro String A string that will be written to the AutoCAD command prompt when the
menu item is clicked.

You can’t change the Index value of the menu item once it has been created through the
Index property, as it’s read-only. To rearrange menu items, you must first delete a menu item
and add it again at the position you want it within the menu structure.

The following example code adds a menu item to the Apress menu. I’ve included a simple
macro to demonstrate how the Macro parameter works. In this case, you can call a macro that
you’ve written yourself by using the -VBARUN command described in Chapter 1. Note that you
need to leave a space at the end of the macro name so that AutoCAD knows the end of the
command has been reached.

Public Sub CreateApressMenu2()

Dim objMenus As AcadPopupMenus

Dim objMyMenu As AcadPopupMenu

Dim strNewMenuName As String

Dim objMyMenuItem As AcadPopupMenuItem

Set objMenus = ThisDrawing.Application.MenuGroups.Item(0).Menus

On Error Resume Next

Set objMyMenu = objMenus.Item("Ap&ress")

If objMyMenu Is Nothing Then

Set objMyMenu = objMenus.Add("Ap&ress")

End If

'Check if the Menu is displayed on the MenuBar

If Not objMyMenu.OnMenuBar Then

'Display the menu on the menu bar

objMyMenu.InsertInMenuBar ThisDrawing.Application.MenuBar.Count

End If

Set objMyMenuItem = objMyMenu.AddMenuItem(0, "Add &Circle", _

"-vbarun AddCircle ")

objMyMenuItem.HelpString = "This adds a circle at the origin"

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 371

5793c16_final.qxd 8/22/05 1:57 AM Page 371

End Sub

Public Sub AddCircle()

Dim dblCenter(2) As Double

If ThisDrawing.ActiveSpace = acModelSpace Then

ThisDrawing.ModelSpace.AddCircle dblCenter, 2

Else

ThisDrawing.PaperSpace.AddCircle dblCenter, 2

End If

End Sub

You can see from the preceding code that it’s possible to set the HelpString property of a
PopupMenuIem object so that text, which provides information about what the menu item does,
appears in the AutoCAD status line. If you hover your mouse over the newly created menu item,
you’ll see the phrase “This adds a circle at the origin” in the AutoCAD status line. This property
is also exposed by the Toolbar and ToolbarItem objects.

Adding Separators
You can use the AddSeparator method to add a separator to your menu structure or to a toolbar.
This method takes a single parameter and returns either a PopupMenuItem object or a ToolbarItem
object. Here’s the syntax for adding a separator to a menu:

Set PopupMenuItemObject = PopupMenuObject.AddSeparator(Index)

Table 16-10 shows the AddSeparator method’s parameter.

■Note You can’t have adjacent separators or a separator at the beginning of a menu or toolbar.

Table 16-10. The AddSeparator Method’s Parameter

Name Data Type Description

Index Variant The position within the menu where the separator will be added. It can
be either an integer between 0 and N, where N is the number of objects
in the menu, or a string giving the name of an existing menu item
(including the & accelerator key character) that the separator will be
placed directly before. If the menu item specified by the index doesn’t
exist, then the separator is placed at the end of the menu.

Creating Cascading Submenus
You can create cascading submenus by adding a submenu to an existing menu via the AddSubMenu
method. This new cascading menu is blank, and you can modify it in precisely the same way as
any other PopupMenu object.

Set PopupMenuObject = PopupMenuObject.AddSubMenu(Index, Label)

Table 16-11 shows the AddSubMenu method’s parameters.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS372

5793c16_final.qxd 8/22/05 1:57 AM Page 372

Table 16-11. The AddSubMenu Method’s Parameters

Name Data Type Description

Index Variant The position within the menu where the submenu will be added. It can
be either an integer between 0 and N, where N is the number of objects
in the menu, or a string giving the name of an existing menu item
(including the & accelerator key character) that the submenu will be
placed directly before. If the menu item specified by the index doesn’t
exist, then the submenu is placed at the end of the menu.

Label String A label for the menu item. The label may contain DIESEL string expres-
sions, which conditionally change the label each time it’s displayed.
Labels also identify the accelerator keys.

The following example illustrates how to create a complete cascading menu structure:

Public Sub CreateSubMenus()

Dim objMenus As AcadPopupMenus

'main menu definition

Dim objMenuCreates As AcadPopupMenu

'submenu definitions

Dim objMenuLine As AcadPopupMenuItem

Dim objMenuRectangle As AcadPopupMenuItem

Dim objSubMenuCircle As AcadPopupMenu

Dim objSubMenuCenterRadius As AcadPopupMenuItem

Dim objSubMenuCenterDiameter As AcadPopupMenuItem

Dim objSubMenuText As AcadPopupMenu

Dim objSubMenuMulti As AcadPopupMenuItem

Dim objSubMenuSingle As AcadPopupMenuItem

Dim strEscEsc As String

Set objMenus = ThisDrawing.Application.MenuGroups.Item(0).Menus

'Create the new main menu

On Error Resume Next

Set objMenuCreates = objMenus.Item("Creates")

If objMenuCreates Is Nothing Then

Set objMenuCreates = objMenus.Add("Creates")

end if

strEscEsc = Chr(27) & Chr(27) & Chr(95)

'Add a menu items to the new main menu

If objMenuCreates("Rectangle") Is Nothing Then

Set objMenuRectangle = _

objMenuCreates.AddMenuItem(objMenuCreates.Count, "Rectangle", _

strEscEsc & "rectang ")

end if

If objMenuCreates("Line") Is Nothing Then

Set objMenuLine = objMenuCreates.AddMenuItem(objMenuCreates.Count, _

"Line", strEscEsc & "line ")

End if

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 373

5793c16_final.qxd 8/22/05 1:57 AM Page 373

'create the circle submenu

If objMenuCreates("Circle") Is Nothing Then

Set objSubMenuCircle = objMenuCreates.AddSubMenu(objMenuCreates.Count, _

"Circle")

Set objSubMenuCenterRadius = objSubMenuCircle.AddMenuItem(_

objSubMenuCircle.Count, "Center, Radius", strEscEsc & "circle ")

Set objSubMenuCenterDiameter = objSubMenuCircle.AddMenuItem(_

objSubMenuCircle.Count, "Center, Diameter", _

strEscEsc & "circle \d ")

End If

'create the text submenu

If objMenuCreates("Text") Is Nothing Then

Set objSubMenuText = objMenuCreates.AddSubMenu(objMenuCreates.Count, _

"Text")

Set objSubMenuMulti = objSubMenuText.AddMenuItem(_

objSubMenuText.Count, "MultiLine Text", strEscEsc & "mtext ")

Set objSubMenuSingle = objSubMenuText.AddMenuItem(_

objSubMenuText.Count, "SingleLine Text", strEscEsc & "dtext ")

End If

'Display the menu on the menu bar

If objMenuCreates.OnMenuBar = False Then

objMenuCreates.InsertInMenuBar (ThisDrawing.Application.MenuBar.Count)

End if

End Sub

Figure 16-8 shows the result of this code.

Deleting Menu Items
To delete a menu item from a PopupMenu object, you simply use the Delete method:

PopupMenuItemObject.Delete

You can use the following macro to delete menus on the menu bar. The user specifies
which menu to delete. The code then iterates through the menu items in that menu and asks
the user if he or she wants to delete each item.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS374

Figure 16-8. Creating a cascading menu

5793c16_final.qxd 8/22/05 1:57 AM Page 374

Public Sub DeleteMenu()

Dim objMenu As AcadPopupMenu

Dim objMenuItem As AcadPopupMenuItem

Dim strDeleteMenuName As String

Dim strMenuName As String

strDeleteMenuName = InputBox("Enter name of Menu to remove: ")

If strDeleteMenuName = "" Then Exit Sub

On Error Resume Next

Set objMenu = ThisDrawing.Application.MenuBar.Item(strDeleteMenuName)

If objMenu Is Nothing Then

MsgBox "Menu is not on the menu bar"

Exit Sub

End If

For Each objMenuItem In objMenu

strMenuName = objMenuItem.Caption

If strMenuName = "" Then strMenuName = "Separator"

If MsgBox("Delete " & strMenuName, vbYesNo, _

"Confirm deletion of a MenuItem") = _

vbYes Then

objMenuItem.Delete

End If

Next

End Sub

Adding Menu Items to the Shortcut Menu
The shortcut menu accessed by pressing Shift and right-clicking is a menu within the Auto-
CAD base menu group. The Boolean ShortcutMenu property of a PopupMenu object is set to True
if the menu is a shortcut menu. You can add menu items to the shortcut menu in precisely the
same way as you do to a drop-down menu, as I discussed earlier in this chapter. The following
code sample adds a Zoom Extents menu item to the shortcut menu:

Public Sub AddMenuItemToShortcutMenu()

Dim objMenuGroup As AcadMenuGroup

Dim objShortcutMenu As AcadPopupMenu

Dim objMenuItem As AcadPopupMenu

'only need the ACAD menugroup

Set objMenuGroup = ThisDrawing.Application.MenuGroups.Item("ACAD")

'find the shortcut menu

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 375

5793c16_final.qxd 8/22/05 1:57 AM Page 375

For Each objMenuItem In objMenuGroup.Menus

If objMenuItem.ShortcutMenu = True Then

Set objShortcutMenu = objMenuItem

End If

Next

'Add menu item to the shortcut menu

objShortcutMenu.AddMenuItem "", "&Zoom &Extents", "_zoom e "

End Sub

Editing Toolbars
All the toolbars that belong to a MenuGroup object loaded in the current session of AutoCAD
are contained within its Toolbars collection. These toolbars may or may not be visible in the
AutoCAD interface. The code in “The MenuGroup Object” section shows how to display a list
of all toolbars that are loaded. In the following sections, you’ll learn how to create, edit, and
delete AutoCAD toolbars.

Creating New Toolbars
You can create and add a new Toolbar object to the Toolbars collection through the Add
method, which returns a reference to the new Toolbar object.

Set ToolbarObject = ToolbarsCollection.Add(ToolbarName)

Table 16-12 shows the Add method’s parameter.

Table 16-12. The Add Method’s Parameter

Name Data Type Description

ToolbarName String The identifying name of the newly created Toolbar object

The following example illustrates how to create a new toolbar in the AutoCAD collection.
A check is in place to ensure that a toolbar of the same name doesn’t already exist, as this would
cause an error to be raised.

Public Sub AddNewToolbar()

Dim strTBName As String

Dim objToolbar As AcadToolbar

strTBName = InputBox("Please enter name for new toolbar")

If strTBName = "" Then Exit Sub

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS376

5793c16_final.qxd 8/22/05 1:57 AM Page 376

On Error Resume Next

Set objToolbar = ThisDrawing.Application.MenuGroups.Item("ACAD"). _

Toolbars.Item(strTBName)

If Not objToolbar Is Nothing Then

MsgBox "This toolbar already exists"

Else

ThisDrawing.Application.MenuGroups.Item("ACAD").Toolbars.Add strTBName

End If

End Sub

As you can see from Figure 16-9, the newly created toolbar,
which becomes visible after creation, will be empty, so the next
thing you’ll want to do is add some toolbar buttons.

Adding Toolbar Buttons
A toolbar button is represented by a ToolbarItem object. You can use the AddToolbarButton
method to add a new toolbar item at a specified position within a toolbar.

Set ToolbarItemObject = ToolbarObject.AddToolbarButton(Index, ButtonName, _

HelpString, Macro[, FlyoutButton])

Table 16-13 shows the AddToolbarButton method’s parameters.

Table 16-13. The AddToolbarButton Method’s Parameters

Name Data Type Description

Index Variant The position within the toolbar where the toolbar button will be
added. It can be either an integer between 0 and N, where N is the
number of objects in the menu, or a string giving the name of an
existing toolbar button that the button will be placed directly before.
If the button specified by the index doesn’t exist, then the new
button is placed at the end of the toolbar.

ButtonName String An identifying name for the new toolbar button. It’s displayed when
the user hovers over the button. It must consist of only alpha-
numeric characters, hyphens (-), and underscores (_).

HelpString String A string that appears in the AutoCAD status line when a user high-
lights a toolbar item for selection.

Macro String A string that is written to the AutoCAD command prompt when
the menu item is clicked.

FlyoutButton Boolean An optional parameter that determines whether the new button
will be a flyout button. You use a flyout button to nest a set of but-
tons under a single toolbar button. Set this to True to create a flyout
button. The default is False.

Once you’ve created the toolbar button, you can’t change the Index value of the toolbar
button using the Index property. To do this, you must first delete the toolbar button and then
add it again in the position within the toolbar structure that you require.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 377

Figure 16-9. Creating
a new toolbar

5793c16_final.qxd 8/22/05 1:57 AM Page 377

The following example illustrates how to use the AddToolbarButton method by creating a
toolbar with the same functionality as the cascading menu you created earlier in the chapter:

Public Sub CreateNewToolbars()

Dim objMenuGroup As AcadMenuGroup

Dim objToolbars As AcadToolbars

Dim objToolbar0 As AcadToolbar

Dim objToolbar1 As AcadToolbar

Dim objToolbar2 As AcadToolbar

Dim objToolBarCircle As AcadToolbarItem

Dim objToolBarText As AcadToolbarItem

Dim strEscEsc As String

Set objMenuGroup = ThisDrawing.Application.MenuGroups.Item(0)

Set objToolbars = objMenuGroup.Toolbars

'Create three new toolbars

On Error Resume Next

Set objToolbar0 = objToolbars.Item("Custom Toolbar Create")

If Not objToolbar0 Is Nothing Then

MsgBox "The 'Custom Toolbar Create’ already exists"

Exit Sub

End If

Set objToolbar0 = objToolbars.Add("Custom Toolbar Create")

Set objToolbar1 = objToolbars.Add("Circle")

Set objToolbar2 = objToolbars.Add("Text")

'Add a toolbar item to the new toolbar

objToolbar0.AddToolbarButton objToolbar0.Count, "Line", _

"Draw a line", strEscEsc & "line "

objToolbar0.AddToolbarButton objToolbar0.Count, "Rectangle", _

"Draw a rectangle", strEscEsc & "rectang "

'create the circle flyout toolbar button

Set objToolBarCircle = objToolbar0.AddToolbarButton(objToolbar0.Count, _

"Circle", "Draw a circle", "Circle", True)

'create the circle flyout toolbar

objToolbar1.AddToolbarButton objToolbar1.Count, "Center, Radius", _

"Draw circle using Center point and radius", strEscEsc & "circle "

objToolbar1.AddToolbarButton objToolbar1.Count, "Center, Diameter", _

"Draw circle using Center point and diameter", strEscEsc & "circle \d "

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS378

5793c16_final.qxd 8/22/05 1:57 AM Page 378

'create the text submenu

Set objToolBarText = objToolbar0.AddToolbarButton(objToolbar0.Count, _

"Text", "Create text strings", "Text", True)

'create the text flyout toolbar

objToolbar2.AddToolbarButton objToolbar2.Count, "MultiLine Text", _

"Create multi-text", strEscEsc & "mtext "

objToolbar2.AddToolbarButton objToolbar2.Count, "SingleLine Text", _

"Create single-line text", strEscEsc & "dtext "

objToolBarCircle.AttachToolbarToFlyout objMenuGroup.Name, objToolbar1.Name

objToolBarText.AttachToolbarToFlyout objMenuGroup.Name, objToolbar2.Name

'SetIcons "C:\Apress\smLineIcon.bmp", "C:\Apress\lgLineIcon.bmp"

objToolbar0.Visible = True

objToolbar1.Visible = False

objToolbar2.Visible = False

End Sub

In Figure 16-10 you can see the newly created toolbar. Note
the ButtonName and HelpString text displayed as the tooltip and
in the status line of AutoCAD. In addition, you can see that flyout
buttons have a small black triangle in the lower-right corner.

The default icon when you add a toolbar button through
code is the ballooned question mark. You’ll now look at how to
set the icons to images of your choosing.

Defining the Toolbar Button Image
To set and retrieve the bitmaps of the icons associated with a toolbar button, you can use the
SetBitmaps and GetBitmaps methods. Both methods have similar syntax and require two
parameters (see Table 16-14), one for each of the two icons (small and large).

ToolbarItemObject.SetBitmaps SmallIconName, LargeIconName

ToolbarItemobject.GetBitmaps SmallIconName, LargeIconName

Table 16-14. The SetBitmaps and GetBitmaps Methods’ Parameters

Name Data Type Description

SmallIconName String The path and file name for the small bitmap (16×15 pixels)

LargeIconName String The path and file name for the small bitmap (24×22 pixels)

The following code example sets the small and large icons for the Line button of the tool-
bar you just created with the previous code. Note that here I’m using bitmaps I created and
stored in the C:\Apress\ folder, so, if you want to try this code, you’ll need to uncomment the
SetIcons line in the previous code and change the path and file information to suitable files
on your machine.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 379

Figure 16-10. Creating a
toolbar with buttons

5793c16_final.qxd 8/22/05 1:57 AM Page 379

Public Sub SetIcons(strIconSmall As String, strIconLarge As String)

Dim objToolBarItem As AcadToolbarItem

Set objToolBarItem = ThisDrawing.Application.MenuGroups(0).Toolbars(_

"Custom Toolbar Create")("Line")

objToolBarItem.SetBitmaps strIconSmall, _

strIconLarge

End Sub

■Note Autodesk has sought Microsoft Windows XP logo certification for the entire AutoCAD product line.
One of the requirements of this logo certification involves toolbar icon graphics. If you intend to develop soft-
ware for marketing, you should seriously investigate these requirements if you want to produce products that
coincide with the base platform (AutoCAD) on which they’re used. Refer to the MSDN Web site at http://
msdn.microsoft.com for more information.

Adding Separators
You can use the AddSeparator method to add a separator to your menu structure or to a tool-
bar. This method takes a single parameter and returns either a PopupMenuItem object or a
ToolbarItem object. Here’s the syntax for adding a separator to a toolbar:

Set ToolbarItemObject = ToolbarObject.AddSeparator(Index)

Table 16-15 shows the AddSeparator method’s parameter.

Table 16-15. The AddSeparator Method’s Parameter

Name Data Type Description

Index Variant The position within the toolbar where the separator will be added.
It can be either an integer between 0 and N, where N is the number of
objects in the toolbar collection, or a string giving the name of an exist-
ing toolbar item (including the & accelerator key character) that the
separator will be placed directly before. If the toolbar item specified
by the index doesn’t exist, then the separator is placed at the end of
the menu.

■Note You can’t have adjacent separators or a separator at the beginning of a menu or toolbar.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS380

5793c16_final.qxd 8/22/05 1:57 AM Page 380

Floating and Docking Toolbars
Toolbars may either float on-screen or be docked to an edge of the AutoCAD drawing window.
You use the Float method to float a toolbar at a specified point on the screen. This point may
lie outside the AutoCAD window.

ToolbarObject.Float Top, Left, NumberOfRows

Table 16-16 shows the Float method’s parameters.

Table 16-16. The Float Method’s Parameters

Name Data Type Description

Top Long The position of the top edge of the toolbar from the top of the
screen given in pixels.

Left Long The position of the left side of the toolbar from the left edge of
the screen given in pixels.

NumberOfRows Long The number of rows that the toolbar buttons should be distrib-
uted over. If this is set to more than the number of buttons on
the toolbar, this parameter will be ignored.

This code sample shows how to use the Float method by floating the AutoCAD Draw tool-
bar to the top-left corner of the screen:

Public Sub FloatDrawToolbar()

Dim objToolBarDraw As AcadToolbar

Set objToolBarDraw = _

ThisDrawing.Application.MenuGroups.Item("ACAD").Toolbars.Item("Draw")

objToolBarDraw.Float 0, 0, 3

End Sub

Figure 16-11 shows the floating toolbar.
Note that the toolbar lies outside the Auto-

CAD window and is split over three rows.
To dock a toolbar, use the Dock method.

ToolbarObject.Dock DockStatus

Table 16-17 shows the Dock method’s
parameter.

Table 16-17. The Dock Method’s Parameter

Name Data Type Description

DockStatus Long This specifies which edge of the window to dock to. It must be one
of the AcToolbarDockStatus constants presented in Table 16-18.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS 381

Figure 16-11. Floating a toolbar

5793c16_final.qxd 8/22/05 1:57 AM Page 381

Table 16-18 contains the AcToolbarDockStatus constants.

Table 16-18. The AcToolbarDockStatus Constants

Constant Value Description

acToolbarDockTop 0 The toolbar is docked to the top of the drawing window.

acToolbarDockBottom 1 The toolbar is docked to the bottom of the drawing window.

acToolbarDockLeft 2 The toolbar is docked to the left side of the drawing window.

acToolbarDockRight 3 The toolbar is docked to the right side of the drawing window.

This time the AutoCAD Draw toolbar is docked to the bottom of the drawing window:

Public Sub DockDrawToolbar()

Dim objToolBarDraw As AcadToolbar

Set objToolBarDraw = _

ThisDrawing.Application.MenuGroups.Item("ACAD").Toolbars.Item("Draw")

objToolBarDraw.Dock acToolbarDockBottom

End Sub

Figure 16-12 shows the docked toolbar.

Deleting Toolbars and Toolbar Buttons
You can delete both toolbars and toolbar buttons with the Delete method.

ToolbarObject.Delete

ToolbarItemObject.Delete

Summary
I covered a lot of material in this chapter. The part of the AutoCAD object model that repre-
sents the menu and toolbar structure is quite complicated. The information in this chapter
should provide you with a sound basis for modifying menus and toolbars. For details of every
property and method of the menu structure objects, please consult Appendix A.

CHAPTER 16 ■ CONTROLLING MENUS AND TOOLBARS382

Figure 16-12. Docking a toolbar

5793c16_final.qxd 8/22/05 1:57 AM Page 382

Drawing Security

AutoCAD 2006 has two features aimed at providing security to drawing files: Digital Signa-
tures and Password Protection. You can access and manipulate both features from a command
prompt, a GUI interface, or programmatically. The command interface is SECURITYOPTIONS,
which displays the Security Options dialog box for configuring the Digital Signature and Pass-
word Protection features, as shown in Figure 17-1.

Digital Signatures
To support the Digital Signatures feature from a programming standpoint, Autodesk added in
2004 a new object called SecurityParams. This object allows you to set various security options,
including drawing and properties encryption, digital signatures, and timestamps. Several options
are available that provide varying levels of security, as presented in this chapter. Although it isn’t
possible to provide extensive details about cryptography, further details are available on the
MSDN Web site (http://msdn.microsoft.com).

To attach a digital signature to a document of any kind, you first need a digital ID from
a certificate authority such as VeriSign. You can generate your own “self-signed” certificates,
but these are intended for internal use, not for use by your customers. Your digital signature
is valid as long as the drawing doesn’t change. Anyone receiving your drawing can validate it

383

C H A P T E R 1 7

■ ■ ■

Figure 17-1. Digital Signature and Password Protection options

5793c17_final.qxd 8/22/05 1:55 AM Page 383

to see that it really came from you. If your drawing has an invalid signature, the recipient can
easily tell that the drawing was changed after you attached the digital signature.

The following example illustrates how to use the properties of the SercurityParams object
to save and encrypt a drawing file:

Public Sub SaveWithEncryption()

Dim oSecurity As New AcadSecurityParams

With oSecurity

.Action = AcadSecurityParamsType.ACADSECURITYPARAMS_ENCRYPT_DATA

.Algorithm = AcadSecurityParamsConstants.ACADSECURITYPARAMS_ALGID_RC4

.Comment = "Add comment to drawing"

.Issuer = "Your Company Name"

.KeyLength = 40

'AutoCAD converts all passwords to uppercase before applying them

.Password = UCase("br549")

.ProviderName = "Microsoft Base Cryptographic Provider v1.0"

.ProviderType = 1

.SerialNumber = "BR549"

.Subject = "The Flying DeLorean"

.TimeServer = "NIST(time.nist.gov)"

End With

ThisDrawing.SaveAs "C:\MyDrawing.dwg", , oSecurity

End Sub

The Action Property
The Action property is the heart of the SecurityParams object (and, of course, the Password
property, which is pretty straightforward).

When specifying values for the Action property, you must specify one or more of the con-
stants in Table 17-1 for drawing encryption, drawing properties encryption, a digital signature,
or a timestamp.

Table 17-1. The Action Property’s Constants

Constant Value

ACADSECURITYPARAMS_ENCRYPT_DATA 0x00000001

ACADSECURITYPARAMS_ENCRYPT_PROPS 0x00000002

ACADSECURITYPARAMS_SIGN_DATA 0x00000010

ACADSECURITYPARAMS_ADD_TIMESTAMP 0x00000020

Each constant represents a security-related operation. When you use the Action
property, at some point in the set of operations you must set the Action property to the
ACADSECURITYPARAMS_ENCRYPT_DATA constant, to the ACADSECURITYPARAMS_SIGN_DATA
constant, or to both.

CHAPTER 17 ■ DRAWING SECURITY384

5793c17_final.qxd 8/22/05 1:55 AM Page 384

To specify multiple security-related operations, add the constants representing the
operations. The following example shows how to sign a drawing and use a timestamp:

ACADSECURITYPARAMS_SIGN_DATA + ACADSECURITYPARAMS_ADD_TIMESTAMP

■Note You can specify only AcadSecurityParamsConstants.ACADSECURITYPARAMS_ALGID_RC4 for
the Algorithm property. Any other value will generate an error.

The Algorithm Property
The Algorithm property specifies the identifier of the encryption algorithm to be used in
signing the drawing file.

object.Algorithm

Table 17-2 shows the Algorithm property’s parameters.

Table 17-2. The Algorithm Property’s Parameters

Name Returns Description

object SecurityParams The object or objects to which this property applies

Algorithm Long; AcadSecurityParams➥ Specifies only the following constant:
Constants enum; read-write ACADSECURITYPARAMS_ALGID_RC4_0x00006801

Here’s an example of how to set the Algorithm property:

Dim sp As New AcadSecurityParams

sp.Algorithm = AcadSecurityParamsConstants.ACADSECURITYPARAMS_ALGID_RC4

The Issuer Property
The Issuer property specifies the name of the digital certificate issuer. The Put option requires
one parameter, Issuer, which is a string value.

object.Issuer

Table 17-3 shows the Issuer property’s parameters.

Table 17-3. The Issuer Property’s Parameters

Name Returns Description

object SecurityParams The object or objects to which this property applies

Issuer String; read-write The issuer name of the digital certificate

CHAPTER 17 ■ DRAWING SECURITY 385

5793c17_final.qxd 8/22/05 1:55 AM Page 385

Here’s an example of how to set the Issuer property:

Dim sp As New AcadSecurityParams

sp.Issuer = "Personal Freemail RSA 2000.8.30"

The ProviderName Property
This property specifies the name of the provider of the digital certificate.

object.ProviderName

Table 17-4 shows the ProviderName property’s parameters.

Table 17-4. The ProviderName Property’s Parameters

Name Returns Description

object SecurityParams The object or objects to which this property applies

ProviderName String; read-write The encryption provider name

More information about cryptography providers is available on MSDN.

The SerialNumber Property
The SerialNumber property specifies the serial number identifier for the digital certificate. It
uses the following options:

object.SerialNumber

Table 17-5 shows the SerialNumber property’s parameters.

Table 17-5. The SerialNumber Property’s Parameters

Name Returns Description

object SecurityParams The object or objects to which this property applies

SerialNumber String; read-write The serial number of the digital certificate

Here’s an example of how to set the SerialNumber property:

Dim sp As New AcadSecurityParams

sp.SerialNumber = "073848"

The Subject Property
This property specifies a subject string name value of the digital certificate.

object.Subject

Table 17-6 shows the Subject property’s parameters.

CHAPTER 17 ■ DRAWING SECURITY386

5793c17_final.qxd 8/22/05 1:55 AM Page 386

Table 17-6. The Subject Property’s Parameters

Name Returns Description

object SecurityParams The object or objects to which this property applies

Subject String; read-write The subject name of the digital certificate

The TimeServer Property
The TimeServer property specifies the name of the time server to be used for a digital signa-
ture. If you don’t set this property, the time from the local machine is used as the timestamp
for the digital signature.

object.TimeServer

Table 17-7 shows the TimeServer property’s parameters.

Table 17-7. The TimeServer Property’s Parameters

Name Returns Description

object SecurityParams The object or objects to which this property applies

TimeServer String; read-write The name of the time server to be used for a digital signature

Here’s an example of how to set the TimeServer property:

Dim sp As New AcadSecurityParams

sp.TimeServer = "NIST(time.nist.gov)"

Password Protection
Probably one of the most controversial security features in AutoCAD 2006 is Password Protection
(originally introduced in AutoCAD 2004). Basically, this feature allows a user to lock a drawing file
with a password to prevent unwanted people from opening and viewing or modifying it. It’s an
all-or-nothing feature in that the drawing is either completely locked or completely unlocked; no
intermediate locking capability exists (such as locking layers or permitting viewing but not modi-
fying or printing, as is possible with products such as Adobe Acrobat).

This quotes Autodesk:

When you password-protect a drawing, you encrypt the drawing, altering it with a

secret code. A password-protected or encrypted drawing can only be opened by someone

who knows the correct password.

CHAPTER 17 ■ DRAWING SECURITY 387

5793c17_final.qxd 8/22/05 1:55 AM Page 387

Additionally, Autodesk says this:

Warning! If you lose the password, it is not recoverable. Before you add a password, you

should create a backup that is not protected with a password.

You can disable Password Protection during installation, which is how most sites with
large numbers of users handle this.

If you decide to employ this feature, you should know that it is indeed secure. In addition
to setting a unique password, you can configure other options for the encryption method. From
the GUI interface, you must enter a default password in the password entry box in order to
access the Advanced Options button, which opens the Advanced Options dialog box shown in
Figure 17-2. Quite a few options are available.

From a programmatic aspect, the same object model applies to password locking (aka
encryption) as to digital certificates. In fact, it uses the same SecurityParams object to provide
the interface for saving an encrypted drawing.

■Note It’s worth noting that AutoCAD converts the password string value to uppercase before storing it in
the drawing. The result is a case-insensitive password entry match when you attempt to open the drawing.

The following example shows how to save an encrypted drawing file using this object:

Sub SaveLockedDrawing()

' This example encrypts and saves a file.

Dim acadApp As New AcadApplication

Dim sp As New AcadSecurityParams

CHAPTER 17 ■ DRAWING SECURITY388

Figure 17-2. The Advanced Options dialog box

5793c17_final.qxd 8/22/05 1:55 AM Page 388

acadApp.Visible = True

sp.Action = AcadSecurityParamsType.ACADSECURITYPARAMS_ENCRYPT_DATA

sp.Algorithm = AcadSecurityParamsConstants.ACADSECURITYPARAMS_ALGID_RC4

sp.KeyLength = 40

sp.Password = UCase("unique-password)

sp.ProviderName = "Microsoft Base Cryptographic Provider v1.0"

sp.ProviderType = 1

acadApp.ActiveDocument.SaveAs "C:\LockedDrawing1.dwg", , sp

End Sub

Summary
This chapter covered the two most important security features provided in AutoCAD 2006:
Digital Signatures and Password Protection. Though these features impose serious considera-
tion of potential risks, they offer obvious security benefits to users who need such protection
for their work.

CHAPTER 17 ■ DRAWING SECURITY 389

5793c17_final.qxd 8/22/05 1:55 AM Page 389

5793c17_final.qxd 8/22/05 1:55 AM Page 390

Using the Windows API

This chapter tells you how to take advantage of the Windows API. This isn’t a definitive guide
to the Windows API, but it gives you enough information to get you started, including com-
mon examples such as the Open and SaveAs common dialogs.

Declarations
You must declare every Windows API function that you use, period. Unlike in VBA, the
Windows API includes no type library against which to resolve your function calls. So for
them to be resolved—and you must resolve all function calls—you have to declare each
one before you use it. The following code shows how to declare a function call:

Public Declare Function SetForegroundWindow Lib "user32.dll" _

(ByVal hwnd As Long) As Long

The syntax breakdown is as follows:

[Scope] Declare Function <FunctionName> Lib <DLL Filename string> _

(List of Parameters) As <DataType>

The easiest way to get the decla-
ration is to use the API Viewer (which
is available at msdn.microsoft.com)
shown in Figure 18-1.

391

C H A P T E R 1 8

■ ■ ■

Figure 18-1. The API Viewer dialog box

5793c18_final.qxd 8/22/05 1:53 AM Page 391

Windows Data Structures
A data structure is a collection of related information that is accessible through a single variable
name. Data structures are widely used in the C and, to some extent, the C++ languages, but
classes have replaced them in modern programming practices. Classes let you define functions
that work on the class’s data, letting you hide variables and functionality from the outside world.
On the other hand, data structures are nothing more than data structures. But you’re in luck
because the Windows API has a ton of data structures, as the following code demonstrates:

Public Type POINTS

x As Integer

y As Integer

End Type

Visual Basic-to-DLL Calling Conventions
To call DLL function procedures from Visual Basic, convert the C syntax that documents them
into valid Declare statements. Visual Basic can call these procedures using the appropriate
parameter data type declarations.

You must convert the C data types into Visual Basic data types. Also, specify whether the
calling convention is ByVal (by value) or ByRef (by reference). Table 18-1 illustrates the conver-
sions for 32-bit Windows C-language data types to Visual Basic.

CHAPTER 18 ■ USING THE WINDOWS API392

Table 18-1. C vs. Visual Basic Data Type Declarations

C Language Data Type Declare in Visual Basic As Call With

ATOM ByVal variable As Integer An expression that evaluates to an Integer

BOOL ByVal variable As Long An expression that evaluates to a Long

BYTE ByVal variable As Byte An expression that evaluates to a Byte

CHAR ByVal variable As Byte An expression that evaluates to a Byte

COLORREF ByVal variable As Long An expression that evaluates to a Long

DWORD ByVal variable As Long An expression that evaluates to a Long

HWND, HDC, HMENU, etc. ByVal variable As Long An expression that evaluates to a Long
(Windows handles)

INT, UINT ByVal variable As Long An expression that evaluates to a Long

LONG ByVal variable As Long An expression that evaluates to a Long

LPARAM ByVal variable As Long An expression that evaluates to a Long

LPDWORD variable As Long An expression that evaluates to a Long

LPINT, LPUINT variable As Long An expression that evaluates to a Long

LPRECT variable As type Any variable of that user-defined type

LPSTR, LPCSTR ByVal variable As String An expression that evaluates to a String

5793c18_final.qxd 8/22/05 1:53 AM Page 392

C Language Data Type Declare in Visual Basic As Call With

LPVOID variable As Any Any variable (use ByVal when passing a
string)

LPWORD variable As Integer An expression that evaluates to an Integer

LRESULT ByVal variable As Long An expression that evaluates to a Long

NULL As Any or ByVal variable As Long ByVal Nothing or ByVal 0& or vbNullString

SHORT ByVal variable As Integer An expression that evaluates to an Integer

VOID Sub procedure Not applicable

WORD ByVal variable As Integer An expression that evaluates to an Integer

WPARAM ByVal variable As Long An expression that evaluates to a Long

CHAPTER 18 ■ USING THE WINDOWS API 393

Specifying the Library
Visual Basic uses the Declare statement’s Lib clause to find the .dll file that contains the pro-
cedures. When you declare a function that uses one of the core Windows API libraries, specify
the file name extension .dll.

■Tip For consistency, get into the habit of specifying this extension all the time, because you’ll need to
specify it for noncore API libraries that you use.

Here’s how to use the Lib clause:

Public Declare Function SetForegroundWindow Lib "user32.dll" _

(ByVal hwnd As Long) As Long

For noncore API libraries, you can specify a path in the Lib clause. If you don’t specify a
path, then Visual Basic searches for the file in the following order:

1. Directory containing the .exe file

2. Current directory

3. Windows system directory (usually C:\Windows\System)

4. Windows directory (usually C:\Windows)

5. Path environment variable

5793c18_final.qxd 8/22/05 1:53 AM Page 393

The Major Windows DLLs
Table 18-2 lists the most commonly used libraries of Windows API functions.

Table 18-2. Common Windows API Libraries

File Name Description

Advapi32.dll Advanced API services library supporting numerous APIs, including many
security and registry calls

Comdlg32.dll Common dialog API library

Gdi32.dll Graphics Device Interface API library

Kernel32.dll Core Windows 32-bit base API support

Lz32.dll 32-bit compression routines

Mpr.dll Multiple Provider Router library

Netapi32.dll 32-bit Network API library

Shell32.dll 32-bit Shell API library

User32.dll Library for user interface routines

Version.dll Version library

Winmm.dll Windows multimedia library

Winspool.drv Print spooler interface that contains print-spooler API calls

Working with Windows API Procedures
That Use Strings
The Declare statement’s Alias clause is required when you call Windows API procedures that
use strings to specify the correct character set. There are actually two formats for procedures
that contain strings: ANSI and Unicode.

For example, the SetWindowText function does not really exist. Instead, you use two sepa-
rate functions depending on whether you use ANSI or Unicode. The following code illustrates
the ANSI version:

Private Declare Function SetWindowText Lib "user32" Alias _

"SetWindowTextA" (ByVal hwnd As Long, ByVal lpString As String) _

As Long

The string that follows the Alias clause must be the procedure’s true, case-sensitive name.
Specify the ANSI version of functions in Visual Basic, because only Windows NT sup-

ports the Unicode versions. Use Unicode only when you’re certain your application will run
on Windows NT.

CHAPTER 18 ■ USING THE WINDOWS API394

5793c18_final.qxd 8/22/05 1:53 AM Page 394

Passing Arguments by Value or by Reference
By default, Visual Basic passes arguments by reference. Instead of passing the actual value of
the argument, it passes a 32-bit address specifying the value’s location. The ByRef keyword is
not required, but it’s a good idea to specify the exact method of passing the argument to make
your code more readable.

■Note This is no longer true with Visual Basic .NET or any of the .NET languages, which default to
ByValue arguments.

Many DLL procedures expect you to pass an argument by value. The function expects to
receive the actual value instead of its memory location. If you pass the argument to the func-
tion using ByRef, the function receives information that it has no idea how to handle.

To pass an argument by value, place the ByVal keyword in front of the Declare statement’s
argument declaration. The InvertRect procedure accepts its first argument by value and its
second by reference, as the following example shows:

Declare Function InvertRect Lib "user32" Alias "InvertRectA" _

(ByVal hdc As Long, lpRect As RECT) As Long

■Note When you look at DLL procedure documentation that uses C-language syntax, remember that
C passes all arguments except arrays by value.

Learning by Example
The best way to learn the Windows API is to follow other programmers’ examples and try dif-
ferent situations on your own. So this section gives you examples of using the Windows API.
These examples illustrate some of the most common Windows API functions that AutoCAD
developers use, and should give you enough information to pursue using Windows API func-
tions in your own application development.

OpenFile Common Control Dialog Replacement for VBA
Using the OpenFile common control dialog adds a look of consistency to your application.
The OpenFile dialog is part of the comdlg32.dll library of Windows API routines and is easily
accessed. The following example illustrates using these routines to request a drawing file to
open.

CHAPTER 18 ■ USING THE WINDOWS API 395

5793c18_final.qxd 8/22/05 1:53 AM Page 395

Private Declare Function GetOpenFileName Lib "comdlg32.dll" Alias _

"GetOpenFileNameA" (pOpenfilename As OPENFILENAME) As Long

Private Type OPENFILENAME

lStructSize As Long

hwndOwner As Long

hInstance As Long

lpstrFilter As String

lpstrCustomFilter As String

nMaxCustFilter As Long

nFilterIndex As Long

lpstrFile As String

nMaxFile As Long

lpstrFileTitle As String

nMaxFileTitle As Long

lpstrInitialDir As String

lpstrTitle As String

flags As Long

nFileOffset As Integer

nFileExtension As Integer

lpstrDefExt As String

lCustData As Long

lpfnHook As Long

lpTemplateName As String

End Type

Public Function ShowOpen(Filter As String, _

InitialDir As String, _

DialogTitle As String) As String

Dim OFName As OPENFILENAME

'Set the structure size

OFName.lStructSize = Len(OFName)

'Set the owner window

OFName.hwndOwner = 0

'Set the filter

OFName.lpstrFilter = Filter

'Set the maximum number of chars

OFName.nMaxFile = 255

'Create a buffer

OFName.lpstrFile = Space(254)

CHAPTER 18 ■ USING THE WINDOWS API396

5793c18_final.qxd 8/22/05 1:53 AM Page 396

'Create a buffer

OFName.lpstrFileTitle = Space$(254)

'Set the maximum number of chars

OFName.nMaxFileTitle = 255

'Set the initial directory

OFName.lpstrInitialDir = InitialDir

'Set the dialog title

OFName.lpstrTitle = DialogTitle

'no extra flags

OFName.flags = 0

'Show the 'Open File' dialog

If GetOpenFileName(OFName) Then

ShowOpen = Trim(OFName.lpstrFile)

Else

ShowOpen = ""

End If

End Function

The following sample code illustrates using the ShowOpen routine, which returns the
selected file name as a string.

Dim Filter As String

Dim InitialDir As String

Dim DialogTitle As String

Dim OutputStr As String

Filter = "Drawing Files (*.dwg)" + Chr$(0) + "*.dwg" + Chr$(0) + _

"All Files (*.*)" + Chr$(0) + "*.*" + Chr$(0)

InitialDir = "C:\Program Files\AutoCAD 2006\Sample"

DialogTitle = "Open a DWG file"

OutputStr = ShowOpen(Filter, InitialDir, DialogTitle)

MsgBox OutputStr

The Filter parameter is a string that details which file types, by extension, to display when
the OpenFile dialog box appears. The InitialDir parameter specifies which directory to display
by default. To give a name to your OpenFile dialog box, use the DialogTitle parameter.

With each of these parameters defined, executing this code results in the OpenFile dialog
box shown in Figure 18-2.

CHAPTER 18 ■ USING THE WINDOWS API 397

5793c18_final.qxd 8/22/05 1:53 AM Page 397

SaveAsFile Common Control Dialog Replacement for VBA
Using the SaveAsFile common control dialog adds a look of consistency to your application.
The SaveAsFile dialog is part of the comdlg32.dll library of Windows API routines and is easily
accessed. The following example uses the comdlg32.dll routines to save a drawing file.

Private Declare Function GetSaveFileName Lib "comdlg32.dll" Alias _

"GetSaveFileNameA" (pOpenfilename As OPENFILENAME) As Long

Private Type OPENFILENAME

lStructSize As Long

hwndOwner As Long

hInstance As Long

lpstrFilter As String

lpstrCustomFilter As String

nMaxCustFilter As Long

nFilterIndex As Long

lpstrFile As String

nMaxFile As Long

lpstrFileTitle As String

nMaxFileTitle As Long

lpstrInitialDir As String

lpstrTitle As String

flags As Long

nFileOffset As Integer

nFileExtension As Integer

lpstrDefExt As String

lCustData As Long

lpfnHook As Long

lpTemplateName As String

End Type

CHAPTER 18 ■ USING THE WINDOWS API398

Figure 18-2. An OpenFile dialog box example

5793c18_final.qxd 8/22/05 1:53 AM Page 398

Public Function ShowSave(Filter As String, _

InitialDir As String, _

DialogTitle As String) As String

Dim OFName As OPENFILENAME

'Set the structure size

OFName.lStructSize = Len(OFName)

'Set the owner window

OFName.hwndOwner = 0

'Set the filter

OFName.lpstrFilter = Filter

'Set the maximum number of chars

OFName.nMaxFile = 255

'Create a buffer

OFName.lpstrFile = Space(254)

'Create a buffer

OFName.lpstrFileTitle = Space$(254)

'Set the maximum number of chars

OFName.nMaxFileTitle = 255

'Set the initial directory

OFName.lpstrInitialDir = InitialDir

'Set the dialog title

OFName.lpstrTitle = DialogTitle

'no extra flags

OFName.flags = 0

'Show the 'SaveAs File' dialog

If GetSaveFileName(OFName) Then

ShowSave = Trim(OFName.lpstrFile)

Else

ShowSave = ""

End If

End Function

The following sample code shows the ShowSave routine:

Dim Filter As String

Dim InitialDir As String

Dim DialogTitle As String

Dim OutputStr As String

Filter = "Drawing Files (*.dwg)" + Chr$(0) + "*.dwg" + Chr$(0) + _

"All Files (*.*)" + Chr$(0) + "*.*" + Chr$(0)

InitialDir = "C:\Program Files\AutoCAD 2006\Sample"

DialogTitle = "Save DWG as file"

OutputStr = ShowSave(Filter, InitialDir, DialogTitle)

CHAPTER 18 ■ USING THE WINDOWS API 399

5793c18_final.qxd 8/22/05 1:53 AM Page 399

The Filter parameter is a string that details which file types, by extension, to display
when the SaveAsFile dialog box appears. The InitialDir parameter specifies which directory
to display by default. To give a name to your SaveAsFile dialog box, use the DialogTitle
parameter.

With each of these parameters defined, executing this code opens the SaveAsFile dialog
box shown in Figure 18-3.

Retrieving the Status of the Caps Lock, Num Lock, and
Scroll Lock Keys
Sometimes you need to know the status of the Caps Lock, Num Lock, or Scroll Lock key. Visual
Basic doesn’t let you do this directly, but the Windows API does. The following example shows how:

Private Const VK_CAPITAL = &H14

Private Const VK_NUMLOCK = &H90

Private Const VK_SCROLL = &H91

Private Type KeyboardBytes

kbByte(0 To 255) As Byte

End Type

Private Declare Function GetKeyState Lib "user32" (ByVal nVirtKey As Long) _

As Long

Private Declare Function GetKeyboardState Lib "user32" (kbArray As KeyboardBytes) _

As Long

Private Declare Function SetKeyboardState Lib "user32" (kbArray As KeyboardBytes) _

As Long

Dim kbArray As KeyboardBytes

CHAPTER 18 ■ USING THE WINDOWS API400

Figure 18-3. A SaveAsFile dialog box example

5793c18_final.qxd 8/22/05 1:53 AM Page 400

This example implements these routines. This first example uses the key passed to it in
the vkKey parameter to turn that key on.

Public Sub TurnOn(vkKey As Long)

'Get the keyboard state

GetKeyboardState kbArray

'Change a key

kbArray.kbByte(vkKey) = 1

'Set the keyboard state

SetKeyboardState kbArray

End Sub

■Note The effect of running these examples may not be apparent because in certain circumstances
your keyboard lights may not change from On to Off and vice versa. However, the code does change the
way characters will be displayed when typed.

The following example does the opposite of the TurnOn routine from the previous exam-
ple. It uses the key passed to it in the vkKey parameter to turn off that key.

Public Sub TurnOff(vkKey As Long)

'Get the keyboard state

GetKeyboardState kbArray

'change a key

kbArray.kbByte(vkKey) = 0

'set the keyboard state

SetKeyboardState kbArray

End Sub

This final example gets the status of the key passed in the vkKey parameter and returns
True if the key is on or False if it’s off.

Public Function GetKeyStatus(vkKey As Long) As Boolean

'Get the keyboard state

GetKeyboardState kbArray

'change a key

GetKeyStatus = kbArray.kbByte(vkKey)

End Function

Using these routines helps you enforce the case users input. If you need everything
entered to be all capital letters, these routines ensure that you get only uppercase input.

Don’t be frightened by the verbosity of these code examples. The power implied here is
with respect to reuse. If you put this code to work, you’ll quickly realize the benefit of encap-
sulating this code in class modules, which you can reuse many times with minimal coding.
You can easily create custom dialog forms or other adapted features and make them basic
class items from which you can draw.

CHAPTER 18 ■ USING THE WINDOWS API 401

5793c18_final.qxd 8/22/05 1:53 AM Page 401

Summary
This short chapter presented an enormous amount of information. The best way for you to
really be proficient at accessing the Windows API is through trial and error. This chapter pre-
sented some useful routines that should help get you started writing robust applications
using the Windows API.

CHAPTER 18 ■ USING THE WINDOWS API402

5793c18_final.qxd 8/22/05 1:53 AM Page 402

Connecting to
External Applications

In this chapter you’ll learn the basics of connecting to applications external to AutoCAD, such
as Microsoft Excel and Word. Once connected, you’ll see how to create basic documents and
populate those external documents with information you control from within AutoCAD.

This chapter is an introduction to connecting and performing basic functions with exter-
nal applications. It doesn’t present in-depth coverage of all the tasks that you could accomplish,
as there are numerous books dedicated to the subject of customization for these products.

At the end of this chapter, you’ll examine how to connect to a database created in Micro-
soft Access, which is the typical way AutoCAD developers use and manipulate database files.

Making the Connection
Most applications you connect to will have similar connection methods. First, you’ll need to
include the necessary references in the programming environment, as illustrated in Figure 19-1.

Next, you will need a routine that checks for a running instance of the application, and
that has additional code to start an instance of the application if it is not already running

403

C H A P T E R 1 9

■ ■ ■

Figure 19-1. The References dialog box

5793c19_final.qxd 8/22/05 1:49 AM Page 403

The following example illustrates starting Microsoft Excel programmatically:

Public Sub StartExcel(App As Excel.Application, Visible As Boolean)

'handle errors inline

On Error Resume Next

Set App = GetObject(, "Excel.Application") 'depends on application

'check to see if application is running

If Err Then

'no, application will need to be started

Err.Clear

Set App = CreateObject("Excel.Application") 'depends on application

'check to see if application was started

If Err Then

'no, application could not be started - exit

Exit Sub

End If

End If

'set the application visibility

App.Visible = Visible

End Sub

■Note Depending on the version of Excel you’re using (especially if you have multiple versions installed),
you should make a habit of requesting type libraries by explicit version name (e.g., Excel.Application.11).
In fact, AutoCAD 2006 requires you to reference the application object using AutoCAD.Application.16, (which
isn’t necessary within AutoCAD 2006 VBA because the Application object is always present).

Here’s how you can use this routine to ensure an instance of Excel is running before doing
anything else:

Public Sub Start()

Dim oExcel As Excel.Application

'attempt to start Excel

StartExcel oExcel, True

If Not oExcel Is Nothing Then

MsgBox "Success"

Else

MsgBox "Could not start Excel, exiting ...", vbCritical

Exit Sub

End If

End Sub

■Note If Excel was not previously running, the Excel application will close when the Sub ends.

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS404

5793c19_final.qxd 8/22/05 1:49 AM Page 404

In these examples, you can start two applications with a slight modification to the code
listed, as shown in Table 19-1. The acceptable variations are listed in Table 19-2.

Table 19-1. Application Class Identification

Application Class Identification

Excel Excel.Application.x (where x is the product version index)

Word Word.Application.x (where x is the product version index)

Table 19-2. Acceptable Microsoft Product Variations

Product Version Example

Office 95 7 Word.Application.7

Office 97 8 Excel.Application.8

Office 2000 9 Word.Application.9

Office XP 10 Powerpoint.Application.10

Office 2003 11 Outlook.Application.11

Connecting to Microsoft Excel
Now that you have a connection to Microsoft Excel, you’re going to learn how to create a new
workbook and worksheet. Then you’ll write and read values from the cells of a worksheet.
Finally, you’ll save the worksheet and close Excel.

Creating a New Workbook
To create a workbook, declare a variable of the Excel.Workbook object data type. Then, using the
Add method of the Excel application object, add a new workbook as in the following example:

Dim Workbook As Excel.Workbook

Set Workbook = oExcel.Workbooks.Add

Creating a New Worksheet
To create a worksheet, declare a variable of the Excel.WorkSheet object data type. Then use the
Add method of the WorkSheets collection object to create a new worksheet, as illustrated in the
following example:

Dim WorkSheet As Excel.WorkSheet

Set WorkSheet = oExcel.Worksheets.Add

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS 405

5793c19_final.qxd 8/22/05 1:49 AM Page 405

Accessing a Worksheet
To access a worksheet, declare a variable of the Excel.WorkSheet object data type. Then assign
the Worksheets collection object of the Workbook object to the newly declared variable as in the
following example:

Dim WorkSheet As Excel.WorkSheet

Set WorkSheet = oExcel.Worksheets(1)

Writing and Reading Cells
Using the WorkSheet object, you can assign values to Cells, as shown in the following example:

With WorkSheet

.Cells(1, 1).Value = 1: .Cells(1, 2).Value = 2

.Cells(2, 1).Value = 1.5: .Cells(2, 2).Value = 3

.Cells(3, 1).Value = "Text 1": .Cells(3, 2).Value = "Text 2"

End With

■Note Items such as the row and column indexes start at 1, not 0.

Reading the values contained in Cells is the reverse of writing them, as the following
example illustrates:

With WorkSheet

MsgBox .Cells(1, 1).Value & ", " & .Cells(1, 2).Value

MsgBox .Cells(2, 1).Value & ", " & .Cells(2, 2).Value

MsgBox .Cells(3, 1).Value & ", " & .Cells(3, 2).Value

End With

Saving and Exiting Excel
Using the Close method of the Workbook object, you can close the workbook. The first parame-
ter of the Close method determines whether the workbook should be saved. You supply the
second parameter, a file name, and indicate whether the first parameter is True as in the fol-
lowing example:

Workbook.Close True, "C:\Test.xls"

Once you’ve completed your work with the Excel application, use the Quit method of the
Excel application object to properly close the application:

App.Quit

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS406

5793c19_final.qxd 8/22/05 1:49 AM Page 406

Connecting to Microsoft Word
This section presents the code necessary to connect to Microsoft Word programmatically.

Creating a New Document
To create a document, declare a variable of the Word.Document object data type. Then use the
Add method of the Documents collection object to add a new document, as shown here:

Dim oDocument As Word.Document

Set oDocument = oWord.Documents.Add

Adding Text to the Document
To add text to your document, simply set the Text property of the Content Range object of the
document, as in the following example:

oDocument.Content.Text = "This is some sample text"

Setting Page Orientation
You make the page orientation either portrait or landscape by setting the Orientation prop-
erty of the PageSetup object for the document using this:

oDocument.PageSetup.Orientation = wdOrientPortrait

or this:

oDocument.PageSetup.Orientation = wdOrientLandscape

Setting Margins
Set the margins for your document by setting the LeftMargin, RightMargin, TopMargin, or
BottomMargin property of the PageSetup object for the document, as shown in the following
example:

oDocument.PageSetup.LeftMargin = InchesToPoints(0.5)

oDocument.PageSetup.RightMargin = InchesToPoints(0.5)

oDocument.PageSetup.TopMargin = InchesToPoints(0.5)

oDocument.PageSetup.BottomMargin = InchesToPoints(0.5)

■Note The value supplied to the XXXMargin properties must be in points. If you want to supply the values
in inches (as in the example) you’ll need to convert the values to points using the built-in VBA function
InchesToPoints.

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS 407

5793c19_final.qxd 8/22/05 1:49 AM Page 407

Setting the Document Header and Footer
You can set the document’s header and/or footer by setting the Text property of the Headers
and/or Footers collection object like this:

oDocument.Sections(1).Headers(wdHeaderFooterPrimary) _

.Range.Text = "This is Header text"

or this:

oDocument.Sections(1).Footers(wdHeaderFooterPrimary) _

.Range.Text

Saving and Exiting Word
Use the SaveAs method of the Document object to save your document:

oDocument.SaveAs "Sample"

To close your document, use the Close method of the Documents collection object:

oWord.Documents("Sample.doc").Close True

Finally, use the Quit method of the Word.Application object to actually close the Word
application, as shown here:

oWord.Quit

Connecting to a Microsoft Access Database
Most AutoCAD developers use Microsoft Access to create the database structure file, and then
they use the Microsoft ActiveX Data Objects (ADO) library through VBA to access the .mdb file
created by Access. You can use the same approach (and quite often the same code) to work with
other data sources, such as Microsoft SQL Server, Oracle, DB2, and even Microsoft Exchange.
This section details the steps necessary to connect to and access the data contained in a data-
base file in a Microsoft Access application. Please refer to the same database file to follow along
with these examples.

Connecting to a Database File
First, you need to add a reference to the Microsoft ActiveX Data Objects library, as shown in
Figure 19-2.

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS408

5793c19_final.qxd 8/22/05 1:49 AM Page 408

Next, you need to establish a Connection object similar to the following example:

Dim oAccess As New ADODB.Connection

oAccess.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=" & "C:\AutoCAD-VBA.mdb" & ";"

■Note The example database for this exercise was created in Microsoft Access 2000. If you want to use a
different file-format database, such as Access 97 or 2002, you’ll need to change the Provider string appro-
priately or use an ODBC data source name (DSN) to provide the interface connection directives.

Retrieving a Set of Records
The ability to retrieve the records stored in a database file is essential. The following example
illustrates how to retrieve all the records from a table called Layers, and displays each record
in a typical MsgBox:

'retrieve records from the Layers table

Dim oRecordset As New ADODB.Recordset

oRecordset.Open "Select * From Layers", oAccess, adOpenKeyset

With oRecordset

Do While Not .EOF

MsgBox !LayerName & ", Color is " & !color

.MoveNext

Loop

.Close

End With

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS 409

Figure 19-2. Microsoft ActiveX Data Objects library reference

5793c19_final.qxd 8/22/05 1:49 AM Page 409

Writing Values to the Database File
Another essential operation is the ability to perform writing data to a table within the data-
base file. The following example iterates through the Layers collection object and writes each
layer’s name and color value to the Layers table:

Dim oLayer As AcadLayer

oRecordset.Open "Select * From Layers", oAccess, adOpenKeyset, adLockOptimistic

For Each oLayer In ThisDrawing.Layers

With oRecordset

.AddNew

!LayerName = oLayer.Name

!Color = oLayer.Color

.Update

End With

Next oLayer

oRecordset.Close

Closing the Connection
Once you’ve finished using the connection to a database file, you should always close the
database connection, as shown in the following example:

oAccess.Close

You can go even further and create new databases, and then build the tables and queries
within them using ADO and ADOX features. You can find a full reference of the ADO and
ADOX objects, properties, methods, and events on the Microsoft MSDN Web site (http://
msdn.microsoft.com) or Microsoft’s Microsoft Data Access and Storage Developer Center
Web site (http://www.microsoft.com/data).

■Tip One of the most often overlooked time-savers for working with external applications is the Macro
Recorder feature. You can save an enormous amount of time and frustration in trying to figure out the specifics
of performing a task in Excel by just doing the task while recording it, and then opening the results. Quite often,
you can copy and paste the results directly into the AutoCAD VBA editor with minor modifications, and be on
your way. This is true with any VBA-enabled product that has the Macro Recorder feature, including Microsoft
Visio, PowerPoint, and Outlook.

Working with Other Databases
Although Microsoft Access is a very popular database, it is by no means the only one you will
encounter. Many companies, especially larger firms, rely on larger-scale database systems such
as Oracle, SQL Server, and DB2. These products provide much more power and reliability than

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS410

5793c19_final.qxd 8/22/05 1:49 AM Page 410

desktop databases such as Access, dBASE, and FoxPro. You should be aware of the differences
you’ll commonly encounter when you move data from one place to another, and between dif-
ferent database environments.

For example, the data type aspects can vary widely and you should never assume data
types are consistent between such products as Microsoft Access, Microsoft SQL Server, DB2,
and Oracle. For instance, when you convert databases in Access 2000 to SQL Server 2000,
memo fields are converted into ntext or nvarchar fields, which are very different. Other com-
mon differences relate to date and time values, currency, and special fields such as Pictures,
Hyperlinks, and BLOBs (binary large objects).

Connectivity Automation Objects
The dbConnect feature added in AutoCAD 2000 provides a powerful means for linking draw-
ing entities to external data sources such as Excel spreadsheets, Access databases, and other
ODBC data sources. It also provides a means for automatically labeling entities using Leader
callouts with special control over the text labeling that is driven directly by linked values in
the external data source.

This functionality is provided through a special API called Connectivity Automation
Objects, or CAO. CAO is a very simple, compact object model, with a small set of objects, prop-
erties, methods, and so on (compared to AutoCAD, anyway). It exposes all of the power and
capability of dbConnect to developers, both from within and from outside of AutoCAD. Like
most ActiveX features in AutoCAD, you can employ CAO from VBA within AutoCAD, or from
VBA in an external application.

Advanced Database Issues
Don’t be lulled into thinking that because you feel comfortable with the AutoCAD drawing
“database” environment, you can translate it quickly into the world of database development.
The differences are staggering. Although many similarities exist, you’ll encounter numerous
issues in database development that aren’t present in AutoCAD. For example, referential
integrity, normalization, indexing, views, and job scheduling are all common in mainstream
database development. And although these topics may seem unimportant or remote to you as
an AutoCAD developer, they’re crucial to database developers and the work they do every day.

If you aren’t a seasoned database developer, it often helps to partner with one while you’re
learning the ropes of database programming. Although you can certainly learn database devel-
opment skills, it’s truly a world unto its own. Finally, before you begin building a large, complex
database application with AutoCAD, consult an experienced database developer to make sure
you don’t reinvent the wheel or waste precious time building a solution that would have been
easier or more robust if it were instead developed on the database end.

Working with Services and Other APIs
Like applications, services are processes that run within the operating-system-protected name-
spaces. Unlike applications, though, services normally don’t provide a graphical interface and
are instead intended for under-the-hood purposes such as monitoring, logging, reacting, or
protecting other system resources. Many services are very useful for making sure the overall
environment is known.

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS 411

5793c19_final.qxd 8/22/05 1:49 AM Page 411

One service you might be interested in using is the Active Directory Service Interfaces
(ADSI) object for accessing Active Directory Services on a Windows 2000 or 2003 network.
An example of a commonly used API is the FileSystemObject (FSO), which is used by many
applications to create, edit, read, and delete files, as well as perform file system operations
on drives, folders, and so forth.

To find out the drive type and file system in use on the C: drive, for example, you could
access the FSO Drive object for C: and then query its DriveType and FileSystem properties:

Function ShowDriveType(drvpath)

Dim fso, d, dt

Set fso = CreateObject("Scripting.FileSystemObject")

Set d = fso.GetDrive(drvpath)

Select Case d.DriveType

Case 0: dt = "Unknown"

Case 1: dt = "Removable"

Case 2: dt = "Fixed"

Case 3: dt = "Network"

Case 4: dt = "CD-ROM"

Case 5: dt = "RAM Disk"

End Select

ShowDriveType = dt

End Function

Function ShowFileSystemType(drvspec)

Dim fso,d

Set fso = CreateObject("Scripting.FileSystemObject")

Set d = fso.GetDrive(drvspec)

ShowFileSystemType = d.FileSystem

End Function

MsgBox "C: Drive Type is " & ShowDriveType("C")

MsgBox "C: File System is " & ShowFileSystemType("C")

The ADSI object is built into Windows 2000, Windows XP Professional, and corresponding
server versions of these products. It provides an API for interfacing with directory services such
as Lightweight Directory Access Protocol (LDAP) and Active Directory. A common task might
be to retrieve a list of all the users, groups, or computers on your domain. To do this, you could
invoke the ADSI interface to the WinNT object, as shown here:

Sub ShowAllComputers()

Dim adsDomain

Set adsDomain = GetObject("WinNT://MyDomainName")

For each objMember in adsDomain

If Ucase(objMember.Class) = "COMPUTER" Then

Debug.Print objMember.Name & vbCrLf

End If

Next

Set adsDomain = Nothing

End Sub

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS412

5793c19_final.qxd 8/22/05 1:49 AM Page 412

You might have noticed in the preceding code that GetObject is used instead of
CreateObject. This is because a true service is always available through the GetObject
interface and doesn’t require instantiation to obtain an instance.

The FSO, ADSI, and LanManServer API references are all published on the MSDN
Web site, as are many other useful APIs and services such as WMI/WBEM, CDO/CDONTS,
LDAP, and Windows Scripting Host (WSH).

Summary
This chapter briefly touched upon the capabilities that VBA provides for working with external
applications; it’s by no means exhaustive. You can interface with an almost limitless number of
external applications, services, and processes from within AutoCAD VBA. The more you look
and experiment, the more you’ll be amazed at what you can do.

CHAPTER 19 ■ CONNECTING TO EXTERNAL APPLICATIONS 413

5793c19_final.qxd 8/22/05 1:49 AM Page 413

5793c19_final.qxd 8/22/05 1:49 AM Page 414

Creating Tables

AutoCAD 2005 introduced a new object aimed at creating drawing tables for schedules
or bills of materials. The new object, Table, allows you to create a rectangular array of any
number of rows and columns and populate it with virtually any data you like. Although
demonstrating every conceivable way of using a table is not possible, in this chapter I will
show you enough of the basics of creating and manipulating tables that you can experiment
on your own to find the best fit for your situation.

The AddTable Method
You can create a Table object by specifying the insertion point, number of rows, number of
columns, row height, and column width using the AddTable method.

Set TableObject = Object.AddTable(InsertionPoint, NumberOfRows, _

NumberOfColumns, RowHeight, ColumnWidth)

Table 20-1 explains this method’s parameters.

Table 20-1. The AddTable Method’s Parameters

Name Data Type Description

InsertionPoint Double Insertion point of table

NumberOfRows Long Number of rows in table

NumberOfColumns Long Number of columns in table

RowHeight Double Height of each row in table

ColumnWidth Double Width of each column in table

The following example shows how to create a table based upon user input:

Public Sub TestAddTable_Click()

Dim vInsertionPoint As Variant

Dim lNumberOfRows As Long

Dim lNumberOfColumns As Long

Dim dRowHeight As Double

Dim dColumnWidth As Double

Dim oTable As AcadTable

415

C H A P T E R 2 0

■ ■ ■

5793c20_final.qxd 8/22/05 1:46 AM Page 415

On Error Resume Next

With ThisDrawing.Utility

vInsertionPoint = .GetPoint(, vbCr & "Pick the insertion point: ")

lNumberOfRows = .GetInteger(vbCr & "Enter number of rows: ")

lNumberOfColumns = .GetInteger(vbCr & "Enter number of columns: ")

dRowHeight = .GetReal(vbCr & "Enter row height: ")

dColumnWidth = .GetReal(vbCr & "Enter column width: ")

End With

If Err Then Exit Sub

Set oTable = ThisDrawing.ModelSpace.AddTable(vInsertionPoint, _

lNumberOfRows, lNumberOfColumns, dRowHeight, dColumnWidth)

End Sub

The RegenerateTableSuppressed Property
The RegenerateTableSuppressed property specifies whether the table will be repainted each
time a change to the table is made.

object.RegenerateTableSuppressed

Table 20-2 shows the RegenerateTableSuppressed property’s parameters.

Table 20-2. The RegenerateTableSuppressed Property’s Parameters

Value Description

True The table regeneration is suppressed or off.

False The table regeneration is not suppressed or on.

The GetText Method
Text within a Table can be read using the GetText method to retrieve the text string value of a
specified row and column of an existing table.

The GetText method returns a string and has the following syntax:

object.GetText Row, Column

Table 20-3 explains this method’s parameters.

Table 20-3. The GetText Method’s Parameters

Name Data Type Description

Row Long A zero-based row index for the cell containing text

Column Long A zero-based column index for the cell containing text

CHAPTER 20 ■ CREATING TABLES416

5793c20_final.qxd 8/22/05 1:46 AM Page 416

The following example illustrates how to read the text value from row 2 and column 3 of
a user-selected table:

Public Sub TestGetText()

Dim vPoint As Variant

Dim oTable As AcadTable

Dim Text As String

On Error Resume Next

ThisDrawing.Utility.GetEntity oTable, vPoint, "Select table: "

If TypeOf oTable Is AcadTable Then

Text = oTable.GetText(1, 2)

End If

MsgBox Text

End Sub

The SetText Method
Use the SetText method to set the text string value of a specified row and column of an exist-
ing table.

The SetText method returns nothing but has the following syntax:

object.SetText Row, Column, Text

Table 20-4 explains this method’s parameters.

Table 20-4. The SetText Method’s Parameters

Name Data Type Description

Row Long A zero-based row index for the cell receiving text

Column Long A zero-based column index for the cell receiving text

Text String The string to place in the cell specified by row and column of the table

The following example illustrates how to set the text value for row 2 and column 3 of a
user-selected table:

Public Sub TestSetText()

Dim vPoint As Variant

Dim oTable As AcadTable

On Error Resume Next

ThisDrawing.Utility.GetEntity oTable, vPoint, "Select table: "

CHAPTER 20 ■ CREATING TABLES 417

5793c20_final.qxd 8/22/05 1:46 AM Page 417

If TypeOf oTable Is AcadTable Then

With oTable

.SetText 1, 2, "New string"

Text = .GetText(1, 2)

End With

End If

MsgBox Text

End Sub

The GetTextHeight Method
Use the GetTextHeight method to retrieve the row height of a specific type of row.

The GetTextHeight method returns the height of the row type specified and has the fol-
lowing syntax:

object.GetTextHeight RowType

Table 20-5 explains this method’s parameter.

Table 20-5. The GetTextHeight Method’s Parameter

Name Data Type Description

RowType AcRowType One of these row types:
AcRowType enumerations
AcDataRow
AcHeaderRow
AcTitleRow
AcUnknownRow

The following example illustrates how to retrieve the row height for each of the types of
rows in a table:

Public Sub TestGetTextHeight()

Dim vPoint As Variant

Dim oTable As AcadTable

Dim Index As Long

On Error Resume Next

ThisDrawing.Utility.GetEntity oTable, vPoint, "Select table: "

If TypeOf oTable Is AcadTable Then

With oTable

For Index = 0 To 3

Select Case Index

Case 0

MsgBox "DataRow height: " & .GetTextHeight(acDataRow)

CHAPTER 20 ■ CREATING TABLES418

5793c20_final.qxd 8/22/05 1:46 AM Page 418

Case 1

MsgBox "HeaderRow height: " & .GetTextHeight(acHeaderRow)

Case 2

MsgBox "TitleRow height: " & .GetTextHeight(acTitleRow)

Case 3

MsgBox "UnknownRow height: " & .GetTextHeight(acUnknownRow)

End Select

Next Index

End With

End If

End Sub

The SetTextHeight Method
Use the SetTextHeight method to set the row height of a specific type of row. The method
returns nothing but has the following syntax:

object.SetTextHeight RowType, TextHeight

Table 20-6 explains this method’s parameters.

Table 20-6. The SetTextHeight Method’s Parameters

Name Data Type Description

RowType AcRowType One of these row types:
AcRowType enumerations
AcDataRow
AcHeaderRow
AcTitleRow
AcUnknownRow

TextHeight Double Height of the text contained in specified row

The following example illustrates how to set the row height for each of the types of rows in
a table:

Public Sub TestSetTextHeight()

Dim vPoint As Variant

Dim oTable As AcadTable

Dim Index As Long

On Error Resume Next

ThisDrawing.Utility.GetEntity oTable, vPoint, "Select table: "

If TypeOf oTable Is AcadTable Then

With oTable

For Index = 0 To 3

Select Case Index

CHAPTER 20 ■ CREATING TABLES 419

5793c20_final.qxd 8/22/05 1:46 AM Page 419

Case 0

.SetTextHeight acDataRow, 0.25

MsgBox "DataRow height: " & .GetTextHeight(acDataRow)

Case 1

.SetTextHeight acHeaderRow, 0.25

MsgBox "HeaderRow height: " & .GetTextHeight(acHeaderRow)

Case 2

.SetTextHeight acTitleRow, 0.25

MsgBox "TitleRow height: " & .GetTextHeight(acTitleRow)

Case 3

.SetTextHeight acUnknownRow, 0.25

MsgBox "UnknownRow height: " & .GetTextHeight(acUnknownRow)

End Select

Next Index

End With

End If

End Sub

The InsertRows Method
Use the InsertRows method to insert additional rows in an existing table.

■Note Row(s) are inserted before the row index provided as a parameter to this method.

The method returns nothing but has the following syntax:

object.InsertRows Index, RowHeight, Rows

Table 20-7 explains this method’s parameters.

Table 20-7. The InsertRows Method’s Parameters

Name Data Type Description

Index Long Zero-based row index

RowHeight Double The height of row(s) to be added

Rows Long The number of rows to be added

The following example illustrates how to insert two rows that are 0.25 inches high before
the second row of an existing table:

Public Sub TestInsertRows()

Dim vPoint As Variant

Dim oTable As AcadTable

On Error Resume Next

CHAPTER 20 ■ CREATING TABLES420

5793c20_final.qxd 8/22/05 1:46 AM Page 420

ThisDrawing.Utility.GetEntity oTable, vPoint, "Select table: "

If TypeOf oTable Is AcadTable Then

oTable.InsertRows 1, 0.25, 2

'second row, insert two 0.25 high rows

End If

End Sub

Figure 20-1 shows the table before InsertRows, and Figure 20-2 shows the table after
InsertRows.

The InsertColumns Method
Use the InsertColumns method to insert additional columns in an existing table.

■Note Column(s) are inserted before the column index provided as a parameter to this method.

The method returns nothing but has the following syntax:

object.InsertColumns Index, ColumnWidth, Columns

Table 20-8 explains this method’s parameters.

CHAPTER 20 ■ CREATING TABLES 421

Figure 20-1. Viewing the table before InsertRows

Figure 20-2. Viewing the table after InsertRows

5793c20_final.qxd 8/22/05 1:46 AM Page 421

Table 20-8. The InsertColumns Method’s Parameters

Name Data Type Description

Index Long Zero-based column index

ColumnWidth Double The width of column(s) to be added

Columns Long The number of columns to be added

The following example illustrates how to insert two columns that are 1.25 inches wide
before the second column of an existing table:

Public Sub TestInsertColumns()

Dim vPoint As Variant

Dim oTable As AcadTable

On Error Resume Next

ThisDrawing.Utility.GetEntity oTable, vPoint, "Select table: "

If TypeOf oTable Is AcadTable Then

oTable.InsertColumns 1, 1.25, 2

'second column, insert two 1.25 wide columns

End If

End Sub

Figure 20-3 shows the table before InsertColumns, and Figure 20-4 shows the table after
InsertColumns.

CHAPTER 20 ■ CREATING TABLES422

Figure 20-3. Viewing the table before InsertColumns

Figure 20-4. Viewing the table after InsertColumns

5793c20_final.qxd 8/22/05 1:46 AM Page 422

Putting It All Together
You now have an idea of some of the features and characteristics possible for creating and
manipulating a Table object within AutoCAD. However, this may not seem all that useful just
yet. In this final part of the chapter, I will show how to build a simple bill of materials, or sched-
ule as some disciplines called it, using a table populated with the drawing’s block insertions.

First, you need to determine what constitutes a component and create a class object
representation. For this example, a component consists of the PartNumber and Description.
Additionally, you can keep a rolling count of the number of components as follows:

Public PartNumber As String

Public Count As Long

Public Description As String

Type the previous code in a class module named Component.
Second, to generate a list of components or block insertions contained within the draw-

ing, you will need a collection of Component objects, which is created using the following:

Public Components As New Collection 'global variable for creating BOM

Type this code example into a standard .bas module.
Next, you need to create a selection set containing just block insertions. For a discussion

of selection set creation, refer to Chapter 12. Type the following line of code into the same
standard .bas module that you placed the Components collection object declaration in:

Public Const Entity = 0 'an entity

You will use this constant declaration when you create the actual selection set by typing in
the following function in the ThisDrawing module:

Public Function CreateSelectionSet(SelectionSet As AcadSelectionSet, _

FilterCode As Integer, _

FilterValue As String) As Boolean

Dim intFilterCode(0) As Integer

Dim varFilterValue(0) As Variant

'assume success

CreateSelectionSet = True

intFilterCode(0) = FilterCode

varFilterValue(0) = FilterValue

SelectionSet.Select acSelectionSetAll, , , intFilterCode, varFilterValue

If SelectionSet.Count < 1 Then

CreateSelectionSet = False

End If

End Function

Next, you are ready to generate the selection set and populate the Components collection
with each Component within the selection set. Basically, the routine will generate a selection set

CHAPTER 20 ■ CREATING TABLES 423

5793c20_final.qxd 8/22/05 1:46 AM Page 423

and then iterate through the selection set looking for block insertions that contain attributes.
These attributes were predefined and match the criteria for a Component object. If you needed
something different, you would change these definitions to meet your own requirements. Each
block insertion with attributes is then added to the Components collection. If the Component exists
in the collection, then just the Count property is incremented. The following code wraps all this
functionality into a single routine called CreateBillOfMaterials:

Public Sub CreateBillOfMaterials()

Dim oSS As AcadSelectionSet

Dim oAttribute As AcadAttribute

Dim BlockRef As AcadBlockReference

Dim Index As Long

Dim Component As New Component

Dim Attribs As Variant

On Error Resume Next

ThisDrawing.SelectionSets("Inserts").Delete

On Error GoTo 0

Set oSS = ThisDrawing.SelectionSets.Add("Inserts")

'zero the Components class object

Set Components = Nothing

'create a selection set of BlockRefs

If CreateSelectionSet(oSS, Entity, "INSERT") Then

For Index = 0 To oSS.Count - 1

Set BlockRef = oSS(Index)

If BlockRef.HasAttributes Then

Attribs = BlockRef.GetAttributes

On Error Resume Next

Set Component = Components(Attribs(0).TextString)

If Err Then

Err.Clear

On Error GoTo 0

With Component

.Count = 1

.PartNumber = Attribs(0).TextString

.Description = Attribs(1).TextString

End With

Components.Add Component, Component.PartNumber

CHAPTER 20 ■ CREATING TABLES424

5793c20_final.qxd 8/22/05 1:46 AM Page 424

Else

Components(Attribs(0).TextString).Count = _

Components(Attribs(0).TextString).Count + 1

End If

Set Component = Nothing

End If

Next Index

End If

'create the table on the drawing

CreateTableBOM

End Sub

Notice the last statement in the CreateBillOfMaterials routine. This is the routine you
will use to actually create the table on the drawing and populate its contents with the data
you generated using the following CreateBillOfMaterials routine:

Private Sub CreateTableBOM()

Dim vInsertionPoint As Variant

Dim lNumberOfRows As Long

Dim lNumberOfColumns As Long

Dim dRowHeight As Double

Dim dColumnWidth As Double

Dim oTable As AcadTable

Dim Row As Long

Dim Column As Long

On Error Resume Next

With ThisDrawing.Utility

vInsertionPoint = .GetPoint(, vbCr & "Pick the insertion point: ")

End With

If Err Then Exit Sub

lNumberOfRows = Components.Count + 1

lNumberOfColumns = 3

dRowHeight = 0.25

dColumnWidth = 2

Set oTable = ThisDrawing.ModelSpace.AddTable(vInsertionPoint, _

lNumberOfRows, lNumberOfColumns, dRowHeight, dColumnWidth)

'put in the header row

oTable.SetText Row, Column, "Parts List"

CHAPTER 20 ■ CREATING TABLES 425

5793c20_final.qxd 8/22/05 1:46 AM Page 425

For Row = 1 To Components.Count

With Components(Row)

oTable.SetText Row, Column, .PartNumber

Column = Column + 1

oTable.SetText Row, Column, .Description

Column = Column + 1

oTable.SetText Row, Column, .Count

End With

'reset column back to zero

Column = 0

Next Row

'adjust the Description column width

oTable.SetColumnWidth 1, 6

End Sub

Executing the code presented, you will be asked to select a location for the table. By default,
the table will be created in an upper-left to lower-right direction. So, the point you select consti-
tutes the upper-left corner of your bill of materials table, as shown in Figure 20-5.

Summary
In this chapter I discussed how to create a table. Additionally, I gave examples of adding
and manipulating text and introduced how to insert rows and columns and manipulate
their appearance. In addition, I explained how and when to regenerate the table contents.
Finally, you looked at how to put all you learned in this chapter to good use by creating a
bill of materials on a drawing.

CHAPTER 20 ■ CREATING TABLES426

Figure 20-5. Creating a bill of materials

5793c20_final.qxd 8/22/05 1:46 AM Page 426

The SummaryInfo Object

AutoCAD 2005 introduces the means for creating and storing properties of a drawing. Author,
title, subject, and other information may be added, queried, and manipulated. Users can manip-
ulate the standard built-in drawing properties or create custom properties specific to their needs.
You may access and manipulate this feature from a command prompt, a GUI interface, or pro-
grammatically. The command interface is DWGPROPS, which displays a dialog form for adding and
changing drawing properties, as shown in Figure 21-1.

This dialog is accessible in AutoCAD through the File ➤ Drawing Properties menu item.
To support these features programmatically Autodesk added a new object called

SummaryInfo. This object allows you to add, change, and manipulate various built-in
drawing properties as well as create your own custom properties.

427

C H A P T E R 2 1

■ ■ ■

Figure 21-1. Drawing properties

5793c21_final.qxd 8/22/05 1:43 AM Page 427

Overview
The following example illustrates using the AddCustomInfo method and setting properties of
the SummaryInfo object to manipulate standard built-in drawing properties and create custom
properties:

Public Sub TestSummaryInfoObject()

With ThisDrawing.SummaryInfo

.Author = "Joe Sutphin"

.RevisionNumber = "3"

.Subject = "The Flying Delorean Project"

.Title = "Flux Capacitor"

.AddCustomInfo "ItemNo", "11051955"

End With

End Sub

Figure 21-2 illustrates the resulting DWGPROPS dialog box when you execute the code in the
preceding example above. Note the added custom property ItemNo.

Properties
The rest of this chapter will outline how to manipulate standard built-in properties and how to
create your own custom properties as you did with the preceding code.

The Author Property
The Author property specifies the drawing author’s name:

object.Author

Table 21-1 shows the Author property’s parameter.

CHAPTER 21 ■ THE SUMMARYINFO OBJECT428

Figure 21-2. Summary and custom property views

5793c21_final.qxd 8/22/05 1:43 AM Page 428

Table 21-1. The Author Property Parameter

Name Returns Description

Author String; read-write The drawing author’s name

Here’s an example of setting the Author property:

ThisDrawing.SummaryInfo.Author = "Joe Sutphin"

The RevisionNumber Property
The RevisionNumber property specifies a revision level for the drawing:

object.RevisionNumber

Table 21-2 shows the RevisionNumber property’s parameters.

Table 21-2. The RevisionNumber Property Parameter

Name Returns Description

RevisionNumber String; read-write The drawing’s revision level

Here’s an example of setting the RevisionNumber property:

ThisDrawing.SummaryInfo.RevisionNumber = "1"

The following example illustrates incrementing the RevisionNumber property. The code
is written so that you do not need to concern yourself with whether the previous revision was
numeric or alphabetic.

ThisDrawing.SummaryInfo.RevisionNumber = _

Chr(Asc (ThisDrawing.SummaryInfo.RevisionNumber) + 1)

The result of executing the code will be to set the RevisionNumber property to one greater
than its previous value. If it was set to 1 initially, for example, it will now be 2. If it were set to B
it would now be C, and so on.

The Subject Property
The Subject property specifies a subject for the drawing:

object.Subject

Table 21-3 shows the Subject property’s parameter.

Table 21-3. The Subject Property Parameter

Name Returns Description

Subject String; read-write The drawing’s subject

CHAPTER 21 ■ THE SUMMARYINFO OBJECT 429

5793c21_final.qxd 8/22/05 1:43 AM Page 429

Here’s an example of setting the Subject property:

ThisDrawing.SummaryInfo.Subject = "The Flying DeLorean Project"

The Title Property
The Title property specifies a title for the drawing:

object.Title

Table 21-4 shows the Title property’s parameter.

Table 21-4. The Title Property Parameter

Name Returns Description

Title String; read-write The drawing’s title

Here’s an example of setting the Title property:

ThisDrawing.SummaryInfo.Title = "Flux Capacitor"

Adding Custom SummaryInfo
Although the standard SummaryInfo property offerings may be adequate for some users, others
will inevitably need additional properties added to the drawing. In this section I will present
the methods to add custom properties in the SummaryInfo object.

The AddCustomInfo Method
Use the AddCustomInfo method to create a custom property within your drawing. The
AddCustomInfo method returns nothing, and has the following syntax:

object.AddCustomInfo Key, Value

Table 21-5 details this method’s parameters.

Table 21-5. AddCustomInfo Method Parameters

Name Returns Description

Key String The name for the custom property

Value String The value for the custom property

The following example illustrates adding a custom property called Key0, which can repre-
sent any value you desire.

CHAPTER 21 ■ THE SUMMARYINFO OBJECT430

5793c21_final.qxd 8/22/05 1:43 AM Page 430

Public Sub TestAddCustomInfo()

Dim Key0 As String

Dim Value0 As String

Key0 = "Test1Key": Value0 = "Test1Value"

ThisDrawing.SummaryInfo. AddCustomInfo Key0, Value0

End Sub

You can view custom properties by clicking File ➤ Drawing Properties, then selecting the
Custom tab to display the dialog shown in Figure 21-3.

The GetCustomByKey Method
Use the GetCustomByKey method to retrieve the custom properties set in the drawing. The
GetCustomByKey method returns nothing, and has the following syntax:

object.GetCustomByKey Key, Value

Table 21-6 details this method’s parameters.

Table 21-6. GetCustomByKey Method Parameters

Name Data Type Description

Key String The name of the custom property to get

Value String The value of the custom property

CHAPTER 21 ■ THE SUMMARYINFO OBJECT 431

Figure 21-3. Custom property entry

5793c21_final.qxd 8/22/05 1:43 AM Page 431

The following example illustrates retrieving a custom property called Key0:

Public Sub TestGetCustomInfo()

Dim Key0 As String

Dim Value0 As String

ThisDrawing.SummaryInfo. GetCustomByKey Key0, Value0

End Sub

The NumCustomInfo Method
To iterate through all the custom property fields set in a drawing you will need to know how
many fields there are in the drawing. The NumCustomInfo method returns that value. The method
has no parameters, but has the following syntax:

RetVal = object.NumCustomInfo

Table 21-7. NumCustomInfo Method

Name Data Type Description

RetVal Long The number of custom property fields defined in this drawing

The following example illustrates using the NumCustomInfo method and the GetCustomByIndex
method (discussed next) to iterate through each custom property field defined in the drawing:

Public Sub TestGetCustomByIndex()

Dim Index As Long

Dim CustomKey As String

Dim CustomValue As String

'iterate all custom properties of drawing

For Index = 0 To ThisDrawing.SummaryInfo.NumCustomInfo - 1

ThisDrawing.SummaryInfo.GetCustomByIndex Index, CustomKey, CustomValue

MsgBox "Key = " & CustomKey & vbCrLf & _

"Value = " & CustomValue

Next Index

End Sub

The GetCustomByIndex Method
This method retrieves the custom property field and value based upon an index value. The
method returns nothing, and has the following syntax:

object.GetCustomByIndex Index, Key, Value

Table 21-8 details this method’s parameters.

CHAPTER 21 ■ THE SUMMARYINFO OBJECT432

5793c21_final.qxd 8/22/05 1:43 AM Page 432

Table 21-8. GetCustomByIndex Method Parameters

Name Data Type Description

Index Long The index value of the custom property field; this index can be from
zero to the number of custom properties minus one.

Key String The name of the custom property to get.

Value String The variable to hold the value of the custom property.

The RemoveCustomByKey Method
Use the RemoveCustomByKey to remove a custom property set in the drawing using a key or
string value. The RemoveCustomByKey method returns nothing, and has the following syntax:

object.RemoveCustomByKey Key

Table 21-9 details this method’s single parameter.

Table 21-9. The RemoveCustomByKey Method Parameter

Name Data Type Description

Key String The name of the custom property to remove

The following example illustrates removing a custom property called Key0:

Public Sub TestRemoveCustomInfoByKey()

ThisDrawing.SummaryInfo. RemoveCustomByKey "Key0"

End Sub

The RemoveCustomByIndex Method
Use RemoveCustomByIndex to remove a custom property set in the drawing using a numeric
index value. The RemoveCustomByIndex method returns nothing, and has the following syntax:

object.RemoveCustomByKey Index

Table 21-10 details this method’s single parameter.

Table 21-10. The RemoveCustomByIndex Method Parameter

Name Data Type Description

Index Long The index value of the property to remove; the acceptable range of
values is from zero to the number of custom properties minus one.

The following example illustrates removing the third custom property set in the drawing:

Public Sub TestRemoveCustomInfoByIndex()

ThisDrawing.SummaryInfo. RemoveCustomByIndex 2

End Sub

CHAPTER 21 ■ THE SUMMARYINFO OBJECT 433

5793c21_final.qxd 8/22/05 1:43 AM Page 433

The SetCustomByKey Method
Use the SetCustomByKey method to change the custom properties set in the drawing. The
SetCustomByKey method returns nothing, and has the following syntax:

object.SetCustomByKey Key, Value

Table 21-11 details this method’s parameters.

Table 21-11. SetCustomByKey Method Parameters

Name Data Type Description

Key String The name of the custom property to set

Value String The value of the custom property

The following example illustrates changing a custom property called Key0:

Public Sub TestSetCustomInfo()

Dim Value0 As String

Value0 = "NewValue"

ThisDrawing.SummaryInfo. SetCustomByKey Key0, Value0

End Sub

The SetCustomByIndex Method
This method sets the custom property field and value based upon an index value. The method
returns nothing, and has the following syntax:

object.SetCustomByIndex Index, Key, Value

Table 21-12 details this method’s parameters.

Table 21-12. SetCustomByIndex Method Parameters

Name Data Type Description

Index Long The index value of the custom property field; this index can be from
zero to the number of custom properties minus one.

Key String The name of the custom property to get.

Value String The variable to hold the value of the custom property.

The following example illustrates iterating through all the custom property fields and
changing each custom property field using an index:

CHAPTER 21 ■ THE SUMMARYINFO OBJECT434

5793c21_final.qxd 8/22/05 1:43 AM Page 434

Public Sub TestSetCustomByIndex()

Dim Index As Long

Dim CustomKey As String

Dim CustomValue As String

'iterate all custom properties of drawing

For Index = 0 To ThisDrawing.SummaryInfo.NumCustomInfo - 1

ThisDrawing.SummaryInfo.GetCustomByIndex Index, CustomKey, CustomValue

MsgBox "Key = " & CustomKey & vbCrLf & _

"Value = " & CustomValue

Next Index

End Sub

Summary
This chapter provided an overview of the various features and capabilities of the SummaryInfo
object. We covered changing the standard built-in properties and creating and manipulating
your own custom properties.

CHAPTER 21 ■ THE SUMMARYINFO OBJECT 435

5793c21_final.qxd 8/22/05 1:43 AM Page 435

5793c21_final.qxd 8/22/05 1:43 AM Page 436

An Illustrative VBA Application

In this chapter we will develop a real-life application involving the use of AutoCAD and Micro-
soft Word. Executed from AutoCAD, this application will accomplish the following list of tasks:

• Open Microsoft Word.

• Create a new document.

• Create a table with the appropriate number of columns.

• Make adjustments to various table parameters.

• Fill the table with AutoCAD layer data.

Additionally, many small details not in the list will be explained throughout this chapter. Our
goal is to finish with an application that has a user interface like the one shown in Figure 22-1,
and an output like that shown in Figure 22-2.

437

C H A P T E R 2 2

■ ■ ■

Figure 22-1. A sample user interface

Figure 22-2. Sample output

5793c22_final.qxd 8/22/05 1:40 AM Page 437

Reporting on the layers and their settings is a fairly common requirement, especially if
you work with clients. Many times the customer wants something with a specific format and
typeface. This chapter will give you the skills to further develop the application into exactly
what your clients desire.

Start Building the Application
Since this is just a simple automation-style project, I am not going to discuss all the theoretical
implications of software design, or patterns, or any of that other boring stuff. We are going to
do what most AutoCAD developers do—write code.

First, as you noticed in Figure 22-1 this application will be form-based, so you need to
design a form. Make sure your form includes two CommandButtons, a ComboBox, and a Checkbox.
The Frame isn’t required but improves the form’s aesthetics. I like to use names for my controls
that make sense, like cmdCreateLayerReport instead of CommandButton1. So, rename your con-
trols to those listed in Table 22-1.

Table 22-1. Default Control Names and Their New Names

Default Name Rename To

ComboBox1 cboDrawingName

CommandButton1 cmdCreateLayerReport

CommandButton2 cmdPrintLayerReport

CheckBox1 chkSorted

Next you need to add a reference to the Microsoft Word Object Library. Locate it in the
Available References dialog on the Tools pull-down, check its box, and press OK. Be sure to
save your work frequently. The visual portion of this project is now complete. As you can see,
the user interface is rather simple. However, the code behind the scenes is a bit more complex.

Writing the Code
This section will lay out the details to accomplish our task of creating a Microsoft Word–based
report of the layers defined within a particular AutoCAD drawing.

Initial Declarations
Create a standard .bas module. In this module you will declare global variables for use
throughout the application. The following code should get you started with the application:

Public mobjWord As Word.Application

Public mobjDoc As Word.Document

Public mobjTable As Word.Table

Next, you want to populate the Open Drawings combo box list with the names of all the
drawings open in the current session and make the current selection that of the active docu-
ment by default. Place the following code in the Userform_Initialize event routine:

CHAPTER 22 ■ AN ILLUSTRATIVE VBA APPLICATION438

5793c22_final.qxd 8/22/05 1:40 AM Page 438

Dim oDocument As AcadDocument

For Each oDocument In Application.Documents

cboDrawingName.AddItem oDocument.Name

Next oDocument

'set the starting list value to active document

Dim Index As Long

For Index = 0 To cboDrawingName.ListCount - 1

With cboDrawingName

.ListIndex = Index

If .List(.ListIndex) = Application.ActiveDocument.Name Then

Exit For

End If

End With

Next Index

If you were to execute your application with just what you have done up to this point and
with several drawings open, you would get a dialog box similar to Figure 22-3 when you click
the down arrow on the Open Drawings combo box:

At this point the user would be able to create a
layer report for the currently active document or
pick from any of the other open drawings. Next, you
want to actually create the layer report using the fol-
lowing list as a guide:

• Create a session of Microsoft Word.

• Create a new document in Word.

• Create a table within the Word document.

• Populate the table with AutoCAD layer data.

While this seems like a simple list of tasks to
accomplish, you’ll need to attend to numerous details if you want your layer report to look
professional. When the user clicks on the Create Layer Report button, the series of events out-
lined in the following sections will occur.

■Note The following lines of code go in the cmdCreateLayerReport_Click event routine.

Create a Session of Microsoft Word
This application uses automation with Microsoft Word for formatted printing purposes. To use
Word you must first connect or instantiate a running instance of Microsoft Word, as illustrated
in the following:

Set mobjWord = CreateObject("Word.Application")

CHAPTER 22 ■ AN ILLUSTRATIVE VBA APPLICATION 439

Figure 22-3. Layer Reporter main
dialog box

5793c22_final.qxd 8/22/05 1:40 AM Page 439

Simply instantiating Microsoft Word does not make it visible, however. You must make it
visible manually by setting the object’s Visible property to True:

mobjWord.Visible = True

Create a New Document in Word
With an instance of Microsoft Word now running, create a new document:

Set mobjDoc = mobjWord.Documents.Add

Create a Table with the Word Document
Inside your newly created document you want to create a table. First, determine how many
columns are needed. Table 22-2 outlines the various columns you want to represent in your
table:

Table 22-2. Layer States Being Reported

Heading Description

On Determines if the layer is on or off

Frozen Determines if the layer is frozen or thawed

Locked Determines if the layer is locked or unlocked

Color Layer color

Linetype Layer linetype

Lineweight Layer lineweight

Style Layer plot style

Plot Determines if the layer will be plotted

Nine columns of data and the number of layers within the drawing will control the size of
the table, as illustrated in the following:

Set mobjTable = mobjWord.ActiveDocument.Tables.Add _

(mobjWord.ActiveDocument.Range, _

Application.Documents(cboDrawingName.Text).Layers.Count + 1, 9)

Notice the row count (the number of layers within the drawing) is the layer count plus
one. This extra row will be used to place a column header in our report.

Create Column Headings
With a column created for each piece of data we want to represent in the table, you want to
identify each column with a header using the following code example:

CHAPTER 22 ■ AN ILLUSTRATIVE VBA APPLICATION440

5793c22_final.qxd 8/22/05 1:40 AM Page 440

Dim lngRow As Long

Dim lngColumn As Long

'row counter must begin at 1

lngRow = 1

'column counter must begin at 1

lngColumn = 1

With mobjTable

.Cell(lngRow, lngColumn).Range.Text = "Name"

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = "On"

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = "Frozen"

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = "Locked"

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = "Color"

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = "Linetype"

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = "Lineweight"

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = "Style"

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = "Plottable"

End With

Populate the Table with AutoCAD Layer Data
Placing the layer data contained in the drawing is the core functionality of the entire applica-
tion. The following code accomplishes that task by iterating through the AutoCAD Layers
collection and placing each layer and its associated data in a single row of the table, as shown
in Figure 22-2.

'increment the row counter

lngRow = lngRow + 1

'column must begin at 1

lngColumn = 1

Dim objLayer As AcadLayer

CHAPTER 22 ■ AN ILLUSTRATIVE VBA APPLICATION 441

5793c22_final.qxd 8/22/05 1:40 AM Page 441

'put layer data in table

For Each objLayer In Application.Documents(cboDrawingName.Text).Layers

With mobjTable

.Cell(lngRow, lngColumn).Range.Text = objLayer.Name

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = ConvertToWord(objLayer.LayerOn)

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = ConvertToWord(objLayer.Freeze)

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = ConvertToWord(objLayer.Lock)

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = ConvertColorToString(objLayer.Color)

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = objLayer.Linetype

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = ConvertLineweight(objLayer.Lineweight)

lngColumn = lngColumn + 1

If ThisDrawing.Application.Preferences.Output.PlotPolicy Then

.Cell(lngRow, lngColumn).Range.Text = "ByColor"

Else

.Cell(lngRow, lngColumn).Range.Text = objLayer.PlotStyleName

End If

lngColumn = lngColumn + 1

.Cell(lngRow, lngColumn).Range.Text = ConvertToWord(objLayer.Plottable)

'increment the row counter

lngRow = lngRow + 1

'column counter must begin at 1

lngColumn = 1

End With

Next objLayer

Helper Functions
If you were impatient and attempted to run the preceding code you undoubtedly saw all the
errors generated by missing functions. Instead of writing a 0 or a 1 for a No or Yes value, you
want to use the actual words No and Yes. Also, you want to convert the color numbers returned
by AutoCAD to the actual color name for the first nine colors. Lastly, you want to convert the
lineweight integer values returned by AutoCAD to something more meaningful, like ByBlock
and ByLayer.

CHAPTER 22 ■ AN ILLUSTRATIVE VBA APPLICATION442

5793c22_final.qxd 8/22/05 1:40 AM Page 442

ConvertColorToString Function
Public Function ConvertColorToString(Color As Integer) As String

Select Case Color

Case 0

ConvertColorToString = "ByBlock"

Case 1

ConvertColorToString = "Red"

Case 2

ConvertColorToString = "Yellow"

Case 3

ConvertColorToString = "Green"

Case 4

ConvertColorToString = "Cyan"

Case 5

ConvertColorToString = "Blue"

Case 6

ConvertColorToString = "Magenta"

Case 7

ConvertColorToString = "White"

Case 256

ConvertColorToString = "ByLayer"

Case Else

ConvertColorToString = CStr(Color)

End Select

End Function

ConvertLineweight Function
Public Function ConvertLineweight(Lineweight As Integer) As String

Select Case Lineweight

Case acLnWtByBlock

ConvertLineweight = "ByBlock"

Case acLnWtByLayer

ConvertLineweight = "ByLayer"

Case acLnWtByLwDefault

ConvertLineweight = "Default"

Case Else

ConvertLineweight = Format(Lineweight / 100, "#.00") & "mm"

End Select

End Function

CHAPTER 22 ■ AN ILLUSTRATIVE VBA APPLICATION 443

5793c22_final.qxd 8/22/05 1:40 AM Page 443

ConvertToWord Function
Public Function ConvertToWord(Value As Boolean) As String

Select Case Value

Case acTrue

ConvertToWord = "Yes"

Case acFalse

ConvertToWord = "No"

End Select

End Function

Each of the conversions used in this application are performed by one of the helper functions.
You need to include these functions in your standard .bas module created earlier in this exercise.

Adjust the Fonts
You can adjust the fonts used in the report to any font available within Microsoft Word. The
following example demonstrates changing the Normal, Header, Footer, and Page Number
sections’ font to Tahoma and various font sizes:

■Note You’ll add the following code snippets to the cmdCreateLayerReport_Click event routine.

With mobjWord.ActiveDocument

'set text font and size for each section

.Styles("Normal").Font.Name = "Tahoma"

.Styles("Normal").Font.Size = "8"

.Styles("Header").Font.Name = "Tahoma"

.Styles("Header").Font.Size = "9"

.Styles("Header").Font.Bold = True

.Styles("Footer").Font.Name = "Tahoma"

.Styles("Footer").Font.Size = "9"

.Styles("Footer").Font.Italic = True

.Styles("Page Number").Font.Name = "Tahoma"

.Styles("Page Number").Font.Size = "11"

.Styles("Page Number").Font.Bold = True

End With

Sort the Table
Your client may request the list of layers to be sorted. The Microsoft Word Table object pro-
vides a method to accomplish this task, as shown in the following code, based upon whether
the user selected the Sorted option in the dialog box:

CHAPTER 22 ■ AN ILLUSTRATIVE VBA APPLICATION444

5793c22_final.qxd 8/22/05 1:40 AM Page 444

If chkSorted.Value Then

'sort the table of layers

With mobjTable

.Select

.Sort ExcludeHeader:=True, FieldNumber:="Column 1", SortFieldType _

:=wdSortFieldAlphanumeric, SortOrder:=wdSortOrderAscending

End With

End If

As you might imagine, you can sort any column in either ascending or descending order,
adding flexibility to your layer reporting tool. In the preceding example, the Name column is
sorted in ascending order.

Autofit Column Text
With all the data in each column and row, you want to adjust the table for the longer strings in
each column. Microsoft Word provides an AutoFit method on the Table object to allow for
autofitting the width of the column to the longest data string in each column.

With mobjTable

.AutoFitBehavior wdAutoFitContent

.Columns(1).AutoFit 'Layer name

.Columns(2).AutoFit 'Off/On status

.Columns(3).AutoFit 'Frozen/Thawed status

.Columns(4).AutoFit 'Locked/Unlocked status

.Columns(5).AutoFit 'Layer color

.Columns(6).AutoFit 'Layer linetype

.Columns(7).AutoFit 'Layer lineweight

.Columns(8).AutoFit 'Layer Plot style

.Columns(9).AutoFit 'Plot this layer?

End With

Add Page Header and Footer
A page header and footer allow you to add some other useful information, such as the path
of the drawing or the report creation date. The example illustrates adding a page header and
footer to our report.

With mobjDoc

'set the document header

.Sections(1).Headers(wdHeaderFooterPrimary).Range.Text = _

"Layer Report for " & Application.Documents(cboDrawingName.Value).Path _

& "\" & Application.Documents(cboDrawingName.Value).Name

'set the document footer

.Sections(1).Footers(wdHeaderFooterPrimary).Range.Text = _

"Date Created: " & Date & vbTab & "Total # of Layers: " &_

Application.Documents(cboDrawingName.Value).Layers.Count

.Sections(1).Footers(wdHeaderFooterPrimary).PageNumbers.Add _

wdAlignPageNumberRight

End With

CHAPTER 22 ■ AN ILLUSTRATIVE VBA APPLICATION 445

5793c22_final.qxd 8/22/05 1:40 AM Page 445

Print the Report
After all the complexity you have endured up to this point, you deserve a break. The act
of printing out the report you just created requires simply a single line of code in the
cmdPrintLayerReport_Click event routine:

mobjWord.ActiveDocument.PrintOut

Summary
In this chapter we have successfully built a layer reporting application using AutoCAD and
Microsoft Word. The chapter demonstrated a lot of functionality and should serve as an excellent
starting point for your own automation project. I hope this chapter will serve as an inspiration to
delve into what is possible using the automation tools at your disposal.

CHAPTER 22 ■ AN ILLUSTRATIVE VBA APPLICATION446

5793c22_final.qxd 8/22/05 1:40 AM Page 446

AutoCAD Object Summary

This appendix contains a reference to the full AutoCAD object model. The first part of the
appendix provides information about properties, methods, and events that are common to
a number of the AutoCAD objects. The second and major part of the appendix explains the
methods, properties, and events of each object and collection in alphabetical order.

AutoCAD Collections
The AutoCAD object model has the following collections:

AcadBlock AcadModelSpace

AcadBlocks AcadPaperSpace

AcadDictionaries AcadPlotConfigurations

AcadDictionary AcadPopupMenu

AcadDimStyles AcadPopupMenus

AcadDocuments AcadRegisteredApplications

AcadFileDependencies AcadSelectionSet

AcadGroup AcadSelectionSets

AcadGroups AcadTextStyles

AcadHyperlinks AcadToolbar

AcadLayers AcadToolbars

AcadLayouts AcadUCSs

AcadLineTypes AcadViewports

AcadMenuBar AcadViews

AcadMenuGroups

447

A P P E N D I X A

■ ■ ■

5793appA_final.qxd 8/22/05 1:35 AM Page 447

Common Collection Methods
All the collections in the AutoCAD object model support the Item method, which is used to
select an item from the collection.

Name Returns Description

Item Object Returns the object at the given index in the collection. Parameter: Index
As Variant (Integer or String). If the Index value is a String, it must match
an existing object’s name.

Common Collection Property
All collections in the AutoCAD object model support the following property.

Name Returns Description

Count Long Gets the number of items in the collection.

The Application Property
Just one property is common to all the objects in the AutoCAD object model: the Application
property.

Name Returns Description

Application AcadApplication Gets the AcadApplication object, which represents the appli-
cation’s frame controls and path settings and provides the
means to navigate down the object hierarchy. This prop-
erty’s value is read-only.

The AcadObject Object
This object represents methods and properties common to the following objects:

APPENDIX A ■ AUTOCAD OBJECT SUMMARY448

Acad3DFace

Acad3DPolyline

Acad3DSolid

AcadArc

AcadAttribute

AcadAttributeReference

AcadBlock

AcadBlockReference

AcadBlocks

AcadCircle

AcadDictionaries

AcadDictionary

AcadDim3PointAngular

AcadDimAligned

AcadDimAngular

AcadDimArcLength

AcadDimDiametric

AcadDimension

AcadDimOrdinate

AcadDimRadial

5793appA_final.qxd 8/22/05 1:35 AM Page 448

AcadDimRadialLarge

AcadDimRotated

AcadDimStyle

AcadDimStyles

AcadDynamicBlockReferenceProperty

AcadEllipse

AcadEntity

AcadExternalReference

AcadGroup

AcadGroups

AcadHatch

AcadLayer

AcadLayers

AcadLayout

AcadLayouts

AcadLeader

AcadLine

AcadLineType

AcadLineTypes

AcadLWPolyline

AcadMInsertBlock

AcadMLine

AcadModelSpace

AcadMText

AcadOle

AcadPaperSpace

AcadPlotConfiguration

AcadPlotConfigurations

AcadPoint

AcadPolyfaceMesh

AcadPolygonMesh

AcadPolyline

AcadPViewport

AcadRasterImage

AcadRay

AcadRegion

AcadRegisteredApplication

AcadRegisteredApplications

AcadShape

AcadSolid

AcadSortentsTable

AcadSpline

AcadTable

AcadTableStyle

AcadText

AcadTextStyle

AcadTextStyles

AcadTolerance

AcadTrace

AcadUCS

AcadUCSs

AcadView

AcadViewport

AcadViewports

AcadViews

AcadXLine

AcadXRecord

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 449

5793appA_final.qxd 8/22/05 1:35 AM Page 449

Common AcadObject Methods
The following table presents common AcadObject methods.

Name Description

Delete Deletes a specified object. If an object in a collection is deleted, all
the remaining items are reassigned a new index based on the current
count. Note that you can’t delete collections, so you can’t use this
method for collections without creating an error.

GetExtensionDictionary Returns AcadDictionary and gets the extension dictionary associated
with an object. If an object doesn’t have an extension dictionary, this
method will create one for that object and return it.

GetXData Gets the extended data (XData), that is, instance-specific data, asso-
ciated with an object. A NULL string value for the AppName parameter
will return all the data attached to the object, regardless of the appli-
cation that created it. Supplying an application name will return only
the data that was created by the specified application. Parameters:
AppName As String, XDataType As Variant (array of Integers), and
XDataValue As Variant (array of Variants).

SetXData Sets the extended data (XData), that is, instance-specific data associ-
ated with an object. Parameters: XDataType As Variant (array of
Integers) and XDataValue As Variant (array of Variants).

Common AcadObject Properties
The following table presents common AcadObject properties.

Name Returns Description

Application Object Gets the Application object. This property’s value is
read-only. The Application object represents the applica-
tion’s frame controls and path settings and provides the
means to navigate down the object hierarchy.

Document Object Gets the document or drawing in which the object
belongs. This property’s value is read-only.

Handle String Gets the handle of an object. This property’s value is
read-only. An object ID and a handle are the two ways of
referencing an object. A handle stays the same in a draw-
ing for the lifetime of the object.

HasExtensionDictionary Boolean Determines whether the object has an extension diction-
ary associated with it. This property’s value is read-only.

ObjectID Integer Gets the object ID of the object. This property’s value is
read-only. You can use an object ID or a handle to refer-
ence an object. It’s better to use a handle unless you plan
to work with certain ObjectARX functions that require an
object ID.

ObjectName String Gets the AutoCAD class name of the object. This prop-
erty’s value is read-only.

OwnerID Integer Gets the object ID of the owner (i.e., the parent object).
This property’s value is read-only.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY450

5793appA_final.qxd 8/22/05 1:35 AM Page 450

Common AcadObject Event
Apart from the AcadApplication and AcadDocument objects, which expose a variety of events,
AutoCAD provides only one other event, the Modified event. This event is common to all the
objects listed previously. When coding in VBA, you must provide an event handler for all
objects enabled for the Modified event; otherwise, your application may crash. No events are
fired while a modal dialog box is displayed.

Event Description

Modified Triggered whenever an object is modified. Note that setting the value of a property
even if that value remains unchanged is considered to be a modification. Parameter:
Entity As AcadEntity, the object in the drawing that is modified. The AcadEntity
object is covered in the next section.

The AcadEntity Object
The AcadEntity object represents a generic object that exposes all the methods and properties
common to a set of AutoCAD objects known as the Drawing Objects. These objects, which define
all the drawing capabilities (including drawing planar and solid objects, inserting text and hyper-
links, and linking external documents) are as follows:

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 451

Acad3DFace

Acad3DPolyline

Acad3DSolid

AcadArc

AcadAttribute

AcadAttributeReference

AcadBlockReference

AcadCircle

AcadDim3PointAngular

AcadDimAligned

AcadDimAngular

AcadDimArcLength

AcadDimDiametric

AcadDimension

AcadDimOrdinate

AcadDimRadial

AcadDimRadialLarge

AcadDimRotated

AcadEllipse

AcadEntity

AcadExternalReference

AcadHatch

AcadLeader

AcadLine

AcadLWPolyline

AcadMInsertBlock

AcadMLine

AcadMText

AcadOle

AcadPoint

AcadPolyfaceMesh

AcadPolygonMesh

AcadPolyline

AcadPViewport

5793appA_final.qxd 8/22/05 1:35 AM Page 451

AcadRasterImage

AcadRay

AcadRegion

AcadShape

AcadSolid

AcadSpline

AcadTable

AcadText

AcadTolerance

AcadTrace

AcadXline

APPENDIX A ■ AUTOCAD OBJECT SUMMARY452

Common AcadEntity Methods
In addition to the methods inherited from the AcadObject object, the AcadEntity object sup-
ports the following methods.

Name Returns Description

ArrayPolar Variant Creates an array of selected objects in a polar pattern. The distance is deter-
mined from the array’s center point to a reference point on the last object
selected, which in turn depends on the type of object previously selected.
AutoCAD uses the center point of a circle or arc, the insertion point of a
block or shape, the start point of text, and one end point of a line or trace.
Note that you can’t use this method for the AcadAttributeReference object.
Note also that you can’t use this method while iterating through a collec-
tion. Parameters: NumberOfObjects As Integer, AngleToFill As Double,
and CenterPoint As Variant.
The NumberOfObjects parameter specifies the number of objects to be
created in the polar array. This must be a positive integer greater than 1.
The AngleToFill parameter specifies the angle to fill in radians. A posi-
tive value indicates counterclockwise rotation. This parameter can’t be
equal to 0.
The CenterPoint parameter specifies the 3-D WCS coordinates indicat-
ing the center point for the polar array.

ArrayRectangular Variant Creates an array of selected objects in a rectangular pattern. AutoCAD
builds the rectangular array along a baseline defined by the current
snap rotation angle, which is 0 by default. Note that you can’t use this
method for the AcadAttributeReference object. Note also that you can’t
use this method while iterating through a collection. Parameters:
NumberOfRows As Integer, NumberOfColumns As Integer,
NumberOfLevels As Integer, DistBetweenRows As Double,
DistBetweenCols As Double, and DistBetweenLevels As Double.
The NumberOfRows parameter specifies the number of rows in the rectan-
gular array. This must be a positive number. If NumberOfColumns is 1,
then NumberOfRows must be greater than 1.
The NumberOfColumns parameter specifies the number of columns in the
rectangular array. This must be a positive number. If NumberOfRows is 1,
then NumberOfColumns must be greater than 1.
The NumberOfLevels parameter specifies the number of levels in a 3-D
array.
The DistBetweenRows parameter specifies the distance between the
rows. If positive, rows are added upward from the base entity; other-
wise, they’re added downward.
The DistBetweenCols parameter specifies the distance between the
columns. If positive, columns are added to the right of the base entity;
otherwise, they’re added to the left.
The DistBetweenLevels parameter specifies the distance between the

5793appA_final.qxd 8/22/05 1:35 AM Page 452

Name Returns Description

CopyObject Duplicates the given object to the same location. Note that you can’t use
this method for the AcadAttributeReference object. Note also that you
can’t use this method while iterating through a collection.

GetBoundingBox Gets two points of a box enclosing the specified object. Parameters:
MinPoint As Variant and MaxPoint As Variant (both of these are three-
element arrays of Doubles).

Highlight Sets the highlight status for the given object or for all objects in a given
selection set. Note that you’ll see the changes only once the drawing is
updated. Parameter: HighlightFlag As Boolean.

IntersectWith Variant Returns the points at which one object intersects another object in the
drawing as an array of Doubles. The object supplied as the parameter
can be any drawing object. However, this method isn’t supported by
the AcadPolygonMesh and AcadPViewport objects. Parameters:
IntersectObject As Object and option As AcExtendOption. For a list
of the values of the AcExtendOption enumerated type, see Appendix B.

MirrorObject Creates a mirror image copy of a planar object around an axis, defined
by two points. This method places the reflected image into the drawing
and retains the original object. To remove the original object, use the
Delete method. To manage the reflection properties of text objects, use
the MIRRTEXT system variable. Note that you can’t use this method for
the AcadAttributeReference object. Note also that you can’t use this
method while iterating through a collection. Parameters: Point1 As
Variant and Point2 As Variant.

Mirror3D Object Creates a mirror image copy of a planar object reflected in a plane,
defined by three points. AutoCAD checks to see whether the object to
be copied owns any other object. If it does, it performs a copy on those
objects as well. The process continues until all owned objects have been
copied. Note that you can’t use this method for the
AcadAttributeReference object. Note also that you can’t use this
method while iterating through a collection. Parameters: Point1 As
Variant, Point2 As Variant, and Point3 As Variant.

Move Moves an object along a vector, defined by two points. Parameters:
FromPoint As Variant and ToPoint As Variant.

Rotate Rotates an object around a base point. Parameters: BasePoint As
Variant and RotationAngle As Double. The RotationAngle parameter
should be specified in radians.

Rotate3D Rotates an object around an axis in 3-D space, defined by two points,
which become the axis of rotation. Parameters: Point1 As Variant,
Point2 As Variant, and RotationAngle As Double. The RotationAngle
parameter should be in radians.

ScaleEntity Scales an object equally in the X, Y, and Z directions. Parameters:
BasePoint As Variant and ScaleFactor As Double.
The BasePoint parameter is a set of 3-D WCS coordinates and is the
only common point in the original and scaled system.
The ScaleFactor parameter determines the level of scaling. A value
greater than 1 enlarges the object. A value between 0 and 1 shrinks the
object. The scale factor must be greater than 0.

TransformBy Moves, scales, and rotates an object given a 4×4 transformation matrix.
See the AutoCAD documentation for more information. Parameter:
TransformationMatrix As Variant (a 4×4 array of Doubles).

Update Updates the object to the drawing screen.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 453

5793appA_final.qxd 8/22/05 1:35 AM Page 453

Common AcadEntity Properties
In addition to the properties inherited from the AcadObject, the AcadEntity object supports
the following properties.

Name Returns Description

Color AcColor Gets or sets the color of an entity. For a list of possible val-
ues for the AcColor enumerated type, see Appendix B.

EntityName String Gets the class name of the object. Retained for backward
compatibility only. Use the VBA TypeName function instead.
This property’s value is read-only.

EntityType AcEntityName Gets the entity type of the object. Retained for backward
compatibility only. Use the VBA TypeOf keyword instead.
This property’s value is read-only. For a list of the values for
the AcEntityName enumerated type, see Appendix B.

Hyperlinks AcadHyperlinks Gets the AcadHyperlinks collection for an entity. This prop-
erty’s value is read-only.

Layer String Gets or sets the layer for an entity.

Linetype String Gets or sets the linetype of an entity.

LinetypeScale Double Gets or sets the linetype scale of an entity. The default value
is 1.0.

Lineweight AcLineWeight Gets or sets the lineweight of an individual entity or the
default lineweight for the drawing. For a list of possible val-
ues for the AcLineWeight enumerated type, see Appendix B.

PlotStyleName String Gets or sets the object’s plot-style name.

TrueColor AcCmColor Gets or sets the RGB color index, color name, or Pantone
color book settings.

Visible Boolean Specifies whether the object (or application) is visible.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimension Object
The AcadDimension object represents a generic object with a set of properties that are common
to the nine dimension objects, namely, the following:

APPENDIX A ■ AUTOCAD OBJECT SUMMARY454

AcadDim3PointAngular

AcadDimAligned

AcadDimAngular

AcadDimArcLength

AcadDimDiametric

AcadDimOrdinate

AcadDimRadial

AcadDimRadialLarge

AcadDimRotated

In addition, it inherits all the methods and properties of the AcadEntity and AcadObject
objects.

5793appA_final.qxd 8/22/05 1:35 AM Page 454

Common AcadDimension Properties
The AcadDimension object inherits all the properties of the AcadEntity and AcadObject objects,
as well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 455

Name Returns Description

DecimalSeparator String Gets or sets the character used as the decimal sepa-
rator for dimension values. The initial value for this
property is the period (.), though any character will
be accepted as a valid value for this property. Use
this property only when the UnitsFormat property
is set to acDimDecimal. This property overrides the
value of the DIMSEP system variable.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for
the dimension object.

Rotation Double Gets or sets the rotation angle (in radians) for the
dimension line, relative to the X-axis with positive
values going counterclockwise when viewed along
the Z-axis toward the origin.

ScaleFactor Double Gets or sets the object’s relative X scale factor. The
initial value for this property is 1.0000.

StyleName String Gets or sets the name of the object’s style. Use the
AcadDimStyle object to change the attributes of a
given dimension style. The name given must
already be defined in the drawing.

SuppressTrailingZeros Boolean Gets or sets whether leading/trailing zeros are sup-
pressed in the object’s values. It overrides the value
of the DIMZIN system variable. The initial value for
both these properties is False.

TextColor AcColor Gets or sets the color of the text. Use a color index
number from 0 to 256 or one of the constants listed
here: acByBlock (where AutoCAD draws objects in
the default color) or acByLayer (where AutoCAD
draws objects in the color specified for the layer).
For a list of possible values for the AcColor enumer-
ated type, see Appendix B.

TextGap Double Gets or sets the distance between the text and the
dimension line when the dimension line is broken
to make room for the text. A negative value creates
basic dimensioning, that is, dimension text with a
box around it. This property overrides the value of
the DIMGAP system variable.

TextHeight Double Gets or sets the height of the text. The initial value
for this property is 0.1800.

TextMovement AcDimTextMovement Gets or sets how text is drawn when it’s moved. The
initial value for this property is acMoveTextNoLeader.
For a list of possible values for the AcDimTextMovement
enumerated type, see Appendix B.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 455

Name Returns Description

TextOverride String Gets or sets the text string, which has a maximum
length of 256 characters. The user string replaces
the calculated dimension value. You can revert to
the calculated dimension value by setting the text
to a NULL string (""). You can append or prefix text to
the primary dimension value by using a closed set
of brackets (<>) to represent the value. The primary
dimension value will replace the brackets when the
string is displayed.

TextPosition Variant Gets or sets the position of the text as a set of WCS
coordinates.

TextPrefix String Gets or sets the prefix of the dimension value. The
initial value for this property is NULL. To turn off an
established prefix, set this property equal to a single
period.

TextRotation Double Gets or sets the angle of the text in radians. The valid
range is 0 to 6.28.

TextStyle String Gets or sets the style of the text. The initial value for
this property is STANDARD.

TextSuffix String Gets or sets the suffix of the dimension value. The
initial value for this property is NULL. To turn off an
established suffix, set this property equal to a single
period.

ToleranceDisplay AcDimToleranceMethod Gets or sets whether the tolerances are displayed
with the text. It overrides the value of the DIMTOL
system variable. The initial value for this property
is acTolNone. For a list of possible values for the
AcDimToleranceMethod enumerated type, see
Appendix B.

ToleranceHeightScale Double Gets or sets the scale factor of the text’s height for
the tolerance values relative to the object’s general
text height. The initial value for this property is
1.0000. This property is available only when the
ToleranceDisplay property is set to any value other
than acTolNone.

ToleranceJustification AcDimToleranceJustify Gets or sets the vertical justification of tolerance
values relative to that of the object’s general text.
The initial value for this property is acTolMiddle.
This property is available only when the
ToleranceDisplay property is set to any value other
than acTolNone. For a list of possible values for the
AcDimToleranceJustify enumerated type, see
Appendix B.

ToleranceLowerLimit Double Gets or sets the minimum tolerance for text. The
initial value for this property is 0.0000. This property
is available only when the ToleranceDisplay prop-
erty is set to acTolDeviation or acTolLimits.

TolerancePrecision AcDimPrecision Gets or sets the precision of tolerance values in the
primary dimensions. This property isn’t available
when ToleranceDisplay is set to acTolNone. For a list
of possible values for the AcDimPrecision enumer-
ated type, see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY456

5793appA_final.qxd 8/22/05 1:35 AM Page 456

Name Returns Description

ToleranceSuppressLeadingZeros Boolean Gets or sets whether leading zeros in tolerance values are
suppressed. It overrides the value of the DIMTZIN system
variable. The initial value for this property is False.

ToleranceSuppressTrailingZeros Boolean Gets or sets whether trailing zeros in tolerance values are
suppressed. It overrides the value of the DIMTZIN system
variable. The initial value for this property is False.

ToleranceUpperLimit Double Gets or sets the maximum tolerance for text. The initial
value for this property is 0.0000. This property is available
only when the ToleranceDisplay property is set to
acTolSymmetrical, acTolDeviation, or acTolLimits.

VerticalTextPosition Gets or sets the vertical position of the text relative to the
dimension line. It overrides the value of the DIMTAD sys-
tem variable. The initial value for this property is
acVertCentered. For a list of possible values for the
AcDimVerticalJustification enumerated type, see
Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 457

■Note Because this object inherits from AcadObject, it supports the Modified event.

AutoCAD Object Reference
The following sections detail the remaining AutoCAD object model objects derived from the
base class objects detailed earlier in this appendix.

Acad3DFace Object
The Acad3DFace object represents a 3-D triangle or a quadrilateral plane section. You create it
using the Add3DFace method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object. You
can specify different Z coordinates for each corner point of a Acad3DFace object, and you can
build solid objects by joining 3-D faces together (e.g., a cube consists of six 3-D faces joined
together). You control which edges of the face are visible through the SetInvisibleEdge method,
which allows accurate modeling of objects with holes.

Acad3DFace Object Methods
The Acad3DFace object inherits all the methods of the AcadEntity and AcadObject objects.
It also supports the following methods.

5793appA_final.qxd 8/22/05 1:35 AM Page 457

Name Returns Description

GetInvisibleEdge Boolean Gets the visibility setting for an edge of a Acad3DFace object at
a given index. It’s True if the edge is invisible and False other-
wise. Parameter: Index As Integer.

SetInvisibleEdge Sets the visibility state of an edge at a given index. To see any
changes in visibility, the drawing must be regenerated. Para-
meters: Index As Integer and State As Boolean. The Index
parameter must be in the range 0 to 3. Set the State parame-
ter to True for an invisible edge and False otherwise.

Acad3DFace Object Properties
The Acad3DFace object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Coordinate Variant Gets or sets the coordinate of a single vertex in the object. This
will replace the specified vertex of the object. Use standard
array-handling techniques to process the values contained in
this property. It returns a three-element array of Doubles con-
taining 3-D coordinates in WCS. Note that the Z coordinate
will default to 0 on the active UCS. Parameter: Index As
Integer (the index in the zero-based array of vertices for
the vertex you want to set or query).

Coordinates Variant Gets or sets the coordinates for each vertex in the object. This
will replace any existing coordinates for the specified object.
Use standard array-handling techniques to process the coordi-
nates contained in this property. Note that you can’t change
the number of coordinates in the object by using this property;
you can change only the location of existing coordinates. It
returns a three-element array of Doubles containing 3-D coor-
dinates in WCS. Note also that he Z coordinate will always
default to 0 on the active UCS.

VisibilityEdge1 Boolean Gets or sets whether edge 1 is visible. For this property and the
three that follow, True means the edge is visible and False
means the edge isn’t visible.

VisibilityEdge2 Boolean Gets or sets whether edge 2 is visible.

VisibilityEdge3 Boolean Gets or sets whether edge 3 is visible.

VisibilityEdge4 Boolean Gets or sets whether edge 4 is visible. In the case of a triangle,
this property will still return a value, because a triangle is
defined as a quadrilateral in which point 3 is equal to point 4.

■Note Because this object inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY458

5793appA_final.qxd 8/22/05 1:35 AM Page 458

Acad3DPolyline Object
The Acad3DPolyline object represents a 3-D polyline of straight-line segments. You create it
using the Add3DPoly method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

Acad3DPolyline Object Methods
The Acad3DPolyline object inherits all the methods of the AcadEntity and AcadObject objects.
It also supports the following methods.

Name Returns Description

AppendVertex Appends a vertex to the polyline, which is an array of 3-D coordi-
nates. Parameter: vertex As Variant (a three-element array of
Doubles).

Explode Variant Explodes the polyline into its constituent lines and returns them
as an array of Objects.

Acad3DPolyline Object Properties
The Acad3DPolyline object inherits all the properties of the AcadEntity and AcadObject
objects, as well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 459

Name Returns Description

Closed Boolean Gets or sets whether the polyline is closed (True) or open (False).

Coordinate Variant Gets or sets the coordinate of a single vertex in the object. This will
replace the specified existing vertex of the object. Use standard array-
handling techniques to process the values contained in this property.
It returns a Variant (three-element array of Doubles). These coordi-
nates can be converted to and from other coordinate systems using
the TranslateCoordinates method. Parameter: Index As Integer (the
index in the zero-based array for the vertex you want to set or query).

Coordinates Variant Gets or sets the coordinates for each vertex in the object. This will
replace any existing coordinates for the specified object. Use stan-
dard array-handling techniques to process the coordinates contained
in this property. When you set the coordinates for a polyline, if you
supply fewer coordinates than the object currently possesses, the
polyline will be truncated. Any fit points applying to the truncated
vertices will also be truncated. If you supply more coordinates than
the object currently possesses, the extra vertices will be appended to
the polyline. It returns the vertex points as a Variant (a three-element
array of Doubles) containing the X, Y, and Z coordinates for the ver-
tices in WCS. These coordinates can be converted to and from other
coordinate systems using the TranslateCoordinates method.

Type Ac3DPolylineType Gets or sets the type of the 3-D polyline. You can use this property to
convert a 3-D polyline into a spline. For a list of the values of the
Ac3DPolylineType enumerated type, see Appendix B.

■Note Because this object inherits from AcadObject, it supports the Modified event.

5793appA_final.qxd 8/22/05 1:35 AM Page 459

Acad3DSolid Object
The Acad3DSolid object represents a solid object with free-form surface support. You don’t cre-
ate general Acad3DSolid objects, as there’s no Add3DSolid method supported by the AcadBlock,
AcadModelSpace, and AcadPaperSpace objects. Instead, you use this object to represent a whole
series of 3-D shapes for which no specific AutoCAD object exists: boxes, cones, cylinders,
spheres, wedges, tori (donuts), and others. You can then combine these shapes to create more
complex solids by joining or subtracting them or finding their intersecting (overlapping) vol-
ume. You can also create solids by sweeping a 2-D object along a path or revolving it around
an axis.

To create an Acad3DSolid object, use one of the following methods, all of which are common
to the AcadBlock, AcadModelSpace, and AcadPaperSpace objects:

AddBox AddExtrudedSolidAlongPath

AddCone AddRevolvedSolid

AddCylinder AddSphere

AddEllipticalCone AddTorus

AddEllipticalCylinder AddWedge

AddExtrudedSolid

See the section about the AcadBlock object for more details on each of these.

Acad3DSolid Object Methods
The Acad3DSolid object inherits all the methods of the AcadEntity and AcadObject objects. It
also supports the following methods.

Name Returns Description

Boolean Performs a destructive operation returning the union,
intersection, or subtraction between the object and
another Acad3DSolid or AcadRegion object. Parameters:
Operation As AcBooleanType and SolidObject As
Acad3DSolid. For a list of possible values for the
AcBooleanType enumerated type, see Appendix B.

CheckInterference Acad3DSolid Checks for interference between the object and
another Acad3DSolid object and creates an object
representing the interference if required. Parameters:
Object As Acad3DSolid and CreateInterferenceSolid
As Boolean.
The second parameter is True if an interference solid is
required and False otherwise.

SectionSolid AcadRegion Creates an AcadRegion object representing the inter-
section of the object with the plane containing the
specified points. Parameters: Point1 As Variant,
Point2 As Variant, and Point3 As Variant.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY460

5793appA_final.qxd 8/22/05 1:35 AM Page 460

Name Returns Description

SliceSolid Acad3DSolid Creates an Acad3DSolid object representing the portion
of the object on one side of the plane containing the
specified points. Parameters: Point1 As Variant,
Point2 As Variant, Point3 As Variant, and Negative
As Boolean.
The fourth parameter determines whether the result-
ing solid should be returned on the negative side of the
plane, which is True if this is the case and False other-
wise. The original Acad3DSolid object retains the
positive side of the slice.

Acad3DSolid Object Properties
The Acad3DSolid object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Centroid Variant Gets the center of area or mass for a solid as a 2-D coordi-
nate. It returns a two-element array of Doubles. This
property is read-only.

MomentOfInertia Variant Gets the moment of inertia for the solid as a 3-D coordi-
nate. It returns a three-element array of Doubles. This
property is read-only.

PrincipalDirections Variant Gets the principal directions of the solid as X, Y, and Z
coordinates calculated on the current coordinate system.
This property is read-only.

PrincipalMoments Variant Gets the principal moments property of the solid as X, Y,
and Z coordinates calculated on the current coordinate
system. This property’s value is read-only.

ProductOfInertia Variant Gets the product of inertia of the solid as X, Y, and Z coordi-
nates calculated on the current coordinate system. This
property’s value is read-only.

RadiiOfGyration Variant Gets the radius of gyration of the solid as X, Y, and Z coordi-
nates calculated on the current coordinate system. This
property’s value is read-only.

Volume Double Gets the object’s volume. This property’s value is read-only.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadApplication Object
The AcadApplication object represents an instance of the AutoCAD application and is
accessed in VBA by using ThisDrawing.Application. The AcadApplication object is also the
global object for the ActiveX interface, and all methods and properties are available in the

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 461

5793appA_final.qxd 8/22/05 1:35 AM Page 461

global namespace. The object supports 19 methods, which control the loading or listing of the
currently loaded external applications and interface objects, and 20 properties, which reflect
the properties of the main application window. In addition, more than 20 events are associ-
ated with the AcadApplication object.

AcadApplication Object Methods
The AcadApplication object supports the following methods.

Name Returns Description

Eval Executes a line of VBA code without the need to create a
macro. Parameter: Expression As String.

GetAcadState AcadState Returns an AcadState object that will monitor the state of
the AutoCAD application from other applications.

GetInterfaceObject Object Loads a program ID into AutoCAD as an in-process server.
Although the object will be loaded into AutoCAD, it won’t
show up in its type library. The object will have its own type
library. This method lets you connect to an ActiveX Automa-
tion server. Parameter: ProgID As String.

ListARX Variant Returns the currently loaded AutoCAD ARX applications as
an array. It returns empty if none are loaded.

LoadARX Loads an AutoCAD ARX application. Parameter: Name As
String.

LoadDVB Loads an AutoCAD VBA project file. Parameter: Name As
String.

Quit Closes the drawing file and the AutoCAD application. If
AutoCAD is in the middle of a command, an error message
will be generated. If the modified document hasn’t been
saved, a prompt message will be generated.

RunMacro Runs a VBA macro. Parameter: MacroPath As String. If the
full path name isn’t specified, AutoCAD will use its search
path to find the macro or search all currently loaded proj-
ects. Syntax: RunMacro "MyProject.Module1".

UnloadARX Unloads an unlocked AutoCAD ARX application. Parameter:
Name As String. Don’t attempt to unload the file
acadvba.arx.

UnloadDVB Unloads an AutoCAD VBA project file. Parameter: Name As
String.

Update Updates the screen.

ZoomAll Zooms the current active model space or paper space view-
port to display the entire drawing. For a 2-D view, AutoCAD
displays the whole drawing or the current extent, whichever
is greater. For a 3-D view, this method is equivalent to
ZoomExtents.

ZoomCenter Zooms the current active model space or paper space view-
port as specified by the parameters. Parameters: Center As
Variant and Magnify As Double.

ZoomExtents Zooms the current active model space or paper space view-
port to the extent of the drawing.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY462

5793appA_final.qxd 8/22/05 1:35 AM Page 462

Name Returns Description

ZoomPickWindow Zooms the current active model space or paper space view-
port to a window defined by points picked on the screen.

ZoomPrevious Zooms the current active model space or paper space view-
port to its previous state.

ZoomScaled Zooms the current active model space or paper space view-
port to the specified scale factor. Parameters: Scale As
Double and ScaleType As AcZoomScaleType. For the values of
the second parameter, see Appendix B.

ZoomWindow Zooms the current active model space or paper space view-
port as specified by the parameters. Parameters: LowerLeft
As Variant and UpperRight As Variant. Parameters are
three-element arrays of Doubles specifying WCS coordinates.

AcadApplication Object Properties
The AcadApplication object supports the following properties.

Name Returns Description

ActiveDocument AcadDocument Gets or sets a reference to the active document.

Application AcadApplication Gets the AcadApplication object, which represents the
application’s frame controls and path settings and pro-
vides the means to navigate down the object hierarchy.

Caption String Gets the text seen by the user in the window caption bar.
This property is read-only. Note that if the caption is
modified using the Win32 API function SetWindowText,
the caption property will return the modified caption
text.

Documents AcadDocuments Gets the Documents collection. This property is read-only.

FullName String Gets the full name, including the path, of the application.
This property’s value is read-only.

Height Integer Gets or sets the height of the application window in pix-
els.

LocaleID Long Gets the regional settings for the session as defined by
the Windows 95 or Windows NT operating systems. This
property’s value is read-only.

MenuBar AcadMenuBar Gets the AcadMenuBar object for the session. This prop-
erty’s value is read-only.

MenuGroups AcadMenuGroups Gets the MenuGroups collection for the session.

Name String Gets the name of the application. This property’s value is
read-only.

Path String Gets the path of the application without the file name.
This property’s value is read-only.

Preferences AcadPreferences Gets the application’s AcadPreferences object. This prop-
erty’s value is read-only.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 463

5793appA_final.qxd 8/22/05 1:35 AM Page 463

Name Returns Description

StatusID Boolean Gets the current active status of the viewport. It’s True if
the specified viewport is active and False otherwise. This
property’s value is read-only. Parameter: VportObj As
AcadViewport.

VBE VBAIDE Gets the VBAIDE extensibility object. This isn’t available
if the acadvba.arx application hasn’t been loaded. This
property’s value is read-only.

Version String Gets the version of the AutoCAD application. This prop-
erty’s value is read-only. For AutoCAD 2000, the value is
15.0.

Visible Boolean Gets or sets whether the application is visible.

Width Integer Gets or sets the width of the application window in pixels.

WindowLeft Integer Gets or sets the distance between the left edge of the
application window and the left edge of the screen in
pixels. This distance will establish the X coordinate of the
upper-left corner (0,0) of the application.

WindowState AcWindowState Gets or sets the state of the application window. Possible
values are acMin (minimized), acMax (maximized), or
acNorm (normal).

WindowTop Integer Gets or sets the distance between the top of the appli-
cation window and the top of the screen in pixels. This
distance will establish the Y coordinate of the upper-left
corner (0,0) of the application.

AcadApplication Object Events
The following events are triggered during various stages in the lifetime of the AcadApplication
object. Note that no events will be fired while a modal dialog box is displayed.

Event Description

AppActivate Occurs before the main application window is activated.

AppDeactivate Occurs before the main application window is deactivated.

ARXLoaded Occurs after an ObjectARX application is loaded. Parameter:
FullPathName As String.

ARXUnloaded Occurs after an ObjectARX application is unloaded. Parameter:
FullPathName As String.

BeginCommand Occurs after a command is issued but before it is completed. Parameter:
CommandName As String.

BeginFileDrop Occurs when a file is dropped on the main application window. Parame-
ters: FileName As String and Cancel As Boolean. If Cancel is set to True,
this aborts the loading of the drawing, LISP file, or ARX file; otherwise,
loading is allowed to continue.

BeginLISP Occurs after a request to evaluate a LISP expression is received. Parame-
ter: FirstLine As String. FirstLine won’t have any case conversion of
the alpha characters.

BeginModal Occurs before a modal dialog box is displayed. You should never issue a
message box from within an event handler for the BeginModal event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY464

5793appA_final.qxd 8/22/05 1:35 AM Page 464

Event Description

BeginOpen Occurs after a request to open an existing drawing is received. Parame-
ter: Filename As String.

BeginPlot Occurs after a request to print a drawing is received. Parameter:
DrawingName As String.

BeginQuit Occurs just before the session ends. Parameter: Cancel As Boolean.

BeginSave Occurs after a request to save a drawing is received. Parameter: Filename
As String.

EndCommand Occurs after a command is completed. Parameter: CommandName As
String.

EndLISP Occurs after a LISP expression is executed.

EndModal Occurs after a modal dialog box is dismissed.

EndOpen Occurs after an existing drawing is opened. Parameter: Filename As
String.

EndPlot Occurs after a document is sent to the printer. Parameter: DrawingName
As String.

EndSave Occurs after a drawing is saved. Parameter: Filename As String.

LISPCancelled Occurs when the evaluation of a LISP expression is canceled.

NewDrawing Occurs before a drawing is created.

SysVarChanged Occurs when the value of a system variable is changed. Parameters:
SysVarName As String and NewVal As Variant.

WindowChanged Occurs when the application window is changed. Parameter:
WindowState As Integer (acMin, acMax, or acNorm).

WindowMovedOrResized Occurs after one document window is moved or resized. Parameters:
HWNDFrame As Long and Moved As Boolean. If Moved is set to True, the
window was moved; otherwise, it was resized.

AcadArc Object
The AcadArc object represents a circular arc, which is always drawn counterclockwise from the
start point to the end point. The StartPoint and EndPoint properties of an arc are calculated
through the StartAngle, EndAngle, and Radius properties. The AcadArc object is created using
the AddArc method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadArc Object Methods
The AcadArc object inherits all the methods of the AcadEntity and AcadObject objects. It also
supports the following method.

Name Returns Description

Offset Variant Creates a new arc by offsetting the current arc by a specified distance,
which must be a nonzero number. If the offset is positive, a concentric arc
with a larger radius is created. If the offset is negative, a smaller arc is cre-
ated. The return value isn’t an arc but a Variant, which is an array of
Objects. Parameter: Distance As Double.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 465

5793appA_final.qxd 8/22/05 1:35 AM Page 465

AcadArc Object Properties
The AcadArc object inherits all the properties of the AcadEntity and AcadObject objects, as well
as the common Application property. It also supports the following properties.

Name Returns Description

ArcLength Double Gets the length of the arc. This property’s value is read-only.

Area Double Gets the enclosed area of the arc. This property’s value is read-only.

Center Variant Gets or sets the center of the arc as an array of the Doubles.

EndAngle Double Gets or sets the end angle of the arc in radians.

EndPoint Variant Gets the end point of the arc as an array of three Doubles. This prop-
erty’s value is read-only.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the arc.

Radius Double Gets or sets the radius of the arc.

StartAngle Double Gets or sets the start angle of the arc in radians.

StartPoint Variant Gets the start point of the arc as an array of three Doubles. This prop-
erty’s value is read-only.

Thickness Double Gets or sets the distance the AcadArc object is extruded above or
below its elevation, in a Z-axis direction. The default is 0.0.

TotalAngle Double Gets the total angle of the arc in radians. This property’s value is read-
only.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadAttribute Object
The AcadAttribute object represents an object appearing as a text string that describes the
characteristics of an attribute reference, or, in other words, an attribute definition. You create
it using the AddAttribute method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadAttribute Object Methods
The AcadAttribute object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

AcadAttribute Object Properties
The AcadAttribute object inherits all the properties of the AcadEntity and AcadObject objects,
as well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY466

5793appA_final.qxd 8/22/05 1:35 AM Page 466

Name Returns Description

Alignment AcAlignment Gets or sets the horizontal and vertical alignments of
the attribute. For a list of the values for the AcAlignment
enumeration, see Appendix B.

Backward Boolean Gets or sets whether the text is backward.

Constant Boolean Gets or sets whether the attribute has the same value
in every occurrence. AutoCAD doesn’t prompt for a
value of constant attributes.

FieldLength Integer Gets or sets the field length of the attribute.

Height Double Gets or sets the height of the attribute.

HorizontalAlignment AcHorizontalAlignment Gets or sets the horizontal alignment of the attribute.

InsertionPoint Variant Gets the insertion point of the attribute.

Invisible Boolean Gets or sets whether the attribute is invisible. An invisi-
ble attribute will not be displayed or plotted. This
property’s value is read-only.

Mode Integer Gets or sets the mode of the attribute definition.
Values: acAttributeModeNormal, acAttributeModeIn-
visible, acAttributeModeConstant,
acAttributeModeVerify, or acAttributeModePreset.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the
attribute.

ObliqueAngle Double Gets or sets the oblique angle of the attribute and is
measured from the vertical axis. The units are radians
within the range of –85 to +85 degrees. A positive value
denotes a lean toward the right.

Preset Boolean Gets or sets whether the attribute is preset. A preset
attribute sets the attribute to its default value when the
user inserts the block.

PromptString String Gets or sets the prompt string for the attribute that
appears when a block containing this attribute is
inserted. The default for this string is the TagString
property.

Rotation Double Gets or sets the rotation angle (in radians) for the
attribute, relative to the X-axis, with positive values
going counterclockwise when viewed along the Z-axis
toward the origin.

ScaleFactor Double Gets or sets the scale factor for the attribute. It must be
positive. A scale factor greater than 1 enlarges the
object. A scale factor from 0 to 1 shrinks the object. The
initial value for this property is 1.0.

StyleName String Gets or sets the name of the style used with the object,
the default being the current style.

TagString String Gets or sets the tag string, which identifies each occur-
rence of the attribute. The tag string identifies each
occurrence of the attribute and may contain any char-
acters other than spaces and exclamation marks.
Lowercase letters are changed to uppercase.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 467

5793appA_final.qxd 8/22/05 1:35 AM Page 467

Name Returns Description

TextAlignmentPoint Variant Gets or sets the alignment point for text, returning a
three-element array of Doubles. This property’s value
is read-only when the Alignment property is set to
acAlignmentLeft.

TextGenerationFlag AcTextGenerationFlag Gets or sets the attribute text generation flag. Values:
acTextFlagBackward and acTextFlagUpsideDown. The
values can be combined.

TextString String Gets or sets the text string for the attribute.

Thickness Double Gets or sets the distance the Attribute object is extruded
above or below its elevation, in a Z-axis direction. The
default is 0.0.

UpsideDown Boolean Specifies whether the text is upside down.

Verify Boolean Specifies whether the user is prompted for verification
when inserting the block.

VerticalAlignment AcVerticalAlignment Gets or sets the vertical alignment of the attribute. For
a list of possible values for the AcVerticalAlignment
enumeration, see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY468

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadAttributeReference Object
The AcadAttributeReference object represents an object containing text that links to a block
or to an instance of the AcadAtribute object. These objects can’t be directly created but are
added to a drawing when a block containing an attribute definition is inserted. You achieve
this by calling the InsertBlock method, which is common to the AcadBlock, AcadModelSpace,
and AcadPaperSpace objects. The GetAttributes method of the AcadBlockReference object
returns an array of all attribute references attached to the inserted block.

AcadAttributeReference Object Methods
The AcadAttributeReference object inherits all the methods of the AcadEntity and AcadObject
objects. It supports no other methods.

AcadAttributeReference Object Properties
The AcadAttributeReference object inherits all the properties of the AcadEntity and
AcadObject objects, as well as the common Application property. It also supports all the other
properties supported by the AcadAttribute object except for Mode, Preset, PromptString, and
Verify. It supports no other properties.

■Note Because this object inherits from AcadObject, it supports the Modified event.

5793appA_final.qxd 8/22/05 1:35 AM Page 468

AcadBlock Object
The AcadBlock object represents a block definition containing a name and a set of objects.
There’s no limit to the number of objects a block can contain. Three kinds of block exist:
a simple block, an Xref block, and a layout block. Chapter 12 discusses blocks.

AcadBlock Object Methods
In addition to the methods inherited from the AcadObject object, the AcadBlock object sup-
ports the following methods.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 469

Name Returns Description

Add3DFace Acad3DFace Creates an Acad3DFace object using the four vertices. If
the last parameter is omitted, a three-sided face is cre-
ated. Points must be entered in a clockwise or
counterclockwise order to create the object. Parame-
ters: Point1 As Variant, Point2 As Variant, Point3 As
Variant, and Point4 As Variant.

Add3DMesh AcadPolygonMesh Creates a free-form AcadPolygonMesh object represent-
ing an M×N free-form mesh from the given array of
coordinates. Parameters: M As Integer, N As Integer,
and PointsMatrix As Variant.
The size of the mesh in both the M and N directions is
limited to between 2 and 256.
The PointsMatrix parameter is a 3×M×N array of 3-D
WCS coordinates. All the coordinates for row M must
be supplied before any vertices for row M+1.

Add3DPoly Acad3DPolyline Creates an Acad3DPolyline object from the given array
of 3-D WCS coordinates. The polyline will be created
according to the order of the coordinates in the array.
Parameter: PointsArray As Variant.

AddArc AcadArc Creates an AcadArc object as specified by the parame-
ters. Parameters: Center As Variant (an array of three
Doubles representing 3-D WCS coordinates), Radius As
Double, StartAngle As Double, and EndAngle As Dou-
ble. The start and end angles must be in radians. If
StartAngle is greater than EndAngle, a clockwise arc is
created.

AddAttribute AcadAttribute Creates an AcadAttribute object as specified by the
parameters. Parameters: Height As Double, Mode As
AcAttributeMode, Prompt As String, InsertionPoint
As Variant (an array of three Doubles representing 3-D
WCS coordinates), Tag As String, and Value As
String. For the values of the Mode parameter, see
Appendix B.

AddBox Acad3DSolid Creates an Acad3DSolid object representing a solid box
with center at the given origin and with edges parallel
to the axes of the WCS. Parameters: Origin As Variant
(an array of three Doubles as 3-D WCS coordinates),
Length As Double, Width As Double, and Height As
Double.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 469

Name Returns Description

AddCircle AcadCircle Creates an AcadCircle object as specified by the
parameters. Parameters: Center As Variant (an array
of three Doubles representing 3-D WCS coordinates)
and Radius As Double.

AddCone Acad3DSolid Creates an Acad3DSolid object representing a solid
cone with a base on the XY plane of the WCS. Parame-
ters: Center As Variant (an array of three Doubles
representing 3-D WCS coordinates), BaseRadius As
Double, and Height As Double.

AddCustomObject Object Creates a custom object. Parameter: ClassName As
String. ClassName must be an ARX file prior to the call.

AddCylinder Acad3DSolid Creates an Acad3DSolid object representing a cylinder
whose base is on the XY plane of the WCS. Parameters:
Center As Variant (an array of three Doubles repre-
senting 3-D WCS coordinates), Radius As Double, and
Height As Double.

AddDim3PointAngular AcadDim3PointAngular Creates an AcadDim3PointAngular object as specified by
the parameters. Parameters: AngleVertex As Variant,
FirstEndPoint As Variant, SecondEndPoint As Variant,
and TextPoint As Variant. All four parameters are arrays
of three Doubles representing 3-D WCS coordinates.

AddDimAligned AcadDimAligned Creates an AcadDimAligned object as specified by the
parameters. Parameters: ExtLine1Point As Variant,
ExtLine2Point As Variant, and TextPosition As
Variant. All three parameters are arrays of three
Doubles representing 3-D WCS coordinates.

AddDimAngular AcadDimAngular Creates an AcadDimAngular object representing the
angular dimension for an arc, two lines, or a circle.
Parameters: AngleVertex As Variant, FirstEndPoint
As Variant, SecondEndPoint As Variant, and Text-
Point As Variant. All four parameters are arrays of
three Doubles representing 3-D WCS coordinates.

AddDimDiametric AcadDimDiametric Creates a diametric dimension for a circle or arc given
the two points on the diameter and the length of the
leader line. Parameters: ChordPoint As Variant,
FarChordPoint As Variant, and LeaderLength As
Double. The first two parameters are arrays of three
Doubles representing 3-D WCS coordinates.

AddDimOrdinate AcadDimOrdinate Creates an ordinate dimension given the definition
point and leader end point. Parameters:
DefinitionPoint As Variant, LeaderEndPoint As
Variant, and UseXAxis As Integer. The first two
parameters are arrays of three Doubles representing
3-D WCS coordinates.

AddDimRadial AcadDimRadial Creates a radial dimension for the selected object at
the given location. Parameters: Center As Variant,
ChordPoint As Variant, and LeaderLength As Double.
The first two parameters are arrays of three Doubles
representing 3-D WCS coordinates.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY470

5793appA_final.qxd 8/22/05 1:35 AM Page 470

Name Returns Description

AddDimRotated AcadDimRotated Creates an AcadDimRotated object as specified by the
parameters. Parameters: ExtLine1Point As Variant,
ExtLine2Point As Variant, DimLineLocation As
Variant, and RotationAngle As Double. The first three
parameters are arrays of three Doubles representing
3-D WCS coordinates.

AddEllipse AcadEllipse Creates an AcadEllipse object representing an ellipse
in the XY plane of the WCS as specified by the parame-
ters. Parameters: Center As Variant, MajorAxis As
Variant, and RadiusRatio As Double. The first two
parameters are arrays of three Doubles representing
3-D WCS coordinates.

AddEllipticalCone Acad3DSolid Creates an Acad3DSolid object representing an elliptical
cone in the XY plane of the WCS given the center,
major radius, minor radius, and height. Parameters:
Center As Variant (an array of three Doubles repre-
senting 3-D WCS coordinates), MajorRadius As Double,
MinorRadius As Double, and Height As Double.

AddEllipticalCylinder Acad3DSolid Creates an Acad3DSolid object representing an elliptical
cylinder as specified by the parameters with its base in
the XY plane. Parameters: Center As Variant (an array
of three Doubles representing 3-D WCS coordinates),
MajorRadius As Double, MinorRadius As Double, and
Height As Double.

AddExtrudedSolid Acad3DSolid Creates an Acad3DSolid object representing an
extruded solid as specified by the parameters.
Parameters: Profile As AcadRegion, Height As Double,
and TaperAngle As Double.
The Height parameter specifies the height of the extru-
sion along the Z-axis of the object’s coordinate system.
The TaperAngle parameter must be provided in radi-
ans. The range of the taper angle is from –90 to +90
degrees. Positive angles taper in from the base; nega-
tive angles taper out. The default angle, 0, extrudes a
2-D object perpendicular to its plane. Only 2-D planar
regions can be extruded.

AddExtrudedSolid Acad3DSolid Creates an Acad3DSolid object representing an
AlongPath extruded solid, given the profile and an extrusion path.

Only 2-D planar regions can be extruded, and the path
shouldn’t lie on the same plane as the profile, and it
shouldn’t have areas of high curvature. Parameters:
Profile As AcadRegion and Path As Object.

AddHatch AcadHatch Creates an AcadHatch object as specified by the param-
eters. Parameters: PatternType As AcPatternType,
PatternName As String, and Associativity As Boolean.
For a list of possible values for the AcPatternType enu-
merated type, see Appendix B.
The Associativity parameter is True if the hatch is to
be associative and False otherwise. Don’t forget to cre-
ate the outer boundary for the hatch and to append it
using Obj.AppendOuterLoop(outerLoop), in which Obj is
the newly created hatch and outerLoop is an array of
drawing objects forming the hatch boundary. (See the
section on the AcadHatch object for details.)

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 471

5793appA_final.qxd 8/22/05 1:35 AM Page 471

Name Returns Description

AddLeader AcadLeader Creates an AcadLeader object as specified by the
parameters. Parameters: PointsArray As Variant,
Annotation As AcadEntity, and Type As AcLeaderType.
The PointsArray parameter must be an array of 3-D
WCS coordinates (Doubles) and has a minimum of two
points (six elements).
The Annotation parameter must be an AcadTolerance,
AcadMText, or AcadBlockReference object or NULL.
See Appendix B for the values of the AcLeaderType
enumeration.

AddLightWeightPolyline AcadLWPolyline Creates an AcadLWPolyline object as specified by the
parameter. Parameter: VerticesList As Variant.
VerticesList is an array of 2-D OCS coordinates speci-
fying the vertices of the polyline. A minimum of two
vertices or four elements is required. You can convert
between OCS and WCS using the TranslateCoordinates
method (see the section on the AcadUtility object for
details). Arcs are added to vertices using the SetBulge
method (see the section on the AcadLWPolyline object
for details).

AddLine AcadLine Creates an AcadLine object representing a line passing
through the given points. Parameters: StartPoint As
Variant and EndPoint As Variant. Both parameters
are arrays of three Doubles representing 3-D WCS
coordinates.

AddMInsertBlock AcadMInsertBlock Inserts an array of AcadBlockReferences from an origi-
nal block definition of a given Name, as specified by the
parameters. Parameters: InsertionPoint As Variant,
Name As String, Xscale As Double, Yscale As Double,
Zscale As Double, Rotation As Double, NumRows As
Integer, NumColumns As Integer, RowSpacing As
Integer, and ColumnSpacing As Integer. The
InsertionPoint parameter is a set of 3-D WCS coor-
dinates. The rotation angle is in radians.

AddMLine AcadMLine Creates an AcadMLine representing a set of lines passing
through the points specified in the parameter. Parame-
ter: VertexList As Variant. VertexList is an array of
the 3-D WCS coordinates specifying the vertices for the
multiline.

AddMText AcadMText Creates an AcadMText object as specified by the param-
eters. Parameters: InsertionPoint As Variant, Width
As Double, and Text As String. The InsertionPoint
parameter is a set of 3-D WCS coordinates.

AddPoint AcadPoint Creates an AcadPoint object as specified by the 3-D WCS
coordinates specified. Parameter: Point As Variant.

AddPolyfaceMesh AcadPolyfaceMesh Creates an AcadPolyfaceMesh object from a list of ver-
tices. Parameters: VertexList As Variant and FaceList
As Variant.
VertexList is an array of 3-D WCS coordinates used to
create the polyface mesh vertices. At least four points
(12 elements) are required for constructing a polyface
mesh object.
FaceList is an array of integers representing the vertex
numbers for each face. Faces are defined in groups of

alues.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY472

5793appA_final.qxd 8/22/05 1:35 AM Page 472

Name Returns Description

AddPolyline AcadPolyline Creates an AcadPolyline object from a list of vertices.
The polyline vertices are an array of OCS coordinates.
At least two points (six values) are required to form a
polyline. Parameter: VerticesList As Variant.
You can convert between OCS and WCS using the
TranslateCoordinates method (see the section on the
AcadUtility object for details).
Arcs are added to vertices using the SetBulge method
(see the section on the AcadPolyline object for details).

AddRaster AcadRasterImage Creates an AcadRasterImage object based on the given
image file. Parameters: ImageFileName As String,
InsertionPoint As Variant, ScaleFactor As Double,
and RotationAngle As Double.
The InsertionPoint parameter is a set of 3-D WCS
coordinates.
The default value for the ScaleFactor parameter is 1.
The RotationAngle is in radians.

AddRay AcadRay Creates an AcadRay object representing a ray passing
through two points. Parameters: Point1 As Variant
and Point2 As Variant. Both parameters are arrays of
three Doubles representing 3-D WCS coordinates.

AddRegion Variant Creates a region from an array of AcadEntity objects.
The array must consist of AcadLine, AcadArc, AcadCircle,
AcadEllipse, AcadLWPolyline, and AcadSpline objects,
which must form a closed coplanar region. Parameter:
ObjectList As Variant.

AddRevolvedSolid Acad3DSolid Creates an Acad3DSolid object representing a revolved
solid as specified by the parameters. Parameters:
Profile As AcadRegion, AxisPoint As Variant,
AxisDir As Variant, and Angle As Double.
The AxisPoint parameter specifies the start point of
the axis of revolution and is defined with an array of
3-D WCS coordinates.
The AxisDir parameter specifies the direction of the
axis of revolution.
The Angle parameter is the angle of revolution in radi-
ans. Enter 6.28 for a full circle revolution.

AddShape AcadShape Creates an AcadShape object based on a template iden-
tified by name, at the given insertion point, scale
factor, and rotation. Parameters: Name As String,
InsertionPoint As Variant, ScaleFactor As Double,
and RotationAngle As Double. The InsertionPoint
parameter is a set of 3-D WCS coordinates.

AddSolid AcadSolid Creates an AcadSolid object representing a 2-D solid
polygon. The first two points define one edge of the
polygon. For a four-sided solid, the third point is
defined to be diagonally opposite from the second
point. If the third and fourth points are equal, then a
triangle is created. The AcadSolid is filled when the
FILLMODE system variable is set to 1. Parameters: Point1
As Variant, Point2 As Variant, Point3 As Variant,
and Point4 As Variant.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 473

5793appA_final.qxd 8/22/05 1:35 AM Page 473

Name Returns Description

AddSphere Acad3DSolid Creates an Acad3DSolid object representing a sphere as
specified by the parameters. Parameters: Center As
Variant (an array of three Doubles representing 3-D
WCS coordinates) and Radius As Double.

AddSpline AcadSpline Creates an AcadSpline object as specified by the
parameters, the first one being an array of 3-D WCS
coordinates defining the spline curve. The StartTangent
and EndTangent parameters specify the tangents (a 3-D
vector) at the two ends of the spline. At least two points
(six elements) are required for constructing an
AcadSpline object. Parameters: PointsArray As
Variant, StartTangent As Variant, and EndTangent
As Variant.

AddText AcadText Creates an AcadText object representing a single line of
text. Parameters: TextString As String, InsertionPoint
As Variant, and Height As Double. The InsertionPoint
parameter is a set of 3-D WCS coordinates.

AddTolerance AcadTolerance Creates an AcadTolerance object from the supplied
parameters, the second one being a set of 3-D WCS
coordinates and the last a 3-D vector. Parameters: Text
As String, InsertionPoint As Variant, and Direction
As Variant.

AddTorus Acad3DSolid Creates an Acad3DSolid object representing a torus
from the parameters. Parameters: Center As Variant,
TorusRadius As Double, and TubeRadius As Double.
The first parameter is a set of 3-D WCS coordinates,
and the values for both radii must be positive.

AddTrace AcadTrace Creates an AcadTrace object from an array of points.
Parameter: PointsArray As Variant (an array of three
Doubles representing 3-D WCS coordinates).

AddWedge Acad3DSolid Creates an Acad3DSolid object representing a wedge
with edges parallel to the axes given the length, width,
and height. Parameters: Center As Variant (an array
of three Doubles representing 3-D WCS coordinates),
Length As Double, Width As Double, and Height As
Double.

AddXline AcadXline Creates an AcadXline object representing an infinite
line passing through the given points. Parameters:
Point1 As Variant and Point2 As Variant. Both
parameters are arrays of three Doubles representing
3-D WCS coordinates. The width and fill mode are set
using the TRACEWID and FILLMODE system variables.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY474

5793appA_final.qxd 8/22/05 1:35 AM Page 474

Name Returns Description

AttachExternal AcadExternalReference Attaches an AcadExternalReference (Xref) object to the
Reference AcadBlock, given the full path name of the external

drawing, the name of the Xref, and other parameters.
Note that attached AcadExternalReference objects can
be nested. Parameters: PathName As String, Name As
String, InsertionPoint As Variant, Xscale As Double,
Yscale As Double, Zscale As Double, Rotation As
Double, and Overlay As Boolean.
The InsertionPoint parameter is a set of 3-D WCS
coordinates.
The Rotation parameter specifies the angle of rotation
of the Xref, in radians.
The Overlay parameter specifies whether the Xref is to
be an overlay (True) or an attachment (False). An over-
laid Xref will be ignored when the container drawing is
referenced at its turn.

Bind Binds an AcadExternalReference (Xref) object as a
nested block, complete with all its named dependent
symbols (dimension styles, linetypes, etc.). This opera-
tion makes the Xref a permanent part of the drawing
and not an externally referenced file. Named objects
from the Xref can be used in the current drawing. Para-
meter: PrefixName As Boolean.
If this parameter is True, then the symbols named in
the Xref are prefixed with <blockname>x, where x is an
integer that is automatically incremented to avoid
overriding existing block functions. If this parameter
is False, no prefix is used. If there is a clash of names,
AutoCAD uses the symbols already defined in the drawing.

Detach Detaches an AcadExternalReference (Xref) object from
the block, including all copies of the Xref and the defi-
nition itself.

InsertBlock AcadBlockReference Inserts an AcadBlockReference object representing a
file or a block that has been defined in the current
drawing. Parameters: InsertionPoint As Variant, Name
As String, Xscale As Double, Yscale As Double, Zscale
As Double, and Rotation As Double. The InsertionPoint
parameter is a set of 3-D WCS coordinates. If the Name is
a file name, include any path information necessary for
AutoCAD to find the file and the .dwg extension.

Item AcadEntity Gets the member object at a given index in the block.
Parameter: Index As Variant (String or Integer).

Reload Reloads the most recently saved version of the external
reference (Xref) or an unloaded Xref.

Unload Unloads an external reference (Xref). This means that
the drawing opens faster and uses less memory. The Xref
and its table of symbols don’t appear in the drawing.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 475

5793appA_final.qxd 8/22/05 1:35 AM Page 475

AcadBlock Object Properties
In addition to the properties inherited from the AcadEntity object and the common
Application property, the AcadBlock object supports the following properties.

Name Returns Description

Count Integer Gets the number of items in the block. This property is read-
only.

IsLayout Boolean Determines whether the block is a layout block. This property’s
value is read-only. If the values for IsLayout and IsXref are
both False, then the block is a simple block.

IsXref Boolean Determines whether the block is an Xref block. This property’s
value is read-only.

Layout AcadLayout Gets the plot settings (AcadLayout object) for the block. This
property’s value is read-only.

Name String Gets the name of the block.

Origin Variant Gets or sets the origin of the block in WCS coordinates.

XrefDatabase AcadDatabase Gets the AcadDatabase object that defines the contents of the
block. Available only if the IsXref property for the block is
True. This property’s value is read-only.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadBlockReference Object
The AcadBlockReference object represents an instance of a block definition inserted into a
drawing. The creation of a new block definition is done automatically when an external block
file is inserted with the InsertBlock method. To add or delete items from the block reference,
you may first use the Explode method to break it into its component objects (subentities).
However, the block definition still remains in the drawing’s block symbol table with all its
constituents.

AcadBlockReference Object Methods
The AcadBlockReference object inherits all the methods of the AcadEntity and AcadObject
objects. It also supports the following methods.

Name Returns Description

Explode Variant Explodes the block and returns the subentities as an
array of Objects

GetAttributes Variant Returns an array of editable attribute references attached
to the block reference, only if the HasAttributes property
is set to True

GetConstantAttributes Variant Returns an array of constant attributes for the block

APPENDIX A ■ AUTOCAD OBJECT SUMMARY476

5793appA_final.qxd 8/22/05 1:35 AM Page 476

AcadBlockReference Object Properties
The AcadBlockReference object inherits all the properties of the AcadEntity and AcadObject
objects, as well as the common Application property. It also supports the following properties.

Name Returns Description

HasAttributes Boolean Specifies if the block has any attributes in it. This property’s
value is read-only.

InsertionPoint Variant Gets or sets an insertion point in the block as a set of 3-D WCS
coordinates. It returns a three-element array of Doubles.

Name String Gets or sets the name of the block.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the block.

Rotation Double Gets or sets the rotation angle (in radians) for the block, relative
to the X-axis with positive values going counterclockwise when
viewed along the Z-axis toward the origin.

XScaleFactor Double Gets or sets the X scale factor for the block.

YScaleFactor Double Gets or sets the Y scale factor for the block

ZScaleFactor Double Gets or sets the Z scale factor for the block.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadBlocks Collection
The AcadBlocks collection contains all the blocks in the drawing. The collection contains two spe-
cial collections: the AcadModelSpace collection for model space entities, and the AcadPaperSpace
collection for paper space entities. Although the AcadBlocks collection inherits a Delete method,
you can’t actually delete the collection. There’s no limit to the number of blocks you can create
in your drawing. However, there can be only one instance of the AcadBlocks collection prede-
fined for each drawing. You can make multiple references to it by using the Blocks property of
the AcadDocument object.

AcadBlocks Collection Methods
In addition to the methods inherited from the AcadObject object, the AcadBlocks collection
supports the following methods.

Name Returns Description

Add AcadBlock Creates an AcadBlock object and adds it to the collection. Parameters:
InsertionPoint As Variant and Name As String. The InsertionPoint
parameter is a set of 3-D WCS coordinates that specify where the AcadBlock
object will be added. Once the AcadBlock has been created, you can add
subentities to it.

Item AcadBlock Returns the object at the given index in the collection. Parameter: Index
As Variant (Integer or String). If the Index value is a String, it must match
an existing block definition.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 477

5793appA_final.qxd 8/22/05 1:35 AM Page 477

AcadBlocks Collection Properties
The AcadBlocks collection supports the Count property, the common Application property,
and those properties inherited from the AcadObject object. It supports no other properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

AcadCircle Object
The AcadCircle object represents a full circle. It is created using the AddCircle method of the
AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadCircle Object Methods
The AcadCircle object inherits all the methods of the AcadEntity and AcadObject objects. It
also supports the following method.

Name Returns Description

Offset Variant Creates a new circle by offsetting the current circle by a specified distance,
which must be nonzero. If the offset is positive, a larger circle is created
with the same origin. If the offset is negative, a smaller circle is created.
Parameter: Distance As Double.

AcadCircle Object Properties
The AcadCircle object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Area Double Gets the area of the circle in square drawing units. This property’s
value is read-only.

Center Variant Gets or sets the center of the circle as a set of 3-D coordinates.

Circumference Double Gets or sets the circumference of the circle.

Diameter Double Gets or sets the diameter of the circle.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the object.

Radius Double Gets or sets the radius of the circle.

Thickness Double Gets or sets the distance the AcadCircle object is extruded above
or below its elevation, in a Z-axis direction. The default is 0.0.

■Note Because this object inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY478

5793appA_final.qxd 8/22/05 1:35 AM Page 478

AcadDatabase Object
The AcadDatabase object represents the contents of an external reference (Xref) block. This
object provides access to the contents of an external reference block. It’s available only on
blocks whose IsXref property is equal to True.

AcadDatabase Object Methods
The AcadDatabase object supports the following methods. These are identical to three of the
methods supported by the AcadDocument object, except they act upon the contents of an Xref
block, not the active document.

Name Returns Description

CopyObjects Variant Duplicates an object along with other objects owned and ref-
erenced by it. This is called deep cloning. Parameters: Objects
As Variant, [Owner As Variant], and [IDPairs As Variant].
The Objects parameter is array of primary objects to be
copied. They must all have the same owner.
The Owner parameter is the new owner for the copied objects.
If unspecified, the original owner is assumed.
The IDPairs parameter gives information on what happened
during the copy and translation process. Input is an empty
Variant. Output is an array of AcadIDPair objects.
You can’t execute this method while simultaneously iterating
through a collection.

HandleToObject Object Returns the object that corresponds to the given handle. The
object must be in the current Xref drawing. Parameter: Handle
As String. A handle is persistent. It can be stored for reuse
with this method for the lifetime of the object.

ObjectIDToObject Object Returns the object that corresponds to the given object ID. The
object must be in the current Xref drawing. Parameter: ObjectID
As Integer. An object ID isn’t persistent. Its lifetime is limited
to a drawing session.

AcadDatabase Object Properties
As well as the common Application property, the AcadDatabase object supports the following
properties. These are identical to the corresponding properties of the AcadDocument object,
except they refer to the contents of an Xref block, not the active document.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 479

Name Returns Description

Blocks AcadBlocks Gets the AcadBlocks collection for the Xref draw-
ing. This property’s value is read-only.

Dictionaries AcadDictionaries Gets the AcadDictionaries collection for the Xref
drawing. This property’s value is read-only.

DimStyles AcadDimStyles Gets the AcadDimStyles collection for the Xref
drawing. This property’s value is read-only.

ElevationModelSpace Double Gets or sets the elevation setting in the model
space. The current elevation is the Z value that is
used whenever a 3-D point is expected but only
the X and Y values are supplied.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 479

Name Returns Description

ElevationPaperSpace Double Gets or sets the elevation setting in the paper
space. The current elevation is the Z value that is
used whenever a 3-D point is expected but only
the X and Y values are supplied.

Groups AcadGroups Gets the AcadGroups collection for the Xref draw-
ing. This property’s value is read-only.

Layers AcadLayers Gets the AcadLayers collection for the Xref draw-
ing. This property’s value is read-only.

Layouts AcadLayouts Gets the AcadLayouts collection for the Xref
drawing. This property’s value is read-only.

Limits Variant Gets or sets the Xref drawing limits in the XY
plane. Two sets of WCS coordinates specify the
lower-left (LIMMIN) and upper-right corners
(LIMMAX) of the plane.

Linetypes AcadLineTypes Gets the AcadLinetypes collection for the Xref
drawing. This property’s value is read-only.

ModelSpace AcadModelSpace Gets the AcadModelSpace collection for the Xref
drawing. This property’s value is read-only.

PaperSpace AcadPaperSpace Gets the AcadPaperSpace collection for the Xref
drawing. This property’s value is read-only.

PlotConfigurations AcadPlotConfigurations Gets the AcadPlotConfigurations collection for
the Xref drawing. This property’s value is read-
only.

Preferences AcadDatabasePreferences Gets the AcadPreferences object for the Xref draw-
ing. The AcadPreferences object holds the options
from the Options dialog box that resides in the
Registry. Options that reside in the drawing can
be found through the AcadDatabasePreferences
object. This property’s value is read-only.

RegisteredApplications AcadRegisteredApplications Gets the AcadRegisteredApplications collection
for the Xref drawing. This property’s value is
read-only.

TextStyles AcadTextStyles Gets the AcadTextStyles collection for the Xref
drawing. This property’s value is read-only.

UserCoordinateSystems AcadUCSs Gets the AcadUCSs collection for the Xref drawing.
This property’s value is read-only.

Viewports AcadViewports Gets the AcadViewports collection for the Xref
drawing. This property’s value is read-only.

Views AcadViews Gets the AcadViews collection for the Xref draw-
ing. This property’s value is read-only.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY480

AcadDatabasePreferences Object
The AcadDatabasePreferences object specifies the current AutoCAD drawing-specific settings,
that is, all the options from the Options dialog box that reside in a drawing. (Options that reside
in the Registry can be found through the main AcadPreferences object.) This object has no
methods.

5793appA_final.qxd 8/22/05 1:35 AM Page 480

AcadDatabasePreferences Object Properties
As well as the common Application property, the AcadDatabasePreferences object supports
the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 481

Name Returns Description

AllowLongSymbolNames Boolean Determines whether symbol names are extended (True) or
restricted (False). (“Symbol names” refers to the names of non-
graphical objects such as linetypes and layers.) Extended
symbol names can be up to 255 characters and can use any
symbol not reserved by Microsoft or AutoCAD, in addition to
the letters, numerals, and the space. This is the default.
Restricted symbol names can only be up to 31 letters long and
are restricted to the letters and numerals, the underscore (_),
dollar ($), and hyphen (-). The value for this property is stored
in the EXTNAMES system variable.

ContourLinesPerSurface Integer Gets or sets the number of contour lines per surface on an
object. The valid range is 0 to 2047. The number is stored in the
ISOLINES system variable.

DisplaySilhouette Boolean Determines whether silhouette curves of solid objects are dis-
played in wireframe mode: True for silhouette curves and False
for isolines (default). The value is stored in the DISPSILH system
variable.

Lineweight AcLineWeight Gets or sets the default lineweight for the drawing. For a list of
possible values for the AcLineWeight enumerated type, see
Appendix B.

LineweightDisplay Boolean Determines whether lineweights are displayed in the model
space. True is the default. This property is read/write.

MaxActiveViewports Integer Gets or sets the maximum number of active viewports. The range
is 2 to 48. The value of is stored in the MAXACTVP system variable.

ObjectSortByPlotting Boolean Specifies whether objects are sorted by their plotting order. True
is the default. The values of this property and the five that follow
are stored in the SORTENTS system variable. Note that setting
these additional ObjectSortBy... properties to True slows your
application.

ObjectSortByPSOutput Boolean Specifies whether objects are sorted by their PostScript output
order. True is the default.

ObjectSortByRedraws Boolean Specifies whether objects are sorted by their redraw order. False
is the default.

ObjectSortByRegens Boolean Specifies whether objects are sorted by their regeneration order.
False is the default.

ObjectSortBySelection Boolean Specifies whether drawing objects are sorted by object selec-
tion. False is the default.

ObjectSortBySnap Boolean Gets or sets whether drawing objects are sorted by object snap.
False is the default.

OLELaunch Boolean Specifies whether the parent application is launched when OLE
objects are plotted. The value of this property is stored in the
OLESTARTUP system variable. The initial value of this property is
False. This gives a high-quality plot but at the cost of speed.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 481

Name Returns Description

RenderSmoothness Double Gets or sets the smoothness of shaded, rendered, and hidden
line–removed objects. The value of this property is stored in the
FACETRES system variable. The initial value for this property is
0.5. Values less than or equal to 1 increase performance.

SegmentPerPolyline Integer Gets or sets the number of line segments for each polyline
curve. The value of this property is stored in the SPLINESEGS sys-
tem variable. The initial value is 8.

SolidFill Boolean Specifies whether multilines, traces, solids, hatches, and wide
polylines are filled in. The value of this property is stored in the
FILLMODE system variable. The default value is True.

TextFrameDisplay Boolean Specifies whether the frames for text objects are displayed
rather than the text itself. The value of this property is stored in
the QTEXTMODE system variable. The default is False.

XrefEdit Boolean Determines whether the current drawing can be edited in place
while being referenced by another user. The value of this prop-
erty is stored in the XEDIT system variable. The default is True.

XrefLayerVisibility Boolean Specifies whether Xref-dependent layers are visible and
whether nested Xref path changes are saved. If True, Xref-
dependent layer changes made in the current drawing take
precedence (default). If False, the layer table as stored in the
reference drawing (Xref) takes precedence. The value of this
property is stored in the VISRETAIN system variable.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY482

AcadDictionaries Collection
The AcadDictionaries collection contains all the dictionaries in the drawing. Although this
collection inherits a Delete method, you can’t actually delete it. If you need to delete a specific
dictionary, use the Delete method found in the AcadDictionary object. There’s no limit to the
number of dictionaries you can create in your drawing. However, there can be only one instance
of the AcadDictionaries collection, which is predefined for each drawing. You can make multiple
references to it by using the Dictionaries property.

AcadDictionaries Collection Methods
In addition to the methods inherited from the AcadObject object, the AcadDictionaries collec-
tion supports the following methods.

Name Returns Description

Add AcadDictionary Creates a member object and adds it to the collection. Parameter:
Name As String.

Item AcadObject Gets the member object at a given index in a collection. Parameter:
Index As Variant (an Integer or a String). If the value for Index is a
String, it must match an existing object name in the collection.

AcadDictionaries Collection Properties
The AcadDictionaries collection supports the Count property, the common Application prop-
erty, and the properties inherited from the AcadObject object. It supports no other properties.

5793appA_final.qxd 8/22/05 1:35 AM Page 482

■Note Because this collection inherits from AcadObject, it supports the Modified event.

AcadDictionary Object
The AcadDictionary object represents a container object for storing and retrieving objects,
with associated string keywords by which they are referenced. A dictionary can contain any
type of object, including other dictionaries. You can create new dictionaries, add entries to an
existing dictionary, and get the keyword for a given object or the object for a given keyword.
You can change the object associated with a given keyword or rename the keyword for a given
object. However, it doesn’t perform type checking of entries.

Note that this object doesn’t represent the spell-checking dictionary, which is specified in
the AcadPreferences object.

AcadDictionary Object Methods
In addition to the methods inherited from the AcadObject object, the AcadDictionary object
supports the following properties.

Name Returns Description

AddObject AcadObject Adds an object to a named dictionary. Note that an entry replaces
one already existing with the same name. Parameters: Keyword As
String and ObjectName As String.
The first parameter is the keyword to be listed in the dictionary for
this object. The second parameter is the name of the object to be
stored. The ARX application defining the object must first be loaded
with the LoadArx method.

AddXRecord AcadXRecord Creates an XRecord object in any dictionary. Parameter: Keyword As
String.

GetName String Gets the keyword of an object in a dictionary. The parameter is the
object’s name. Parameter: Object As AcadObject.

GetObject AcadObject Gets the object in a dictionary, given the keyword for the object.
Parameter: Name As String.

Item AcadObject Gets the member object at a given index in the dictionary. Parame-
ter: Index As Variant (Integer or String). If the value for Index is a
String, it must match an existing object name in the collection.

Remove AcadObject Removes a named object from the dictionary, given its keyword.
Parameter: Name As String.

Rename Renames the keyword of an item in the dictionary. Parameters:
OldName As String and NewName As String.

Replace Replaces an item in the dictionary by a given item. This changes the
object but retains the keyword. Parameters: OldName As String and
Obj As AcadObject.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 483

5793appA_final.qxd 8/22/05 1:35 AM Page 483

AcadDictionary Object Properties
In addition to the properties inherited from the AcadObject object and the common
Application property, the AcadDictionary object supports the following properties.

Name Returns Description

Count Integer Gets the number of items in the dictionary. This property’s value is read-
only.

Name String Gets or sets the name of the dictionary.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDim3PointAngular Object
The AcadDim3PointAngular object represents a dimension of the angular distance defined by
three points. When creating a three-point angular dimension, AutoCAD draws the dimension
line arc between the extension lines, which are drawn from the angle end points to the inter-
section of the dimension line arc. AutoCAD uses the location of the dimension line arc to choose
between the minor and major angles specified by the angle vertex and extension lines. To cre-
ate a three-point angular dimension, use the AddDim3PointAngular method of the AcadBlock,
AcadModelSpace, or AcadPaperSpace object.

AcadDim3PointAngular Object Methods
The AcadDim3PointAngular object inherits all the methods of the AcadEntity and AcadObject
objects. It supports no other methods.

AcadDim3PointAngular Object Properties
The AcadDim3PointAngular object inherits all the properties of the AcadEntity object, the
AcadObject object, and the AcadDimension object, as well as the common Application prop-
erty. It also supports the following properties.

Name Returns Description

AngleFormat AcAngleUnits Gets or sets the unit format for angles. The initial value
is acDegrees. For the values of the AcAngleUnit enumer-
ated type, see Appendix B.

AngleVertex Variant Gets or sets a 3-D set of coordinates representing the
vertex.

Arrowhead1Block String Gets or sets the block used as the custom arrowhead at
Arrowhead2Block the first/second end of the dimension line. It overrides

the value of the DIMBLK1 or DIMBLK2 system variable.

Arrowhead1Type Gets or sets the type of arrowhead at the first/second
Arrowhead2Type end of the dimension line. For the values of the

AcDimArrowheadType enumerated type, see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY484

5793appA_final.qxd 8/22/05 1:35 AM Page 484

Name Returns Description

ArrowheadSize Double Gets or sets the size of the dimension line arrowheads,
leader line arrowheads, and hook lines. The initial
value for this property is 0.1800.

DimensionLineColor AcColor Gets or sets the color of the dimension lines. Use a
color index number from 0 to 256 or one of the con-
stants listed here: acByBlock (where AutoCAD draws
objects in the default color) or acByLayer (where Auto-
CAD draws objects in the color specified for the layer).
For a list of possible values for the AcColor enumerated
type, see Appendix B.

DimensionLineWeight AcLineWeight Gets or sets the lineweight of the dimension lines. It
overrides the value of the DIMLWD system variable. For a
list of possible values for the AcLineWeight enumerated
type, see Appendix B.

DimLine1Suppress Boolean Gets or sets whether the first/second dimension line is
DimLine2Suppress suppressed. It overrides the value of the DIMSD1 or DIMSD2

system variable. The initial value for this property is
False. When this property is set to True, the display of
the dimension line and arrowhead between the first
extension line and the text is suppressed.

DimLineInside Boolean Gets or sets whether the dimension lines are only dis-
played inside the extension lines. It overrides the value
of the DIMSOXD system variable. The initial value for this
property is False.

ExtensionLineColor AcColor Gets or sets the color of the extension lines. Use a color
index number from 0 to 256 or one of the constants
listed here: acByBlock (where AutoCAD draws objects
in the default color), acByLayer (where AutoCAD draws
objects in the color specified for the layer), or the AcColor
enumerated type (see Appendix B). It overrides the value
of the DIMCLRE system variable.

ExtensionLineExtend Double Gets or sets the distance that the extension line extends
beyond the dimension line. It overrides the value of the
DIMEXE system variable. The initial value for this prop-
erty is 0.1800.

ExtensionLineOffset Double Gets or sets the distance that the extension lines are
offset from the origin points. It overrides the value of
the DIMEXO system variable. The initial value for this
property is 0.0625.

ExtensionLineWeight AcLineWeight Gets or sets the lineweight of the extension lines. It
overrides the value of the DIMLWE system variable. For a
list of possible values for the AcLineWeight enumerated
type, see Appendix B.

ExtLine1Point Variant Gets or sets the end point of the first/second extension
ExtLine2Point line.

ExtLine1Suppress Boolean Gets or sets whether the first/second extension line is
ExtLine2Suppress suppressed. It overrides the value of the DIMSE1 or DIMSE2

system variable. The initial value for this property is
False.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 485

5793appA_final.qxd 8/22/05 1:35 AM Page 485

Name Returns Description

Fit AcDimFit Gets or sets whether text and arrowheads are placed
inside or outside extension lines given the availability
of space between the extension lines. This property sets
priorities for moving text and arrowheads when space
isn’t available to fit both within the extension lines. It
overrides the value of the DIMAFIT system variable. The
initial value for this property is acBestFit. For a list of
the possible values, see Appendix B.

ForceLineInside Boolean Gets or sets whether a dimension line is drawn
between the extension lines when the text is outside
the extension lines. It overrides the value of the DIMTOFL
system variable. The initial value for this property is
False.

FractionFormat Gets or sets the horizontal position of the text. For a list
of possible values for the AcDimHorizontalJustifica-
tion enumerated type, see Appendix B.

Measurement Double Gets the measurement for the dimension. For angular
dimensions, this property overrides the value for the
DIMAUNIT system variable. This property’s value is read-
only.

TextInside Boolean Gets or sets whether the text appears inside the exten-
sion lines. It overrides the value of DIMTIX system
variable. The initial value for this property is True. If
False, AutoCAD places it inside if there is room.

TextInsideAlign Boolean Gets or sets the position of any text inside/outside the
extension lines. The values for these properties over-
ride the values of the DIMTIH or DIMTOH system variable,
respectively. The initial value for this property is True.
The TextInsideAlign property is available only when
the TextInside property is set to True.

TextPrecision AcDimPrecision Gets or sets the precision of the text. For the possible
values for the AcDimPrecision enumerated type, see
Appendix B.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimAligned Object
The AcadDimAligned object represents a linear dimension, measuring the distance between
two points, that’s displayed parallel to the points being measured. In aligned dimensions, the
dimension line is parallel to the extension line origins. The extension line origins are specified
using the ExtLine1Point and ExtLine2Point properties. The AcadDimAligned object is created
using the AddDimAligned method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY486

5793appA_final.qxd 8/22/05 1:35 AM Page 486

AcadDimAligned Object Methods
The AcadDimAligned object inherits all the methods of the AcadEntity and AcadObject objects.
It supports no other methods.

AcadDimAligned Object Properties
The AcadDimAligned object inherits all the properties of the AcadEntity object, the AcadObject
object, and the AcadDimension object, as well as the common Application property. It also
supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 487

Name Returns Description

AltRoundDistance Double Gets or sets the rounding of alternative units,
if the AltUnits property is turned on. This
property, and the two that follow, all override
the value of the DIMALTZ system variable.

AltSuppressLeadingZeros Boolean Gets or sets whether leading zeros in alterna-
tive dimension values are suppressed. The
initial value for this property is False.

AltSuppressTrailingZeros Boolean Gets or sets whether trailing zeros in alterna-
tive dimension values are suppressed. The
initial value for this property is False.

AltSuppressZeroFeet Boolean Gets or sets whether a zero foot/inches
AltSuppressZeroInches measurement is suppressed in alternative

dimension values. Both properties change the
value of the DIMALTZ system variable. The ini-
tial value for this property is False.

AltTextPrefix String Gets or sets a prefix/suffix for the alternative
AltTextSuffix dimension measurement. Both properties

override the value of the DIMAPOST system
variable. The initial value for this property is
a NULL string. To turn off an established prefix,
set this property equal to a single period (.).

AltTolerancePrecision AcDimPrecision Gets or sets the precision of tolerance values
in alternative dimensions. The initial value for
this property is acDimPrecisionTwo. This
property is available only when the
ToleranceDisplay property is set to any value
other than acTolNone, and it overrides the
value of the DIMTDEC system variable. For a list
of the values for the AcDimPrecision enumer-
ated type, see Appendix B.

AltToleranceSuppressLeadingZeros Boolean Gets or sets whether leading zeros are sup-
pressed in alternative dimension values. This
property, and the three that follow, all over-
ride the DIMALTTZ system variable. The initial
value for this property is False.

AltToleranceSuppressTrailingZeros Boolean Gets or sets whether trailing zeros are sup-
pressed in alternative dimension values. The
initial value for this property is False.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 487

Name Returns Description

AltToleranceSuppressLeadingZeros Boolean Gets or sets whether a zero foot measure-
ment is suppressed in alternative tolerance
values. The initial value for this property is
False.

AltSuppressZeroInches Boolean Gets or sets whether a zero inch measure-
ment is suppressed in alternative tolerance
values. The initial value for this property is
False.

AltUnits Boolean Gets or sets whether alternative units
dimensioning is enabled. It overrides the
value of the DIMALT system variable.

AltUnitsFormat AcDimUnits Gets or sets the units format for alternative
units. The initial value for this property is
acDimDecimal. It overrides the value of the
DIMALTU system variable. For a list of possible
values for the AcDimUnits enumerated type,
see Appendix B.

AltUnitsPrecision AcDimPrecision Gets or sets the number of decimal places in
alternative units. It overrides the value of the
DIMALTD system variable. For a list of possible
values for the AcDimPrecision enumerated
type, see Appendix B.

AltUnitsScale Double Gets or sets the scale factor for alternative
units. If the AltUnits property is turned on,
this property multiplies linear dimensions
by a factor to produce a value in an alternate
system of measurement. The initial value
represents the number of millimeters in an
inch. It overrides the value of the DIMALTF
system variable.

Arrowhead1Block String Gets or sets the block used as the custom
Arrowhead2Block arrowhead at the first/second end of the

dimension line. It overrides the value of the
DIMBLK1 or DIMBLK2 system variable.

Arrowhead1Type AcDimArrowheadType Gets or sets the type of arrowhead at the
Arrowhead2Type first/second end of the dimension line. For

a list of possible values for the
AcDimArrowheadType enumerated type, see
Appendix B.

ArrowheadSize Double Gets or sets the size of the dimension line
arrowheads, leader line arrowheads, and
hook lines. It overrides the value of the
DIMASZ system variable. The initial value for
this property is 0.1800.

DimensionLineColor AcColor Gets or sets the color of the dimension lines.
Use a color index number from 0 to 256 or
one of the constants listed here: acByBlock
(where AutoCAD draws objects in the
default color) or acByLayer (where AutoCAD
draws objects in the color specified for the
layer). For a list of possible values for the
AcColor enumerated type, see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY488

5793appA_final.qxd 8/22/05 1:35 AM Page 488

Name Returns Description

DimensionLineExtend Double Gets or sets the distance the dimension line extends beyond
the extension line when oblique strokes rather than arrow-
heads are used. It overrides the value of the DIMDLE system
variable. The initial value for this property is 0.0000.

DimensionLineWeight AcLineWeight Gets or sets the lineweight of the dimension lines. It overrides
the value of the DIMLWD system variable. For a list of possible
values for the AcLineWeight enumerated type, see Appendix B.

DimLine1Suppress Boolean Gets or sets whether the first/second dimension line is sup-
DimLine2Suppress pressed. It overrides the value of the DIMSD1 or DIMSD2 system

variable. The initial value for this property is False. When this
property is set to True, the display of the dimension line and
arrowhead between the first extension line and the text is
suppressed.

DimLineInside Boolean Gets or sets whether the dimension lines are displayed only
inside the extension lines. It overrides the value of the DIMSOXD
system variable. The initial value for this property is False.

ExtensionLineColor AcColor Gets or sets the color of the extension lines. Use a color index
number from 0 to 256 or one of the constants listed here:
acByBlock (where AutoCAD draws objects in the default color),
acByLayer (where AutoCAD draws objects in the color speci-
fied for the layer), or the AcColor enumerated type (see
Appendix B). It overrides the value of the DIMCLRE system
variable.

ExtensionLineExtend Double Gets or sets the distance that the extension line extends beyond
the dimension line. It overrides the value of the DIMEXE system
variable. The initial value for this property is 0.1800.

ExtensionLineOffset Double Gets or sets the distance that the extension lines are offset
from the origin points. It overrides the value of the DIMEXO sys-
tem variable. The initial value for this property is 0.0625.

ExtensionLineWeight AcLineWeight Gets or sets the lineweight of the extension lines. It overrides
the value of the DIMLWE system variable. For a list of possible
values for the AcLineWeight enumerated type, see Appendix B.

ExtLine1Point Variant Gets or sets the end point of the first/second extension line.
ExtLine2Point

ExtLine1Suppress Boolean Gets or sets whether the first/second extension line is sup-
ExtLine2Suppress pressed. It overrides the value of the DIMSE1 or DIMSE2 system

variable. The initial value for this property is False.

Fit AcDimFit Gets or sets whether text and arrowheads are placed inside or
outside extension lines given the availability of space between
the extension lines. This property sets priorities for moving
text and arrowheads when space isn’t available to fit both
within the extension lines. It overrides the value of the
DIMAFIT system variable. The initial value for this property is
acBestFit. For a list of the possible values, see Appendix B.

ForceLineInside Boolean Gets or sets whether a dimension line is drawn between the
extension lines when the text is outside the extension lines. It
overrides the value of the DIMTOFL system variable. The initial
value for this property is False.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 489

5793appA_final.qxd 8/22/05 1:35 AM Page 489

Name Returns Description

FractionFormat AcDimFractionType Gets or sets the formats of fractional
values. It overrides the value of the
DIMFRAC system variable. This prop-
erty is used when the UnitsFormat
property is set to
acDimLArchitectural or
acDimLFractional. Possible values:
acHorizontal, acDiagonal, and
acNotStacked.

HorizontalTextPosition AcDimHorizontalJustification Gets or sets the horizontal position
of the text. It overrides the value of
the DIMJUST system variable. For a list
of possible values for the
AcDimHorizontalJustification enu-
merated type, see Appendix B.

LinearScaleFactor Double Gets or sets the global scale factor for
linear dimensioning measurements.
It overrides the value of the DIMLFAC
system variable. The initial value for
this property is 1.0000. When
LinearScaleFactor is assigned a nega-
tive value, the factor is applied only in
paper space.

Measurement Double Gets the measurement for the
dimension. This property overrides
the value for the DIMLUNIT system
variable. This property’s value is
read-only.

PrimaryUnitsPrecision AcDimPrecision Gets or sets the number of decimal
places displayed for the primary
units. For a list of possible values for
the AcDimPrecision enumerated
type, see Appendix B.

RoundDistance Double Gets or sets the rounding of units. It
overrides the value of the DIMRND sys-
tem variable.

SuppressZeroFeet Boolean Gets or sets whether a zero foot
measurement is suppressed. It over-
rides the value of the DIMZIN system
variable. The initial value for this
property is False.

SuppressZeroInches Boolean Gets or sets whether a zero inch
measurement is suppressed. It over-
rides the value of the DIMZIN system
variable. The initial value for this
property is False.

TextInside Boolean Gets or sets whether the text appears
inside the extension lines. It over-
rides the value of DIMTIX system
variable. The initial value for this
property is True. If False, AutoCAD
places it inside if there is room.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY490

5793appA_final.qxd 8/22/05 1:35 AM Page 490

Name Returns Description

TextInsideAlign Boolean Gets or sets the position of any text inside/outside the
extension lines. The values for these properties override
the values of the DIMTIH or DIMTOH system variable,
respectively. The initial value for this property is True.
The TextInsideAlign property is available only when
the TextInside property is set to True.

ToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this prop-
erty is False.

ToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this prop-
erty is False.

UnitsFormat AcDimLUnits Gets or sets the unit format. The initial value for this
property is acDimLDecimal, in which the format specified
by the DecimalSeparator and PrimaryUnitsPrecision
properties will be used to format the decimal value. For
a list of possible values for the AcDimLUnits enumerated
type, see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 491

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimAngular Object
The AcadDimAngular object represents a dimension of the angular distance between two lines
or the angle of a circular arc. If you need extension lines, they’ll be added automatically. The
end points provided will be used as origin points for the extension lines. The AcadDimAngular
object is created using the AddDimAngular method of the AcadBlock, AcadModelSpace, or
AcadPaperSpace object.

AcadDimAngular Object Methods
The AcadDimAngular object inherits all the methods of the AcadEntity and AcadObject objects.
It supports no other methods.

AcadDimAngular Object Properties
The AcadDimAngular object inherits all the properties of the AcadEntity object, the AcadObject
object, and the AcadDimension object, as well as the common Application property. It also
supports all the other properties supported by the AcadDim3PointAngular object except for the
AngleVertex property. This object, however, has the following two extra properties.

5793appA_final.qxd 8/22/05 1:35 AM Page 491

Name Returns Description

ExtLine1StartPoint Variant Gets or sets the start point of the first/second extension line.
ExtLine2StartPoint

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimArcLength Object
This is a circular-style dimension measuring the length of an arc.

AcadDimArcLength Object Methods
The AcadDimArcLength object inherits all the methods of the AcadEntity and AcadObject
objects. It supports no other methods.

AcadDimArcLength Object Properties
The AcadDimArcLength object inherits all the properties of the AcadEntity object, the
AcadObject object, and the AcadDimension object, as well as the common Application
property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY492

Name Returns Description

AltRoundDistance Double Gets or sets the rounding of alternative units, if
the AltUnits property is turned on. This prop-
erty, and the two that follow, all override the
value of the DIMALTZ system variable.

AltSuppressLeadingZeros Boolean Gets or sets whether leading zeros in alternative
dimension values are suppressed. The initial
value for this property is False.

AltSuppressTrailingZeros Boolean Gets or sets whether trailing zeros in alternative
dimension values are suppressed. The initial
value for this property is False.

AltSuppressZeroFeet Boolean Gets or sets whether a zero foot/inches measure-
AltSuppressZeroInches ment is suppressed in alternative dimension val-

ues. Both properties change the value of the
DIMALTZ system variable. The initial value for this
property is False.

AltTextPrefix String Gets or sets a prefix/suffix for the alternative
AltTextSuffix dimension measurement. Both properties over-

ride the value of the DIMAPOST system variable.
The initial value for this property is a NULL string.
To turn off an established prefix, set this property
equal to a single period (.).

5793appA_final.qxd 8/22/05 1:35 AM Page 492

Name Returns Description

AltTolerancePrecision AcDimPrecision Gets or sets the precision of tolerance values in
alternative dimensions. The initial value for this
property is acDimPrecisionTwo. This property is
available only when the ToleranceDisplay prop-
erty is set to any value other than acTolNone, and
it overrides the value of the DIMTDEC system vari-
able. For a list of the values for the AcDimPrecision
enumerated type, see Appendix B.

AltToleranceSuppressLeadingZeros Boolean Gets or sets whether leading zeros are sup-
pressed in alternative dimension values. This
property, and the three that follow, all override
the DIMALTTZ system variable. The initial value for
this property is False.

AltToleranceSuppressTrailingZeros Boolean Gets or sets whether trailing zeros are sup-
pressed in alternative dimension values. The
initial value for this property is False.

AltToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is
suppressed in alternative tolerance values. The
initial value for this property is False.

AltToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is
suppressed in alternative tolerance values. The
initial value for this property is False.

AltUnits Boolean Gets or sets whether alternative units dimen-
sioning is enabled. This overrides the value of
the DIMALT system variable.

AltUnitsFormat AcDimUnits Gets or sets the units format for alternative units.
The initial value for this property is acDimDecimal.
This overrides the value of the DIMALTU system
variable. For a list of possible values for the
AcDimUnits enumerated type, see Appendix B.

AltUnitsPrecision AcDimPrecision Gets or sets the number of decimal places in
alternative units. This overrides the value of the
DIMALTD system variable. For a list of possible val-
ues for the AcDimPrecision enumerated type, see
Appendix B.

AltUnitsScale Double Gets or sets the scale factor for alternative units.
If the AltUnits property is turned on, this prop-
erty multiplies linear dimensions by a factor to
produce a value in an alternate system of meas-
urement. The initial value represents the number
of millimeters in an inch. This overrides the
value of the DIMALTF system variable.

ArcEndParam Double Gets or sets the end parameter of the arc as a 3-D
coordinate.

ArcPoint Variant Gets or sets a point on the arc as a 3-D coordinate.

ArcStartParam Double Gets or sets the start parameter of the arc as a
3-D coordinate.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 493

5793appA_final.qxd 8/22/05 1:35 AM Page 493

Name Returns Description

Arrowhead1Block String Gets or sets the block used as the custom arrowhead
Arrowhead2Block at the first/second end of the dimension line. This over-

rides the value of the DIMBLK1 or DIMBLK2 system variable.

Arrowhead1Type AcDimArrowheadType Gets or sets the type of arrowhead at the first/second
Arrowhead2Type end of the dimension line. For a list of possible values

for the AcDimArrowheadType enumerated type, see
Appendix B.

ArrowheadSize Double Gets or sets the size of the dimension line arrowheads,
leader line arrowheads and hook lines. This overrides
the value of the DIMASZ system variable. The initial value
for this property is 0.1800.

CenterPoint Variant Gets or sets the center as a set of 3-D coordinates.

DimensionLineColor AcColor Gets or sets the color of the dimension lines. Use a color
index number from 0 to 256 or one of the constants
listed here: acByBlock (where AutoCAD draws objects
in default color) or acByLayer (where AutoCAD draws
objects in the color specified for the layer). For a list of
possible values for the AcColor enumerated type, see
Appendix B.

DimensionLineExtend Double Gets or sets the distance the dimension line extends
beyond the extension line when oblique strokes rather
than arrowheads are used. This overrides the value of
the DIMDLE system variable. The initial value for this
property is 0.0000.

DimensionLineWeight AcLineWeight Gets or sets the line weight of the dimension lines. This
overrides the value of the DIMLWD system variable. For a
list of possible values for the AcLineWeight enumerated
type, see Appendix B.

DimLine1Suppress Boolean Gets or sets whether the first/second dimension line is
DimLine2Suppress suppressed. This overrides the value of the DIMSD1 or

DIMSD2 system variable. The initial value for this prop-
erty is False. When this property is set to True, the
display of the dimension line and arrowhead between
the first extension line and the text is suppressed.

DimLineInside Boolean Gets or sets whether the dimension lines are displayed
only inside the extension lines. This overrides the value
of the DIMSOXD system variable. The initial value for this
property is False.

ExtensionLineColor AcCmColor Gets or sets the color of the extension lines. Use a color
index number from 0 to 256 or one of the constants
listed here: acByBlock (where AutoCAD draws objects in
default color), acByLayer (where AutoCAD draws objects
in the color specified for the layer), and the AcColor
enumerated type (see Appendix B). This overrides the
value of the DIMCLRE system variable.

ExtensionLineExtend Double Gets or sets the distance that the extension line extends
beyond the dimension line. This overrides the value of
the DIMEXE system variable. The initial value for this
property is 0.1800.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY494

5793appA_final.qxd 8/22/05 1:35 AM Page 494

Name Returns Description

ExtensionLineOffset Double Gets or sets the distance that the extension
lines are offset from the origin points. This
overrides the value of the DIMEXO system
variable. The initial value for this property
is 0.0625.

ExtensionLineWeight AcLineWeight Gets or sets the line weight of the extension
lines. This overrides the value of the DIMLWE
system variable. For a list of possible values
for the AcLineWeight enumerated type, see
Appendix B.

ExtLine1Point Variant Gets or sets the endpoint of the first/second
ExtLine2Point extension line.

ExtLine1Suppress Boolean Gets or sets whether the first/second exten-
ExtLine2Suppress sion line is suppressed. This overrides the

value of the DIMSE1 or DIMSE2 system vari-
able. The initial value for this property is
False.

Fit AcDimFit Gets or sets whether text and arrowheads are
placed inside or outside extension lines given
the availability of space between the exten-
sion lines. This property sets priorities for
moving text and arrowheads when space is
not available to fit both within the extension
lines. This overrides the value of the DIMAFIT
system variable. The initial value for this
property is acBestFit. For a list of the possi-
ble values, see Appendix B.

ForceLineInside Boolean Gets or sets whether a dimension line is
drawn between the extension lines when the
text is outside the extension lines. This over-
rides the value of the DIMTOFL system variable.
The initial value for this property is False.

FractionFormat AcDimFractionType Gets or sets the formats of fractional values.
This overrides the value of the DIMFRAC sys-
tem variable. This property is used when
the UnitsFormat property is set to
acDimLArchitectural or acDimLFractional.
Possible values: acHorizontal, acDiagonal
and acNotStacked.

HasLeader Boolean Specifies whether the dimension has a leader.
The initial value for this property is False.

HorizontalTextPosition AcDimHorizontalJustification Gets or sets the horizontal position of the
text. This overrides the value of the DIMJUST
system variable. For a list of possible values
for the AcDimHorizontalJustification enu-
merated type, see Appendix B.

IsPartial Boolean Gets or sets whether the dimension is for a
partial arc. The initial value for this property
is False.

Leader1Point Variant Gets or sets the origin for Leader 1 as a set of
3-D coordinates.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 495

5793appA_final.qxd 8/22/05 1:35 AM Page 495

Name Returns Description

Leader2Point Variant Gets or sets the origin for Leader 2 as a set of
3-D coordinates.

LinearScaleFactor Double Gets or sets the global scale factor for linear
dimensioning measurements. This overrides
the value of the DIMLFAC system variable. The
initial value for this property is 1.0000. When
LinearScaleFactor is assigned a negative
value, the factor is applied only in paper space.

Measurement Double Gets the measurement for the dimension. This
property overrides the value for the DIMLUNIT
system variable. This is read-only.

PrimaryUnitsPrecision AcDimPrecision Gets or sets the number of decimal places dis-
played for the primary units. For a list of possible
values for the AcDimPrecision enumerated type,
see Appendix B.

RoundDistance Double Gets or sets the rounding of units. This over-
rides the value of the DIMRND system variable.

SuppressZeroFeet Boolean Gets or sets whether a zero foot measurement
is suppressed. This overrides the value of the
DIMZIN system variable. The initial value for
this property is False.

SuppressZeroInches Boolean Gets or sets whether a zero inch measurement
is suppressed. This overrides the value of the
DIMZIN system variable. The initial value for
this property is False.

SymbolPosition AcDimArcLengthSymbol Gets and sets placement of the arc length
dimension symbol. For a list of possible values
for the AcDimArcLengthSymbol enumerated
type, see Appendix B.

TextInside Boolean Gets or sets whether the text appears inside
the extension lines. This overrides the value
of DIMTIX system variable. The initial value for
this property is True. If False, AutoCAD places
it inside if there is room.

TextInsideAlign Boolean Gets or sets the position of any text inside/
outside the extension lines. The values for
these properties override the values of the
DIMTIH or DIMTOH system variable, respectively.
The initial value for this property is True. The
TextInsideAlign property is available only
when the TextInside property is set to True.

TextOutsideAlign Boolean Gets or sets the position of any text inside/out-
side the extension lines. The values for these
properties override the values of the DIMTIH or
DIMTOH system variables, respectively. The ini-
tial value for this property is True. The
TextInsideAlign property is available only
when the TextInside property is set to True.

ToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement
is suppressed in tolerance values. This over-
rides the value of the DIMZIN system variable.
The initial value for this property is False.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY496

5793appA_final.qxd 8/22/05 1:35 AM Page 496

Name Returns Description

ToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed in tolerance values. This overrides the value of
the DIMZIN system variable. The initial value for this prop-
erty is False.

TrueColor AcCmColor Gets or sets an object’s color. Colors are identified by an
AcCmColor object. This object can hold an RGB value, an
ACI number (an integer from 1 to 255), or a named color.
Using an RGB value, you can choose from millions of col-
ors.

UnitsFormat AcDimLUnits Gets or sets the unit format. The initial value for this
property is acDimLDecimal, where the format specified by
the DecimalSeparator and PrimaryUnitsPrecision prop-
erties will be used to format the decimal value. For a list
of possible values for the AcDimLUnits enumerated type,
see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 497

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimDiametric Object
The AcadDimDiametric object represents a dimension of the diameter of a circle or arc. The
position of the text, set in the TextPosition property, determines the location of the dimen-
sion line. The AcadDimDiametric object is created using the AddDimDiametric method of the
AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadDimDiametric Object Methods
The AcadDimDiametric object inherits all the properties of the AcadEntity and AcadObject
objects. It supports no other methods.

AcadDimDiametric Object Properties
The AcadDimDiametric object supports all the properties inherited from the AcadEntity object,
the AcadObject object, and the AcadDimension object, as well as the common Application
property. It also supports the following properties.

Name Returns Description

AltRoundDistance Double Gets or sets the rounding of alternative units if the AltUnits
property is turned on. This property and the two that follow
override the value of the DIMALTZ system variable.

AltSuppressLeadingZeros Boolean Gets or sets whether leading zeros in alternative dimension val-
ues are suppressed. The initial value for this property is False.

AltSuppressTrailingZeros Boolean Gets or sets whether trailing zeros in alternative dimension val-
ues are suppressed. The initial value for this property is False.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 497

Name Returns Description

AltSuppressZeroFeet Boolean Gets or sets whether a zero foot/inches meas
AltSuppressZeroInches urement is suppressed in alternative dimension

values. Both properties change the value of the
DIMALTZ system variable. The initial value for
this property is False.

AltTextPrefix String Gets or sets a prefix/suffix for the alternative
AltTextSuffix dimension measurement. Both properties over-

ride the value of the DIMAPOST system variable.
The initial value for this property is a NULL string.
To turn off an established prefix, set this prop-
erty equal to a single period (.).

AltTolerancePrecision AcDimPrecision Gets or sets the precision of tolerance values in
alternative dimensions. The initial value for this
property is acDimPrecisionTwo. This property is
available only when the ToleranceDisplay prop-
erty is set to any value other than acTolNone, and
it overrides the value of the DIMTDEC system vari-
able. For a list of the values for the AcDimPrecision
enumerated type, see Appendix B.

AltToleranceSuppressLeadingZeros Boolean Gets or sets whether leading zeros are sup-
pressed in alternative dimension values. This
property and the three that follow override the
DIMALTTZ system variable. The initial value for
this property is False.

AltToleranceSuppressTrailingZeros Boolean Gets or sets whether trailing zeros are sup-
pressed in alternative dimension values. The
initial value for this property is False.

AltToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement
is suppressed in alternative tolerance values.
The initial value for this property is False.

AltToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement
is suppressed in alternative tolerance values.
The initial value for this property is False.

AltUnits Boolean Gets or sets whether alternative units dimen-
sioning is enabled. It overrides the value of the
DIMALT system variable.

AltUnitsFormat AcDimUnits Gets or sets the units format for alternative units.
The initial value for this property is acDimDecimal.
It overrides the value of the DIMALTU system vari-
able. For a list of possible values for the AcDimUnits
enumerated type, see Appendix B.

AltUnitsPrecision AcDimPrecision Gets or sets the number of decimal places in
alternative units. It overrides the value of the
DIMALTD system variable. For a list of possible
values for the AcDimPrecision enumerated type,
see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY498

5793appA_final.qxd 8/22/05 1:35 AM Page 498

Name Returns Description

AltUnitsScale Double Gets or sets the scale factor for alternative units.
If the AltUnits property is turned on, this prop-
erty multiplies linear dimensions by a factor to
produce a value in an alternate system of meas-
urement. The initial value represents the number
of millimeters in an inch. It overrides the value
of the DIMALTF system variable.

Arrowhead1Block/Arrowhead2Block String Gets or sets the block used as the custom arrow-
head at the first/second end of the dimension
line. It overrides the value of the DIMBLK1 or
DIMBLK2 system variable.

AcDimArrowheadType Gets or sets the type of arrowhead at the first/
second end of the dimension line. For a list of
possible values for the AcDimArrowheadType enu-
merated type, see Appendix B.

ArrowheadSize Double Gets or sets the size of the dimension line arrow-
heads, leader line arrowheads, and hook lines. It
overrides the value of the DIMASZ system variable.
The initial value for this property is 0.1800.

CenterMarkSize Double Gets or sets the size of the center mark. It over-
rides the value of the DIMCEN system variable. The
initial value for this property is 0.0900. This prop-
erty isn’t available if the CenterType property is
set to acCenterNone.

CenterType AcDimCenterType Gets or sets the type of the center mark. The cen-
ter mark is visible only if you place the dimension
line outside the circle or arc. It overrides the value
of the DIMCEN system variable. For a list of possible
values for the AcDimCenterType enumerated type,
see Appendix B.

DimensionLineColor AcColor Gets or sets the color of the dimension lines.
Use a color index number from 0 to 256 or one
of the constants listed here: acByBlock (where
AutoCAD draws objects in the default color) or
acByLayer (where AutoCAD draws objects in the
color specified for the layer). For a list of possi-
ble values for the AcColor enumerated type, see
Appendix B.

DimensionLineWeight AcLineWeight Gets or sets the lineweight of the dimension
lines. It overrides the value of the DIMLWD system
variable. For a list of possible values for the
AcLineWeight enumerated type, see Appendix B.

DimLine1Suppress Boolean Gets or sets whether the first/second dimension
DimLine2Suppress line is suppressed. It overrides the value of the

DIMSD1 or DIMSD2 system variable. The initial value
for this property is False. When this property is
set to True, the display of the dimension line
and arrowhead between the first extension line
and the text is suppressed.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 499

5793appA_final.qxd 8/22/05 1:35 AM Page 499

Name Returns Description

Fit AcDimFit Gets or sets whether text and arrowheads
are placed inside or outside extension lines
given the availability of space between the
extension lines. This property sets priorities
for moving text and arrowheads when space
isn’t available to fit both within the exten-
sion lines. It overrides the value of the DIMAFIT
system variable. The initial value for this
property is acBestFit. For a list of the pos-
sible values, see Appendix B.

ForceLineInside Boolean Gets or sets whether a dimension line is
drawn between the extension lines when
the text is outside the extension lines. It
overrides the value of the DIMTOFL system
variable. The initial value for this property
is False.

FractionFormat AcDimFractionType Gets or sets the formats of fractional values.
It overrides the value of the DIMFRAC system
variable. This property is used when the
UnitsFormat property is set to
acDimLArchitectural or acDimLFractional.
Possible values: acHorizontal, acDiagonal,
and acNotStacked.

HorizontalTextPosition AcDimHorizontalJustification Gets or sets the horizontal position of the
text. For a list of possible values for the
AcDimHorizontalJustification enumerated
type, see Appendix B.

LeaderLength Double Sets the length of the leader. This property
is write-only; it’s used when the object is
created and isn’t stored.

LinearScaleFactor Double Gets or sets the global scale factor for linear
dimensioning measurements. It overrides
the value of the DIMLFAC system variable.
The initial value for this property is 1.0000.
When LinearScaleFactor is assigned a neg-
ative value, the factor is applied only in
paper space.

Measurement Double Gets the measurement for the dimension.
This property overrides the value for the
DIMLUNIT system variable. This property’s
value is read-only.

PrimaryUnitsPrecision AcDimPrecision Gets or sets the number of decimal places
displayed for the primary units. For a list of
possible values for the AcDimPrecision enu-
merated type, see Appendix B.

RoundDistance Double Gets or sets the rounding of units. It over-
rides the value of the DIMRND system variable.

SuppressZeroFeet Boolean Gets or sets whether a zero foot measure-
ment is suppressed. It overrides the value of
the DIMZIN system variable. The initial value
for this property is False.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY500

5793appA_final.qxd 8/22/05 1:35 AM Page 500

Name Returns Description

SuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed. It overrides the value of the DIMZIN system
variable. The initial value for this property is False.

TextInside Boolean Gets or sets whether the text appears inside the extension
lines. It overrides the value of DIMTIX system variable. The
initial value for this property is True. If False, AutoCAD
places it inside if there’s room.

TextInsideAlign Boolean Gets or sets the position of any text inside/outside the
extension lines. The values for these properties override
the values of the DIMTIH and DIMTOH system variables,
respectively. The initial value for this property is True.
The TextInsideAlign property is available only when
the TextInside property is set to True.

ToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this prop-
erty is False.

ToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this prop-
erty is False.

UnitsFormat AcDimLUnits Gets or sets the unit format. The initial value for this
property is acDimLDecimal, where the format specified
by the DecimalSeparator and PrimaryUnitsPrecision
properties will be used to format the decimal value. For
a list of possible values for the AcDimLUnits enumerated
type, see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 501

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimOrdinate Object
The AcadDimOrdinate object represents a dimension of the absolute X or Y position of a point
from the origin. Ordinate dimensions display the X or Y UCS coordinate of an object along with
a simple leader line. The absolute value of the coordinate is used according to the prevailing
standards for ordinate dimensions. To change the extension lines of an ordinate dimension,
change the Rotation property and/or the TextPosition property. The extension lines will be
recalculated to fit the new requirements. The AcadDimOrdinate object is created using the
AddDimOrdinate method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadDimOrdinate Object Methods
The AcadDimOrdinate object inherits all the methods of the AcadEntity and AcadObject objects.
It supports no other methods.

5793appA_final.qxd 8/22/05 1:35 AM Page 501

AcadDimOrdinate Object Properties
The AcadDimOrdinate object inherits all the properties of the AcadEntity object, the AcadObject
object, and the AcadDimension object, as well as the common Application property. It also
supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY502

Name Returns Description

AltRoundDistance Double Gets or sets the rounding of alternative units if
the AltUnits property is turned on. This prop-
erty and the two that follow override the value
of the DIMALTZ system variable.

AltSuppressLeadingZeros Boolean Gets or sets whether leading zeros in alternative
dimension values are suppressed. The initial
value for this property is False.

AltSuppressTrailingZeros Boolean Gets or sets whether trailing zeros in alternative
dimension values are suppressed. The initial
value for this property is False.

AltSuppressZeroFeet Boolean Gets or sets whether a zero foot/inches meas-
AltSuppressZeroInches urement is suppressed in alternative dimension

values. Both properties change the value of the
DIMALTZ system variable. The initial value for
this property is False.

AltTextPrefix String Gets or sets a prefix/suffix for the alternative
AltTextSuffix dimension measurement. Both properties over-

ride the value of the DIMAPOST system variable.
The initial value for this property is a NULL
string. To turn off an established prefix, set this
property equal to a single period (.).

AltTolerancePrecision AcDimPrecision Gets or sets the precision of tolerance values in
alternative dimensions. The initial value for this
property is acDimPrecisionTwo. This property is
available only when the ToleranceDisplay prop-
erty is set to any value other than acTolNone,
and it overrides the value of the DIMTDEC system
variable. For a list of the values for the
AcDimPrecision enumerated type, see
Appendix B.

AltToleranceSuppressLeadingZeros Boolean Gets or sets whether leading zeros are sup-
pressed in alternative dimension values. This
property and the three that follow override the
DIMALTTZ system variable. The initial value for
this property is False.

AltToleranceSuppressTrailingZeros Boolean Gets or sets whether trailing zeros are suppressed
in alternative dimension values. The initial value
for this property is False.

AltToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is
suppressed in alternative tolerance values. The
initial value for this property is False.

AltToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement
is suppressed in alternative tolerance values.
The initial value for this property is False.

5793appA_final.qxd 8/22/05 1:35 AM Page 502

Name Returns Description

AltUnits Boolean Gets or sets whether alternative units dimensioning is
enabled. It overrides the value of the DIMALT system variable.

AltUnitsFormat AcDimUnits Gets or sets the units format for alternative units. The initial
value for this property is acDimDecimal. It overrides the value
of the DIMALTU system variable. For a list of possible values
for the AcDimUnits enumerated type, see Appendix B.

AltUnitsPrecision AcDimPrecision Gets or sets the number of decimal places in alternative
units. It overrides the value of the DIMALTD system variable.
For a list of possible values for the AcDimPrecision enu-
merated type, see Appendix B.

AltUnitsScale Double Gets or sets the scale factor for alternative units. If the
AltUnits property is turned on, this property multiplies
linear dimensions by a factor to produce a value in an
alternate system of measurement. The initial value repre-
sents the number of millimeters in an inch. It overrides
the value of the DIMALTF system variable.

ArrowheadSize Double Gets or sets the size of the dimension line arrowheads, leader
line arrowheads, and hook lines. It overrides the value of the
DIMASZ system variable. The initial value for this property is
0.1800.

ExtensionLineColor AcColor Gets or sets the color of the extension lines. Use a color
index number from 0 to 256 or one of the constants listed
here: acByBlock (where AutoCAD draws objects in the
default color), acByLayer (where AutoCAD draws objects
in the color specified for the layer), or the AcColor enu-
merated type (see the AcadEntity object in Appendix B).
It overrides the value of the DIMCLRE system variable.

ExtensionLineOffset Double Gets or sets the distance that the extension lines are offset
from the origin points. It overrides the value of the DIMEXO
system variable. The initial value for this property is 0.0625.

ExtensionLineWeight AcLineWeight Gets or sets the lineweight of the extension lines. It over-
rides the value of the DIMLWE system variable. For a list of
possible values for the AcLineWeight enumerated type, see
Appendix B.

FractionFormat AcDimFractionType Gets or sets the formats of fractional values. It overrides
the value of the DIMFRAC system variable. This property is
used when the UnitsFormat property is set to
acDimLArchitectural or acDimLFractional. Possible
values: acHorizontal, acDiagonal, and acNotStacked.

LinearScaleFactor Double Gets or sets the global scale factor for linear dimensioning
measurements. It overrides the value of the DIMLFAC sys-
tem variable. The initial value for this property is 1.0000.
When LinearScaleFactor is assigned a negative value, the
factor is applied only in paper space.

Measurement Double Gets the measurement for the dimension. This property
overrides the value for the DIMLUNIT system variable. This
property’s value is read-only.

PrimaryUnitsPrecision AcDimPrecision Gets or sets the number of decimal places displayed for
the primary units. For a list of possible values for the
AcDimPrecision enumerated type, see Appendix B.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 503

5793appA_final.qxd 8/22/05 1:35 AM Page 503

Name Returns Description

RoundDistance Double Gets or sets the rounding of units. It overrides the value
of the DIMRND system variable.

SuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is sup-
pressed. It overrides the value of the DIMZIN system
variable. The initial value for this property is False.

SuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed. It overrides the value of the DIMZIN system
variable. The initial value for this property is False.

TextInside Boolean Gets or sets whether the text appears inside the extension
lines. It overrides the value of DIMTIX system variable. The
initial value for this property is True. If False, AutoCAD
places it inside if there’s room.

TextInsideAlign Boolean Gets or sets the position of any text inside/ outside the
extension lines. The values for these properties override
the values of the DIMTIH and DIMTOH system variables,
respectively. The initial value for this property is True.
The TextInsideAlign property is available only when
the TextInside property is set to True.

ToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this property
is False.

ToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this property
is False.

UnitsFormat AcDimLUnits Gets or sets the unit format. The initial value for this
property is acDimLDecimal, where the format specified by
the DecimalSeparator and PrimaryUnitsPrecision prop-
erties will be used to format the decimal value. For a list
of possible values for the AcDimLUnits enumerated type,
see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY504

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimRadial Object
The AcadDimRadial object represents a dimension of the radius of a circle or arc. The position
of the text, set in the TextPosition property, determines the location of the dimension line.
The AcadDimRadial object is created using the AddDimRadial method of the AcadBlock,
AcadModelSpace, or AcadPaperSpace object.

AcadDimRadial Object Methods
The AcadDimRadial object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

5793appA_final.qxd 8/22/05 1:35 AM Page 504

AcadDimRadial Object Properties
The AcadDimRadial object inherits all the properties of the AcadEntity object, the AcadObject
object, and the AcadDimension object, as well as the common Application property. It also
supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 505

Name Returns Description

AltRoundDistance Double Gets or sets the rounding of alternative units if
the AltUnits property is turned on. This prop-
erty and the two that follow override the value
of the DIMALTZ system variable.

AltSuppressLeadingZeros Boolean Gets or sets whether leading zeros in alternative
dimension values are suppressed. The initial
value for this property is False.

AltSuppressTrailingZeros Boolean Gets or sets whether trailing zeros in alternative
dimension values are suppressed. The initial
value for this property is False.

AltSuppressZeroFeet Boolean Gets or sets whether a zero foot/inches meas-
AltSuppressZeroInches urement is suppressed in alternative dimension

values. Both properties change the value of the
DIMALTZ system variable. The initial value for
this property is False.

AltTextPrefix String Gets or sets a prefix/suffix for the alternative
AltTextSuffix dimension measurement. Both properties over-

ride the value of the DIMAPOST system variable.
The initial value for this property is a NULL
string. To turn off an established prefix, set this
property equal to a single period (.).

AltTolerancePrecision AcDimPrecision Gets or sets the precision of tolerance values in
alternative dimensions. The initial value for this
property is acDimPrecisionTwo. This property is
available only when the ToleranceDisplay prop-
erty is set to any value other than acTolNone, and
it overrides the value of the DIMTDEC system vari-
able. For a list of the values for the AcDimPrecision
enumerated type, see Appendix B.

AltToleranceSuppressLeadingZeros Boolean Gets or sets whether leading zeros are sup-
pressed in alternative dimension values. This
property and the three that follow override the
DIMALTTZ system variable. The initial value for
this property is False.

AltToleranceSuppressTrailingZeros Boolean Gets or sets whether trailing zeros are sup-
pressed in alternative dimension values. The
initial value for this property is False.

AltToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is
suppressed in alternative tolerance values. The
initial value for this property is False.

AltToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is
suppressed in alternative tolerance values. The
initial value for this property is False.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 505

Name Returns Description

AltUnits Boolean Gets or sets whether alternative units dimensioning is
enabled. It overrides the value of the DIMALT system variable.

AltUnitsFormat AcDimUnits Gets or sets the units format for alternative units. The initial
value for this property is acDimDecimal. It overrides the value
of the DIMALTU system variable. For a list of possible values
for the AcDimUnits enumerated type, see Appendix B.

AltUnitsPrecision AcDimPrecision Gets or sets the number of decimal places in alternative
units. It overrides the value of the DIMALTD system variable.
For a list of possible values for the AcDimPrecision enumer-
ated type, see Appendix B.

AltUnitsScale Double Gets or sets the scale factor for alternative units. If the
AltUnits property is turned on, this property multiplies linear
dimensions by a factor to produce a value in an alternate sys-
tem of measurement. The initial value represents the number
of millimeters in an inch. It overrides the value of the DIMALTF
system variable.

ArrowheadBlock String Gets or sets the block used as the custom arrowhead.

ArrowheadSize Double Gets or sets the size of the dimension line arrowheads, leader
line arrowheads, and hook lines. It overrides the value of the
DIMASZ system variable. The initial value for this property is
0.1800.

ArrowheadType AcDimArrowheadType Gets or sets the type of the arrowhead. It overrides the value of
the DIMLDRBLK system variable. For a list of possible values for
the AcDimArrowheadType enumerated type, see Appendix B.

CenterMarkSize Double Gets or sets the size of the center mark. The initial value for
this property is 0.0900. This property isn’t available if the
CenterType property is set to acCenterNone.

CenterType AcDimCenterType Gets or sets the type of the center mark. The center mark is
visible only if you place the dimension line outside the circle
or arc. It overrides the value of the DIMCEN system variable.
For a list of possible values for the AcDimCenterType enumer-
ated type, see Appendix B.

DimensionLineColor AcColor Gets or sets the color of the dimension lines. Use a color
index number from 0 to 256 or one of the constants listed
here: acByBlock (where AutoCAD draws objects in the
default color) or acByLayer (where AutoCAD draws objects
in the color specified for the layer). For a list of possible val-
ues for the AcColor enumerated type, see Appendix B.

DimensionLineWeight AcLineWeight Gets or sets the lineweight of the dimension lines. It over-
rides the value of the DIMLWD system variable. For a list of
possible values for the AcLineWeight enumerated type, see
Appendix B.

DimLineSuppress Boolean Specifies whether the dimension line is suppressed. It over-
rides the value of the DIMSD2 system variable. The initial value
for this property is False. When this property is set to True,
the display of the dimension line and arrowhead between the
extension line and the text is suppressed.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY506

5793appA_final.qxd 8/22/05 1:35 AM Page 506

Name Returns Description

Fit AcDimFit Gets or sets whether text and arrowheads are
placed inside or outside extension lines given
the availability of space between the exten-
sion lines. This property sets priorities for
moving text and arrowheads when space isn’t
available to fit both within the extension lines.
It overrides the value of the DIMAFIT system
variable. The initial value for this property is
acBestFit. For a list of the possible values, see
Appendix B.

ForceLineInside Boolean Gets or sets whether a dimension line is drawn
between the extension lines when the text is
outside the extension lines. It overrides the
value of the DIMTOFL system variable. The ini-
tial value for this property is False.

FractionFormat AcDimFractionType Gets or sets the formats of fractional values.
It overrides the value of the DIMFRAC system
variable. This property is used when the
UnitsFormat property is set to
acDimLArchitectural or acDimLFractional.
Possible values: acHorizontal, acDiagonal,
and acNotStacked.

HorizontalTextPosition AcDimHorizontalJustification Gets or sets the horizontal position of the
text. For a list of possible values for the
AcDimHorizontalJustification enumerated
type, see Appendix B.

LeaderLength Double Sets the length of the leader. This property is
write-only; it’s used when the object is cre-
ated and isn’t stored.

LinearScaleFactor Double Gets or sets the global scale factor for linear
dimensioning measurements. It overrides
the value of the DIMLFAC system variable. The
initial value for this property is 1.0000. When
LinearScaleFactor is assigned a negative
value, the factor is applied only in paper space.

Measurement Double Gets the measurement for the dimension.
This property overrides the value for the
DIMLUNIT system variable. This property’s
value is read-only.

PrimaryUnitsPrecision AcDimPrecision Gets or sets the number of decimal places
displayed for the primary units. For a list of
possible values for the AcDimPrecision enu-
merated type, see Appendix B.

RoundDistance Double Gets or sets the rounding of units. It over-
rides the value of the DIMRND system variable.

SuppressZeroFeet Boolean Gets or sets whether a zero foot measure-
ment is suppressed. It overrides the value of
the DIMZIN system variable. The initial value
for this property is False.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 507

5793appA_final.qxd 8/22/05 1:35 AM Page 507

Name Returns Description

SuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed. It overrides the value of the DIMZIN system
variable. The initial value for this property is False.

TextInside Boolean Gets or sets whether the text appears inside the extension
lines. It overrides the value of the DIMTIX system variable.
The initial value for this property is True. If False, Auto-
CAD places it inside if there’s room.

TextInsideAlign Boolean Gets or sets the position of any text inside/outside the
extension lines. The values for these properties override
the values of the DIMTIH and DIMTOH system variables,
respectively. The initial value for this property is True.
The TextInsideAlign property is available only when the
TextInside property is set to True.

ToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this property
is False.

ToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this property
is False.

UnitsFormat AcDimLUnits Gets or sets the unit format. The initial value for this prop-
erty is acDimLDecimal, where the format specified by the
DecimalSeparator and PrimaryUnitsPrecision properties
will be used to format the decimal value. For a list of pos-
sible values for the AcDimLUnits enumerated type, see
Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY508

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimRadialLarge Object
This is a dimension measuring a large radius, also known as a jogged radius dimension.

AcadDimRadialLarge Object Methods
The AcadDimRadialLarge object inherits all the methods of the AcadEntity and AcadObject
objects. It doesn’t support any other methods.

AcadDimRadialLarge Object Properties
The AcadDimRadialLarge object inherits all the properties of the AcadEntity object, the
AcadObject object, and the AcadDimension object, as well as the common Application prop-
erty. It also supports the following properties.

5793appA_final.qxd 8/22/05 1:35 AM Page 508

Name Returns Description

AltRoundDistance Double Gets or sets the rounding of alternative units, if
the AltUnits property is turned on. This property,
and the two that follow, all override the value of
the DIMALTZ system variable.

AltSuppressLeadingZeros Boolean Gets or sets whether leading zeros in alternative
dimension values are suppressed. The initial value
for this property is False.

AltSuppressTrailingZeros Boolean Gets or sets whether trailing zeros in alternative
dimension values are suppressed. The initial value
for this property is False.

AltSuppressZeroFeet Boolean Gets or sets whether a zero foot/inches measure-
AltSuppressZeroInches ment is suppressed in alternative dimension values.

Both properties change the value of the DIMALTZ
system variable. The initial value for this property
is False.

AltTextPrefix String Gets or sets a prefix/suffix for the alternative
AltTextSuffix dimension measurement. Both properties over-

ride the value of the DIMAPOST system variable.
The initial value for this property is a NULL string.
To turn off an established prefix, set this property
equal to a single period (.).

AltTolerancePrecision AcDimPrecision Gets or sets the precision of tolerance values in
alternative dimensions. The initial value for this
property is acDimPrecisionTwo. This property is
available only when the ToleranceDisplay prop-
erty is set to any value other than acTolNone, and it
overrides the value of the DIMTDEC system variable.
For a list of the values for the AcDimPrecision enu-
merated type, see Appendix B.

AltToleranceSuppressLeadingZeros Boolean Gets or sets whether leading zeros are suppressed
in alternative dimension values. This property, and
the three that follow, all override the DIMALTTZ sys-
tem variable. The initial value for this property is
False.

AltToleranceSuppressTrailingZeros Boolean Gets or sets whether trailing zeros are suppressed
in alternative dimension values. The initial value
for this property is False.

AltToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is
suppressed in alternative tolerance values. The
initial value for this property is False.

AltToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is
suppressed in alternative tolerance values. The
initial value for this property is False.

AltUnits Boolean Gets or sets whether alternative units dimension-
ing is enabled. This overrides the value of the
DIMALT system variable.

AltUnitsFormat AcDimUnits Gets or sets the units format for alternative units.
The initial value for this property is acDimDecimal.
This overrides the value of the DIMALTU system
variable. For a list of possible values for the
AcDimUnits enumerated type, see Appendix B.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 509

5793appA_final.qxd 8/22/05 1:35 AM Page 509

Name Returns Description

AltUnitsPrecision AcDimPrecision Gets or sets the number of decimal places in alternative
units. This overrides the value of the DIMALTD system vari-
able. For a list of possible values for the AcDimPrecision
enumerated type, see Appendix B.

AltUnitsScale Double Gets or sets the scale factor for alternative units. If the
AltUnits property is turned on, this property multiplies
linear dimensions by a factor to produce a value in an
alternate system of measurement. The initial value repre-
sents the number of millimeters in an inch. This overrides
the value of the DIMALTF system variable.

ArrowheadBlock String Gets or sets the block used as the custom arrowhead at
the end of the dimension line. This overrides the value of
the DIMBLK1 or DIMBLK2 system variable.

ArrowheadSize Double Gets or sets the size of the dimension line arrowheads,
leader line arrowheads, and hook lines. This overrides the
value of the DIMASZ system variable. The initial value for
this property is 0.1800.

ArrowheadType AcDimArrowheadType Gets or sets the type of arrowhead at the end of the
dimension line. For a list of possible values for the
AcDimArrowheadType enumerated type, see Appendix B.

Center Variant Gets or sets the center of the circle as a set of 3-D
coordinates.

CenterMarkSize Double Gets or sets the size of the center mark. This overrides the
value of the DIMCEN system variable. The initial value for
this property is 0.0900. This property is not available if the
CenterType property is set to acCenterNone.

CenterType AcDimCenterType Gets or sets the type of the center mark. The center mark
is visible only if you place the dimension line outside the
circle or arc. This overrides the value of the DIMCEN system
variable. For a list of possible values for the
AcDimCenterType enumeration, see Appendix B.

ChordPoint Variant Gets or sets the chord point for the arc as a set of 3-D
coordinates.

DimensionLineColor AcColor Gets or sets the color of the dimension lines. Use a color
index number from 0 to 256 or one of the constants listed
here: acByBlock (where AutoCAD draws objects in default
color) or acByLayer (where AutoCAD draws objects in the
color specified for the layer). For a list of possible values
for the AcColor enumerated type, see Appendix B.

DimensionLineWeight AcLineWeight Gets or sets the line weight of the dimension lines. This
overrides the value of the DIMLWD system variable. For a list
of possible values for the AcLineWeight enumerated type,
see Appendix B.

DimLineSuppress Boolean Gets or sets whether the dimension line is suppressed.
This overrides the value of the DIMSD1 or DIMSD2 system
variable. The initial value for this property is False. When
this property is set to True, the display of the dimension
line and arrowhead between the first extension line and
the text is suppressed.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY510

5793appA_final.qxd 8/22/05 1:35 AM Page 510

Name Returns Description

Fit AcDimFit Gets or sets whether text and arrowheads
are placed inside or outside extension lines
given the availability of space between the
extension lines. This property sets priorities
for moving text and arrowheads when space
is not available to fit both within the exten-
sion lines. This overrides the value of the
DIMAFIT system variable. The initial value for
this property is acBestFit. For a list of the
possible values, see Appendix B.

ForceLineInside Boolean Gets or sets whether a dimension line is
drawn between the extension lines when
the text is outside the extension lines. This
overrides the value of the DIMTOFL system
variable. The initial value for this property
is False.

FractionFormat AcDimFractionType Gets or sets the formats of fractional values.
This overrides the value of the DIMFRAC sys-
tem variable. This property is used when the
UnitsFormat property is set to
acDimLArchitectural or acDimLFractional.
Possible values: acHorizontal, acDiagonal
and acNotStacked.

HorizontalTextPosition AcDimHorizontalJustification Gets or sets the horizontal position of the
text. This overrides the value of the DIMJUST
system variable. For a list of possible values
for the AcDimHorizontalJustification enu-
meration, see Appendix B.

JogAngle ACAD_ANGLE Gets or sets the jog angle. For a list of possi-
ble values for the ACAD_ANGLE enumeration,
see Appendix B

JogLocation Variant Gets or sets the jog location or user pick
point as a set of 3-D coordinates.

LinearScaleFactor Double Gets or sets the global scale factor for linear
dimensioning measurements. This overrides
the value of the DIMLFAC system variable. The
initial value for this property is 1.0000. When
LinearScaleFactor is assigned a negative
value, the factor is applied only in paper
space.

Measurement Double Gets the measurement for the dimension.
This property overrides the value for the
DIMLUNIT system variable. It is read-only.

OverrideCenter Variant Gets or sets the override center or pick point
as a set of 3-D coordinates.

PrimaryUnitsPrecision AcDimPrecision Gets or sets the number of decimal places
displayed for the primary units. For a list of
possible values for the AcDimPrecision enu-
merated type, see Appendix B.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 511

5793appA_final.qxd 8/22/05 1:35 AM Page 511

Name Returns Description

RoundDistance Double Gets or sets the rounding of units. This overrides the
value of the DIMRND system variable.

SuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is sup-
pressed. This overrides the value of the DIMZIN system
variable. The initial value for this property is False.

SuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed. This overrides the value of the DIMZIN system
variable. The initial value for this property is False.

TextInside Boolean Gets or sets whether the text appears inside the exten-
sion lines. This overrides the value of DIMTIX system
variable. The initial value for this property is True. If
False, AutoCAD places it inside if there is room.

TextInsideAlign Boolean Gets or sets the position of any text inside/outside the
extension lines. The values for these properties override
the values of the DIMTIH or DIMTOH system variable,
respectively. The initial value for this property is True.
The TextInsideAlign property is available only when the
TextInside property is set to True.

TextOutsideAlign Boolean Gets or sets the position of any text inside/outside the
extension lines. The values for these properties override
the values of the DIMTIH or DIMTOH system variable,
respectively. The initial value for this property is True.
The TextInsideAlign property is available only when the
TextInside property is set to True.

ToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is sup-
pressed in tolerance values. This overrides the value of
the DIMZIN system variable. The initial value for this
property is False.

ToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed in tolerance values. This overrides the value of
the DIMZIN system variable. The initial value for this
property is False.

TrueColor AcCmColor Gets or sets an object’s color. Colors are identified by an
AcCmColor object. This object can hold an RGB value, an
ACI number (an integer from 1 to 255), or a named
color. Using an RGB value, you can choose from mil-
lions of colors.

UnitsFormat AcDimLUnits Gets or sets the unit format. The initial value for this
property is acDimLDecimal, where the format specified by
the DecimalSeparator and PrimaryUnitsPrecision prop-
erties will be used to format the decimal value. For a list
of possible values for the AcDimLUnits enumeration, see
Appendix B.

■Note Because this object inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY512

5793appA_final.qxd 8/22/05 1:35 AM Page 512

AcadDimRotated Object
The AcadDimRotated object represents a dimension that measures the distance between two
points and is displayed at a given rotation. To change the extension lines of a rotated dimen-
sion, change the Rotation property and/or the TextPosition property. The extension lines will
be recalculated to fit the new requirements. The AcadDimRotated object is created using the
AddCircle method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadDimRotated Object Methods
The AcadDimRotated object inherits all the methods of the AcadEntity and AcadObject objects.
It supports no other methods.

AcadDimRotated Object Properties
The AcadDimRadial object inherits all the properties of the AcadEntity object, the AcadObject
object, and the AcadDimension object, as well as the common Application property. It also
supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 513

Name Returns Description

AltRoundDistance Double Gets or sets the rounding of alternative units if
the AltUnits property is turned on. This property
and the two that follow override the value of the
DIMALTZ system variable.

AltSuppressLeadingZeros Boolean Gets or sets whether leading zeros in alternative
dimension values are suppressed. The initial
value for this property is False.

AltSuppressTrailingZeros Boolean Gets or sets whether trailing zeros in alternative
dimension values are suppressed. The initial
value for this property is False.

AltSuppressZeroFeet Boolean Gets or sets whether a zero foot/inches measure-
AltSuppressZeroInches ment is suppressed in alternative dimension val-

ues. Both properties change the value of the
DIMALTZ system variable. The initial value for this
property is False.

AltTextPrefix String Gets or sets a prefix/suffix for the alternative
AltTextSuffix dimension measurement. Both properties over-

ride the value of the DIMAPOST system variable.
The initial value for this property is a NULL string.
To turn off an established prefix, set this property
equal to a single period (.).

AltTolerancePrecision AcDimPrecision Gets or sets the precision of tolerance values in
alternative dimensions. The initial value for this
property is acDimPrecisionTwo. This property is
available only when the ToleranceDisplay prop-
erty is set to any value other than acTolNone, and it
overrides the value of the DIMTDEC system variable.
For a list of the values for the AcDimPrecision enu-
merated type, see Appendix B.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 513

Name Returns Description

AltToleranceSuppressLeadingZeros Boolean Gets or sets whether leading zeros are sup-
pressed in alternative dimension values.
This property and the three that follow over-
ride the DIMALTTZ system variable. The initial
value for this property is False.

AltToleranceSuppressTrailingZeros Boolean Gets or sets whether trailing zeros are sup-
pressed in alternative dimension values.
The initial value for this property is False.

AltToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measure-
ment is suppressed in alternative tolerance
values. The initial value for this property is
False.

AltToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measure-
ment is suppressed in alternative tolerance
values. The initial value for this property is
False.

AltUnits Boolean Gets or sets whether alternative units dimen-
sioning is enabled. It overrides the value of
the DIMALT system variable.

AltUnitsFormat AcDimUnits Gets or sets the units format for alternative
units. The initial value for this property is
acDimDecimal. It overrides the value of the
DIMALTU system variable. For a list of possi-
ble values for the AcDimUnits enumerated
type, see Appendix B.

AltUnitsPrecision AcDimPrecision Gets or sets the number of decimal places
in alternative units. It overrides the value
of the DIMALTD system variable. For a list of
possible values for the AcDimPrecision enu-
merated type, see Appendix B.

AltUnitsScale Double Gets or sets the scale factor for alternative
units. If the AltUnits property is turned on,
this property multiplies linear dimensions
by a factor to produce a value in an alter-
nate system of measurement. The initial
value represents the number of millimeters
in an inch. It overrides the value of the
DIMALTF system variable.

ArrowheadBlock String Gets or sets the block used as the custom
arrowhead at the first/second end of the
dimension line. It overrides the value of the
DIMBLK1 or DIMBLK2 system variable.

ArrowheadSize Double Gets or sets the size of the dimension line
arrowheads, leader line arrowheads, and
hook lines. It overrides the value of the
DIMASZ system variable. The initial value
for this property is 0.1800.

ArrowheadType AcDimArrowheadType Gets or sets the type of arrowhead at the
first/second end of the dimension line. For
a list of possible values for the AcDimArrow-
headType enumerated type, see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY514

5793appA_final.qxd 8/22/05 1:35 AM Page 514

Name Returns Description

DimensionLineColor AcColor Gets or sets the color of the dimension lines. Use a color index
number from 0 to 256 or one of the constants listed here:
acByBlock (where AutoCAD draws objects in the default color)
or acByLayer (where AutoCAD draws objects in the color speci-
fied for the layer). For a list of possible values for the AcColor
enumerated type, see Appendix B.

DimensionLineExtend Double Gets or sets the distance the dimension line extends beyond the
extension line when oblique strokes rather than arrowheads are
used. It overrides the value of the DIMDLE system variable. The
initial value for this property is 0.0000.

DimLineInside Boolean Gets or sets whether the dimension lines are displayed only
inside the extension lines. It overrides the value of the DIMSOXD
system variable. The initial value for this property is False.

DimensionLineWeight AcLineWeight Gets or sets the lineweight of the dimension lines. It overrides
the value of the DIMLWD system variable. For a list of possible
values for the AcLineWeight enumerated type, see Appendix B.

DimLineSuppress Boolean Gets or sets whether the first/second dimension line is sup-
pressed. It overrides the value of the DIMSD1 or DIMSD2 system
variable. The initial value for this property is False. When this
property is set to True, the display of the dimension line and
arrowhead between the first extension line and the text is
suppressed.

ExtensionLineColor AcColor Gets or sets the color of the extension lines. Use a color index
number from 0 to 256 or one of the constants listed here:
acByBlock (where AutoCAD draws objects in the default color),
acByLayer (where AutoCAD draws objects in the color specified
for the layer), or the AcColor enumerated type (see Appendix B).
It overrides the value of the DIMCLRE system variable.

ExtensionLineExtend Double Gets or sets the distance that the extension line extends beyond
the dimension line. It overrides the value of the DIMEXE system
variable. The initial value for this property is 0.1800.

ExtensionLineOffset Double Gets or sets the distance that the extension lines are offset from
the origin points. It overrides the value of the DIMEXO system
variable. The initial value for this property is 0.0625.

ExtensionLineWeight AcLineWeight Gets or sets the lineweight of the extension lines. It overrides the
value of the DIMLWE system variable. For a list of possible values
for the AcLineWeight enumerated type, see Appendix B.

ExtLine1Suppress Boolean Gets or sets whether the first/second extension line is sup
ExtLine2Suppress pressed. It overrides the value of the DIMSE1 or DIMSE2 system

variable. The initial value for this property is False.

Fit AcDimFit Gets or sets whether text and arrowheads are placed inside or
outside extension lines given the availability of space between
the extension lines. This property sets priorities for moving text
and arrowheads when space isn’t available to fit both within the
extension lines. It overrides the value of the DIMAFIT system vari-
able. The initial value for this property is acBestFit. For a list of
the possible values, see Appendix B.

ForceLineInside Boolean Gets or sets whether a dimension line is drawn between the
extension lines when the text is outside the extension lines. It
overrides the value of the DIMTOFL system variable. The initial
value for this property is False.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 515

5793appA_final.qxd 8/22/05 1:35 AM Page 515

Name Returns Description

FractionFormat AcDimFractionType Gets or sets the formats of fractional val-
ues. It overrides the value of the DIMFRAC
system variable. This property is used
when the UnitsFormat property is set to
acDimLArchitectural or acDimLFractional.
Possible values: acHorizontal, acDiagonal,
and acNotStacked.

HorizontalTextPosition AcDimHorizontalJustification Gets or sets the horizontal position of the
text. It overrides the value of the DIMJUST
system variable. For a list of possible values
for the AcDimHorizontalJustification
enumerated type, see Appendix B.

LinearScaleFactor Double Gets or sets the global scale factor for linear
dimensioning measurements. It overrides
the value of the DIMLFAC system variable.
The initial value for this property is 1.0000.
When LinearScaleFactor is assigned a neg-
ative value, the factor is applied only in
paper space.

Measurement Double Gets the measurement for the dimension.
This property overrides the value for the
DIMLUNIT system variable. This property’s
value is read-only.

PrimaryUnitsPrecision AcDimPrecision Gets or sets the number of decimal places
displayed for the primary units. For a list
of possible values for the AcDimPrecision
enumerated type, see Appendix B.

RoundDistance Double Gets or sets the rounding of units. It over-
rides the value of the DIMRND system variable.

SuppressZeroFeet Boolean Gets or sets whether a zero foot measure-
ment is suppressed. It overrides the value
of the DIMZIN system variable. The initial
value for this property is False.

SuppressZeroInches Boolean Gets or sets whether a zero inch measure-
ment is suppressed. It overrides the value
of the DIMZIN system variable. The initial
value for this property is False.

TextInside Boolean Gets or sets whether the text appears
inside the extension lines. It overrides the
value of DIMTIX system variable. The initial
value for this property is True. If False,
AutoCAD places it inside if there’s room.

TextInsideAlign Boolean Gets or sets the position of any text inside/
outside the extension lines. The values for
these properties override the values of the
DIMTIH and DIMTOH system variables, respec-
tively. The initial value for this property is
True. The TextInsideAlign property is avail-
able only when the TextInside property is
set to True.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY516

5793appA_final.qxd 8/22/05 1:35 AM Page 516

Name Returns Description

ToleranceSuppressZeroFeet Boolean Gets or sets whether a zero foot measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this property
is False.

ToleranceSuppressZeroInches Boolean Gets or sets whether a zero inch measurement is sup-
pressed in tolerance values. It overrides the value of the
DIMZIN system variable. The initial value for this property
is False.

UnitsFormat AcDimLUnits Gets or sets the unit format. The initial value for this
property is acDimLDecimal, where the format specified by
the DecimalSeparator and PrimaryUnitsPrecision prop-
erties will be used to format the decimal value. For a list
of possible values for the AcDimLUnits enumerated type,
see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 517

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimStyle Object
The AcadDimStyle object represents a group of dimension settings that determine the appearance
of new dimensions created in the drawing. It is created by the Add method of the AcadDimStyles
collection and is activated through the ActiveDimStyle property of the Document object. To change
the style of a dimension, use the StyleName property found on the dimension. To control the set-
tings of the current document overrides, use the dimensioning system variables.

When you change a dimensioning system variable, you aren’t changing the active dimen-
sion style itself. Rather, you’re setting a document override for the dimension style, which means
that all newly created dimensions will still be created with the active dimension style. They won’t
reflect the overrides from the system variables until the active dimension style is updated. To
change the settings of any dimension style, use the CopyFrom method. Dimensions created via
ActiveX use the active dimension style only. To apply the system overrides for dimensions cre-
ated by ActiveX, use the CopyFrom method to copy the dimension style from the document to
the active dimension style.

AcadDimStyle Object Methods
In addition to the methods inherited from the AcadObject object, the AcadDimStyle object
supports the following method.

Name Description

CopyFrom Copies the dimension style data from a source object, which can be a document,
dimension, or another dimension style. Parameter: StyleSource As Object.
If StyleSource is an AcadDocument object, this method copies the active dimension
style settings for the drawing plus any drawing overrides. If it’s a dimension, an
AcadTolerance object, or an AcadLeader object, this method copies the style for that
object plus any object overrides. If StyleSource is an AcadDimStyle object, then the
style data from that dimension style is copied.

5793appA_final.qxd 8/22/05 1:35 AM Page 517

AcadDimStyle Object Properties
In addition to the properties inherited from the AcadObject object and the common
Application property, the AcadDimStyle object supports the following property.

Name Returns Description

Name String Gets or sets the object’s name.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadDimStyles Collection
The AcadDimStyles collection contains all the dimension styles in the drawing. Although this
collection inherits a Delete method, you can’t actually delete it. If you need to delete a specific
dimension style, use the Delete method found in the AcadDimStyle object. There’s no limit to
the number of dimension styles you can create in your drawing. However, there can be only
one instance of the AcadDimStyles collection, which is predefined for each drawing. You can
make multiple references to it by using the DimStyles property.

AcadDimStyles Collection Methods
In addition to the methods inherited from the AcadObject object, the AcadDimStyles collection
supports the following methods.

Name Returns Description

Add AcadDimStyle Creates an AcadDimStyle object and adds it to the collection. Parame-
ter: Name As String.

Item AcadDimStyle Gets the member object at a given index in the collection. Parameter:
Index As Variant (Integer or String). If the Index value is a String, it
must match an existing style definition.

AcadDimStyles Collection Properties
The AcadDimStyles collection supports the Count property, the common Application property,
and the properties inherited from the AcadObject object. It supports no other properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY518

5793appA_final.qxd 8/22/05 1:35 AM Page 518

AcadDocument Object
The AcadDocument object represents an AutoCAD drawing. The active document can be
accessed using ThisDrawing in VBA and the ActiveDocument property of the AcadApplication
object in Visual Basic.

Certain objects in the drawing establish the format, location, or style that new objects will
adopt. These include the AcadDimStyle, AcadTextStyle, AcadLinetype, AcadViewport, and AcadLayer
objects. A drawing may contain many objects of these types, but only one can be active at a
time. The AcadDocument object also contains a link property to all the collections, all of which
are created when the document is created. You can thus iterate through every object in the
drawing.

You control the model space and paper space settings from the AcadDocument object by
using its ActiveSpace property, its MSpace property, and the Display method of the AcadPViewport
object. By default, a drawing is opened in the model space with the tiled viewport setting.

Changes to most active objects will appear immediately. However, several objects must be
reset for changes to appear: the active text style, the active UCS, and the active viewport. These
are reset using the ActiveTextStyle, ActiveUCS, and ActiveViewport properties, respectively. An
example syntax for resetting the active viewport is as follows:

ThisDrawing.ActiveViewport = modifiedViewportObj

AcadDocument Object Methods
The AcadDocument object supports the following methods.

Name Returns Description

Activate Makes the specified drawing active.

AuditInfo Evaluates the drawing’s integrity. For every error detected, AutoCAD
provides a description of the error and recommends corrective
action. Parameter: FixError As Boolean. If the parameter is set to
True, AutoCAD should attempt to fix any errors.

Close Closes the specified drawing. If no drawing is specified, the drawing
is closed only if it already has a valid file name or wasn’t modified.
Parameters: SaveChanges As Boolean and FileName As String. If the
first parameter is set to True, changes are saved. The second param-
eter specifies the name to assign to the drawing.
The document will be closed and no error will occur if the drawing
hasn’t been modified or if the first parameter is set to False. The
document will be saved and closed if the first parameter is set to
True (the default value) and the drawing was previously saved or
was opened from an existing drawing file. In any other case, a valid
name has to be specified.

CopyObjects Variant Copies objects, their child objects, and so on recursively (deep
cloning). Parameters: Objects As Variant, [Owner As Variant], and
[IDPairs As Variant]. For more information on this method, see
the AcadDatabaseObject section.

EndUndoMark Marks the end of a block of operations. See also the StartUndoMark
method.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 519

5793appA_final.qxd 8/22/05 1:35 AM Page 519

Name Returns Description

Export Exports the drawing to a .wmf, .sat, .eps, .dxf, or .bmp for-
mat. Parameters: FileName As String, Extension As String,
and SelectionSet As AcadSelectionSet.
When exporting to wmf, .sat, or .bmp format, a nonempty
selection set must be provided. For the .sat format, only
AcadRegion and Acad3DSolid objects can be exported. When
exporting to .eps and .dxf formats, the selection set is
ignored and the entire drawing is exported.

GetVariable Variant Returns the current setting of an AutoCAD system variable.
For a list of all the AutoCAD system variables and their types,
please refer to Appendix C. Parameter: Name As String.

HandleToObject Object Returns the object that corresponds to a handle. This
method can return only objects in the current document.
Parameter: Handle As String. A handle is persistent. It can
be stored for reuse with this method for the lifetime of the
object.

Import Object Imports a drawing in .wmf, .sat, .eps, or .dxf format. In the
case of importing a .wmf file, an AcadBlockReference object
is returned. In all other cases, the return value is NULL. Para-
meters: FileName As String, InsertionPoint As Variant,
and ScaleFactor As Double.

LoadShapeFile Loads an .shx (shape) file. This method makes all the
shapes in the shape file available to the current drawing.
Parameter: FullName As String.

New AcadDocument Creates a new document in SDI mode. It’s good practice to
immediately save the new document with a valid file name.
This will simplify later using the save and close methods.
Parameter: TemplateFileName As String.

ObjectIDToObject Object Returns the object that corresponds to an object ID. This
method can return objects only in the current document.
Parameter: ID As Long. An object ID isn’t persistent. Its life-
time is limited to a drawing session.

Open Opens an existing .dwg (drawing) file when working in SDI
mode. The file becomes the active document. Parameters:
Name As String and [ReadOnly As Boolean]. The Name param-
eter is an existing file name, including the path or the valid
URL address of the drawing to open. The second parameter is
True if the drawing is to be read-only and False otherwise (the
default).

PurgeAll Removes all unused named references from the document.
Deleted objects remain in the document until they’re purged
using this method.

Regen Regenerates the entire drawing and updates the screen
coordinates and view resolution for all objects. Parameter:
WhichViewports As AcRegenType (acActiveViewport or
acAllViewports).

Save Saves the document. When the user is saving to a secure
URL, a dialog box will prompt the user for the necessary
password information. Message boxes may also appear if
the user hasn’t suppressed this activity in the browser.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY520

5793appA_final.qxd 8/22/05 1:35 AM Page 520

Name Returns Description

SaveAs Saves the document as specified by the parameters. Parameters:
FileName As String and FileType As AcMenuFileType. For a list of
possible values for the AcMenuFileType enumeration, see Appendix B.

SendCommand Sends a command string from a VB or VBA application to the docu-
ment to be processed. If the drawing specified isn’t active, it will be
made active. This method processes any AutoCAD command-line
function, including LISP expressions. This method is generally syn-
chronous. Only when responding to user interaction or when called
from an event handler will commands be processed asynchronously.
You should never use this method to issue a command for which
there is an ActiveX method available. Instead, use the LoadDVB
method. Parameter: Command As String.

SetVariable Sets the value of an AutoCAD system variable. For a list of all Auto-
CAD system variables and their types, please refer to Appendix C.
Parameters: Name As String and Value As Variant.

StartUndoMark Marks the beginning of a block of operations that will be treated as
a unique operation in an Undo command. Unfortunately, the Undo
command hasn’t been wrapped for VBA but is available synchro-
nously using the SendCommand method.

WBlock Creates a new drawing file from the selection set. Parameter:
FileName As String and SelectionSet As AcadSelectionSet.

■Note The insertion point isn’t specified. If it isn’t already at the origin, each object within the selection set
will have to be copied and moved before a call to WBlock.

AcadDocument Object Properties
As well as the common Application property, the AcadDocument object supports the following
properties.

Name Returns Description

Active Boolean Specifies whether the document is active. This
property’s value is read-only.

ActiveDimStyle AcadDimStyle Gets or sets the active dimension style. This style
will be applied to all newly created dimensions.

ActiveLayer AcadLayer Gets or sets the active layer. New objects are placed
on the active layer as they’re created.

ActiveLayout AcadLayout Gets or sets the active layout.

ActiveLinetype AcadLinetype Gets or sets the active linetype. The specified line-
type must already exist in the drawing.

ActivePViewport AcadPViewport Gets or sets the active paper space viewport. A view-
port must be set active using this property before
you can see any changes to it.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 521

5793appA_final.qxd 8/22/05 1:35 AM Page 521

Name Returns Description

ActiveSelectionSet AcadSelectionSet Gets or sets the active selection set.

ActiveSpace AcActiveSpace Gets or sets whether the paper space or the model space is
active. The value is stored in the TILEMODE system variable.
For model space and floating viewports, this value is set to
acPaperSpace. Even though you have the ability to edit the
model, when the MSpace property is set to True, you’re still
technically in paper space. Values for AcActiveSpace:
acModelSpace or acPaperSpace.

ActiveTextStyle AcadTextStyle Gets or sets the active text style. New text added to the draw-
ing will adopt this text style. Existing text that has no distinct
text style specified will adopt the new style. Note that a call
to the Regen method is necessary to see any changes.

ActiveUCS AcadUCS Gets or sets the active UCS. Changes made to the current
active UCS will become visible only after that UCS is reset
as the active UCS.

ActiveViewport AcadViewport Gets or sets the active viewport. Changes made to the cur-
rent active viewport will become visible only after you reset
the viewport as the active viewport.

Blocks AcadBlocks Gets the drawing’s blocks collection. This property’s value
is read-only.

Database AcadDatabase Gets the database to which the document belongs. This
property’s value is read-only.

Dictionaries AcadDictionaries Gets the document’s dictionaries collection. This property’s
value is read-only.

DimStyles AcadDimStyles Gets the document’s dimension styles collection. This prop-
erty’s value is read-only.

ElevationModelSpace Double Gets or sets the elevation setting for the model space. The
current elevation is the Z value that is used whenever a 3-D
point is expected but only the X and Y values are supplied.

ElevationPaperSpace Double Gets or sets the elevation setting for the paper space. The
current elevation is the Z value that is used whenever a 3-D
point is expected but only the X and Y values are supplied.

FullName String Gets the document’s name, including the path. It returns
a null string for a new drawing. This property’s value is
read-only.

Groups AcadGroups Gets the document’s groups collection. This property’s value
is read-only.

HWND Long Gets the window handle of the document’s window frame.
This property’s value is read-only.

Layers AcadLayers Gets the document’s layers collection.

Layouts AcadLayouts Gets the document’s layouts collection.

Limits Variant Gets or sets the document’s drawing limits as an array of four
Double numbers: the X and Y coordinates of the lower-left
limit, and the second pair of values define the X and Y coor-
dinates of the upper-right limit. You can’t specify limits for
the Z-axis.

Linetypes AcadLinetypes Gets the document’s linetypes collection. This property’s
value is read-only.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY522

5793appA_final.qxd 8/22/05 1:35 AM Page 522

Name Returns Description

ModelSpace AcadModelSpace Gets the document’s model space object. This
property’s value is read-only.

MSpace Boolean Specifies whether it is possible to edit the
model from the floating paper space viewports.

Name String Gets the document’s name but not the path. It
returns a null string for a new drawing. This
property’s value is read-only.

ObjectSnapMode Boolean Specifies whether the document’s snap mode
is on or off. True indicates that it is on.

PaperSpace AcadPaperSpace Gets the document’s paper space object. This
property’s value is read-only.

Path String Gets the document’s path but not the file
name. This property’s value is read-only.

PickfirstSelectionSet AcadSelectionSet Gets the PickFirst selection set. This prop-
erty’s value is read-only.

Plot AcadPlot Gets the document’s AcadPlot object. This
property’s value is read-only.

PlotConfigurations AcPlotConfigurations Gets the document’s plot configurations col-
lection. This property’s value is read-only.

Preferences AcadPreferences Gets the document’s AcadPreferences object.
This property’s value is read-only.

ReadOnly Boolean Specifies whether the document is read-only.
This property’s value is read-only.

RegisteredApplications AcadRegisterApplications Gets the document’s registered applications
collection. This property’s value is read-only.

Saved Boolean Specifies whether the document has any
unsaved changes. It’s True if there are no
unsaved changes and False if there are. This
property’s value is read-only.

SelectionSets AcadSelectionSets Gets the document’s selection set collection.
This property’s value is read-only.

TextStyles AcadTextStyles Gets the document’s text styles collection. This
property’s value is read-only.

UserCoordinateSystems AcadUCSs Gets the document’s UCSs collection. This
property’s value is read-only.

Utility AcadUtility Gets the document’s AcadUtility object. This
property’s value is read-only.

Viewports AcadViewports Gets the document’s viewports collection. This
property’s value is read-only.

Views AcadViews Gets the document’s views collection. This
property’s value is read-only.

WindowState AcWindowState Gets or sets the state of the document window.
Values: acMin, acMax, and acNorm.

WindowTitle String Gets the title of the document window, which
will be the same as for the Name property for
a saved document. This property’s value is
read-only.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 523

5793appA_final.qxd 8/22/05 1:35 AM Page 523

AcadDocument Object Events
The following events are triggered during various stages in the lifetime of the AcadDocument
object. Note that no events will be fired while a modal dialog box is displayed.

Event Description

Activate Occurs when the document window is activated.

BeginClose Occurs after a request to close a drawing is received.

BeginCommand Occurs after a command is issued but before it’s initiated. Parameter:
Command As String.

BeginDoubleClick Occurs after the user double-clicks anywhere in the drawing. Parame-
ter: PickPoint As Variant (array of WCS coordinates).

BeginLISP Occurs after a request to evaluate a LISP expression is received. Para-
meter: FirstLine As String. FirstLine won’t have any case
conversion of the alpha characters.

BeginPlot Occurs after a request to print a drawing is received. Parameter:
DrawingName As String.

BeginRightClick Occurs after the user right-clicks anywhere in the drawing window.
Parameter: PickPoint As Variant.

BeginSave Occurs after a request to save a drawing is received. Parameter:
FileName As String.

BeginShortcutMenuCommand Occurs after the user right-clicks in the drawing window but before
the menu is in command mode. Parameters: ShortcutMenu As
AcadPopupMenu and Command As String.

BeginShortcutMenuDefault Occurs after the user right-clicks in the drawing window but before
the menu is in default mode. Parameter: ShortcutMenu As
AcadPopupMenu.

BeginShortcutMenuEdit Occurs after the user right-clicks in the drawing window but before
the menu is in edit mode. Parameters: ShortcutMenu As
AcadPopupMenu and SelectionSet As AcadSelectionSet.

BeginShortcutMenuGrip Occurs after the user right-clicks in the drawing window but before
the menu is in grip mode. Parameter: ShortcutMenu As
AcadPopupMenu.

BeginShortcutMenuOSnap Occurs after the user right-clicks in the drawing window but before
the menu is in osnap mode. Parameter: ShortcutMenu As
AcadPopupMenu.

Deactivate Occurs when the drawing window is deactivated.

EndCommand Occurs after a command is executed. Parameter: CommandName As String.

EndLISP Occurs after a LISP expression is evaluated.

EndPlot Occurs after a document is sent to the printer. Parameter: DrawingName
As String.

EndSave Occurs after a drawing has been saved. Parameter: FileName As String.

EndShortcutMenu Occurs after a shortcut menu appears. Use this event to perform any
cleanup work on the shortcut menu. Parameter: ShortcutMenu As
AcadPopupMenu.

LayoutSwitched Occurs after the user changes the layout. Parameter: LayoutName As
String.

LISPCancelled Occurs when the evaluation of a LISP expression is canceled.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY524

5793appA_final.qxd 8/22/05 1:35 AM Page 524

Event Description

ObjectAdded Occurs after an object is added to the drawing. Parameter: Entity As
AcadEntity.

ObjectErased Occurs after an object is erased from the drawing. Parameter:
ObjectID As Long.

ObjectModified Occurs after an object in the drawing is modified. Parameter: Entity
As AcadEntity.

SelectionChanged Occurs when the current PickFirst selection set changes.

WindowChanged Occurs when the drawing or document window is changed. Parame-
ter: WindowState As acMin or acMax or acNorm. This event (and the one
that follows) is helpful when implementing floating palettes, toolbars,
or modeless dialog boxes that track with the application or document
window. The VB or ObjectARX application can use the HWNDFrame
parameter to get the coordinates of the window, convert those coordi-
nates to either screen or parent coordinates, and use this information
to position other windows.

WindowMovedOrResized Occurs after the drawing or document window is moved or resized.
Parameters: HWNDFrame As Long and Moved As Boolean. If Moved is set
to True, the window was moved; otherwise, it was resized.

AcadDocuments Collection
The AcadDocuments collection contains all AutoCAD drawings open in the current session. To add a
new member to the collection, use the Add or Open method. To select a specific document, use the
Item method. To close all the documents, use the Close method similar to the one found in the
AcadDocument object. To close all documents, use the Close method found in this collection. There’s
no limit to the number of documents you can create in your drawing. However, there can be only
one instance of the AcadDocuments collection, which is predefined for each application. You can
make multiple references to it by using the Documents property or the AcadDocuments object.

AcadDocuments Collection Methods
The AcadDocuments collection supports these four methods.

Name Returns Description

Add AcadDocument Creates an AcadDocument object and adds it to the collection. Optional
parameter: Name As String. This method should not be called when
AutoCAD runs in SDI mode.

Close Closes all open drawings in MDI mode. Note that you can’t call this
method while in SDI mode. Use the Close method of the AcadDocument
object.

Item AcadDocument Returns the object at the given index in the collection. Parameter:
Index As Variant (Integer or String). If the Index value is a String, it
must match an existing document in the collection.

Open Opens an existing .dwg (drawing) file in MDI mode. The document
then becomes the active document. When the user is accessing a
secure URL, a dialog box will be posted that prompts the user for the
necessary password information. Message boxes may also appear if
the user hasn’t suppressed this activity in the browser. Parameters:
Name As String and [ReadOnly As Boolean]. The second parameter
specifies whether the drawing is read-only.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 525

5793appA_final.qxd 8/22/05 1:35 AM Page 525

AcadDocuments Collection Properties
The AcadDocuments collection supports the common Application property and the Count
property but no other properties.

AcadDynamicBlockReferenceProperty Object
This is an object containing the properties of a dynamic block. Dynamic blocks cannot be cre-
ated through VBA; however, properties of dynamic blocks may be queried.

AcadDynamicBlockReferenceProperty Methods
The AcadDynamicBlockReferenceProperty object does not support any methods.

AcadDynamicBlockReferenceProperty Properties
The AcadDynamicBlockReferenceProperty object inherits no properties. However, it does sup-
port the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY526

Name Returns Description

AllowedValuesVariant Gets the allowed values for the property. Not all
dynamic block properties have a restricted set of
property values. Some properties are unrestricted,
some specify a minimum or maximum value (or
both), and some have a list of allowed values. This
property supports only allowed property values
that are defined by a list; minimum, maximum,
and unrestricted property types are not supported.
Read-only.

Description String Gets the description of an object. The description
for a dynamic block reference property is set by
the block author and cannot be edited.

PropertyName String Gets the name for the property. Property names
are guaranteed to be unique among all properties
on a given block reference. Read-only.

ReadOnly Boolean Gets if the document or property is read-only or
read-write. The property is read-only when the
ReadOnly property is set to True.

Show Boolean Gets whether the property is shown in the user
interface. If this property is True, the dynamic block
reference property is displayed in the Properties
palette when the block reference containing it is
selected. It is read-only.

UnitsType AcDynamicBlockReference Gets and sets the current display units type for the
PropertyUnitsType property. For a list of possible values for the

AcDynamicBlockReferencePropertyUnitsType
enumeration, see Appendix B.

Value Variant Gets and sets the current value for the property.

5793appA_final.qxd 8/22/05 1:35 AM Page 526

AcadEllipse Object
The AcadEllipse object represents an elliptical arc or full ellipse, drawing a true ellipse, not
a polyline approximation. It is created using the AddEllipse method of the AcadBlock,
AcadModelSpace, or AcadPaperSpace object.

AcadEllipse Object Methods
The AcadEllipse object inherits all the methods of the AcadEntity and AcadObject objects.
It also supports the following method.

Name Returns Description

Offset Variant Creates a new ellipse by offsetting the current ellipse by a specified dis-
tance, which must be nonzero. If the offset is positive, a larger ellipse is
created with the same origin. If the offset is negative, a smaller ellipse
is created. Parameter: Distance As Double.

AcadEllipse Object Properties
The AcadEllipse object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Area Double Gets the area of the ellipse. This property’s value is read-only.

Center Variant Gets or sets the center of the ellipse as an array of the Doubles.

EndAngle Double Gets or sets the end angle of the ellipse in radians. Use 6.28 radi-
ans to specify a closed ellipse.

EndParameter Double Gets or sets the end parameter for an ellipse. The valid range is 0
to 2*PI.

EndPoint Variant Gets the 3-D coordinates of the end point of the ellipse. This
property’s value is read-only.

MajorAxis Variant Gets or sets the direction of the major (i.e., longer) axis of the
ellipse as a 3-D vector. The vector originates at the ellipse center.

MajorRadius Double Gets or sets the length of the major (i.e., longer) axis of the
ellipse.

MinorAxis Variant Gets the direction of the minor (i.e., shorter) axis of the ellipse as
a 3-D vector. This property’s value is read-only.

MinorRadius Double Gets or sets the length of the minor (i.e., shorter) axis of the
ellipse.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the ellipse.

RadiusRatio Double Gets or sets the major to minor axis ratio of an ellipse. A value of
1.0 denotes a circle.

StartAngle Double Gets or sets the start angle of the ellipse in radians. Use 6.28 radi-
ans to specify a closed ellipse.

StartParameter Double Gets or sets the start parameter for an ellipse. The valid range is
0 to 2*PI.

StartPoint Variant Gets the X, Y, Z coordinate of the start point of the ellipse. This
property’s value is read-only.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 527

5793appA_final.qxd 8/22/05 1:35 AM Page 527

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadExternalReference Object
The AcadExternalReference object represents an instance of an external reference (Xref)
inserted into a drawing (i.e., where a second drawing is linked into the current drawing). It
differs from the AcadBlockReference object in the following respect: if a block is inserted into
a drawing, its definition and all associated geometry are stored in the current drawing data-
base and aren’t updated if the original drawing changes. However, when you insert a drawing
as an Xref, changes are updated in the externally referenced file. Like a block reference, an Xref
is displayed in the current drawing as a single object. However, it doesn’t significantly increase
the file size of the current drawing and can’t be exploded. The AcadExternalReference object
is created using the AttachExternalReference method of the AcadBlock, AcadModelSpace, or
AcadPaperSpace object. Note that many methods and properties of the AcadBlock and
AcadDatabase objects are specific to Xrefs.

AcadExternalReference Object Methods
The AcadExternalReference object inherits all the methods of the AcadEntity and AcadObject
objects. It also supports the following method.

Name Returns Description

GetConstantAttributes Variant Returns an array of constant attributes for the external
reference.

AcadExternalReference Object Properties
The AcadExternalReference object inherits all the properties of the AcadEntity and AcadObject
objects, as well as the common Application property. It also supports the following properties.

Name Returns Description

HasAttributes Boolean Specifies whether the external reference has any attributes. This
property’s value is read-only.

InsertionPoint Variant Gets or sets the insertion point for the external reference as a set of
3-D WCS coordinates. It returns a three-element array of Doubles.

Name String Gets or sets the name of the external reference.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the external reference.

Path String Gets or sets the path of the external reference. This doesn’t include
the file name.

Rotation Double Specifies the rotation angle (in radians) for the block, relative to the
X-axis with positive values going counterclockwise when viewed
along the Z-axis toward the origin.

XScaleFactor Double Gets or sets the X scale factor for the block.

YScaleFactor Double Gets or sets the Y scale factor for the block.

ZScaleFactor Double Gets or sets the Z scale factor for the block.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY528

5793appA_final.qxd 8/22/05 1:35 AM Page 528

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadFileDependency Object
The AcadFileDependency object describes an entry in the File Dependency List. The files on
which a drawing file depends are in its File Dependency List, which is the AcadFileDependencies
collection object. This object has no methods, but it supports the following properties.

Name Returns Description

AffectsGraphics Boolean If True, affects; if False, doesn’t affect.

Feature String Feature name (e.g., “Acad:Xref”).

FileName String File name of current file.

FileSize Long File size in bytes. This property’s value is read-only.

FingerprintGUID String The GUID fingerprint of the file.

FoundPath String Alternate path found in (if any).

FullFileName String Saved full file name.

IsModified Boolean If True, modified; if False, not modified.

ReferenceCount Long Current item count of reference.

TimeStamp Long Current time/date in seconds since 1/1/1980.

VersionGUID String GUID version stamp.

AcadFileDependencies Object
The AcadFileDependencies object creates, updates, retrieves, and removes items in the File
Dependency List. The File Dependency List is a list of the files on which the drawing file depends.
You can perform operations on the File Dependency List using the FileDependencies collection.

AcadFileDependencies Object Methods
In addition to the methods inherited from the AcadDocument object, the following methods are
available.

Name Returns Description

CreateEntry Long An index into the File Dependency List

IndexOf Long The index of an entry in the File Dependency List

RemoveEntry Removes an entry from the File Dependency List

UpdateEntry Updates an entry in the File Dependency List

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 529

5793appA_final.qxd 8/22/05 1:35 AM Page 529

AcadGroup Object
The AcadGroup object represents a named AcadSelectionSet object. It is created using the Add
method of the AcadGroups collection and can be accessed by the Item method of the AcadGroups
collection. See the AcadSelectionSet object for more information on selection sets.

AcadGroup Object Methods
In addition to the methods inherited from the AcadObject object, the AcadGroup object sup-
ports the following methods.

Name Returns Description

AppendItems Appends one or more entities to the specified group. Parameter:
Objects As Variant.

Highlight Determines whether the objects in a given group are to be high-
lighted. Parameter: HighlightFlag As Boolean.

Item AcadEntity Gets the member object at a given index in a group. Parameter:
Index As Variant (Integer or String). If the Index value is a String,
it must match an existing object name in the collection.

RemoveItems Removes specified items from the group. Note that items
removed from a group remain in the drawing; they’re no longer
associated with the group. Parameter: Objects As Variant.

Update Updates the object to the drawing screen.

AcadGroup Object Properties
In addition to the properties inherited from the AcadObject object, the AcadGroup object sup-
ports the following properties.

Name Returns Description

Color AcColor Gets or sets the color of the group object. Use a color index
number from 0 to 256 or one of the constants listed here:
acByBlock (where AutoCAD draws objects in the default color)
or acByLayer (where AutoCAD draws objects in the color spec-
ified for the layer). For a list of possible values for the AcColor
enumerated type, see Appendix B.

Count Integer Gets the number of items in the group. This property’s value is
read-only.

Layer String Gets or sets the layer for the group.

Linetype String Gets or sets the linetype of the group.

LinetypeScale Double Gets or sets the linetype scale of the group. The default value
is 1.0.

Lineweight AcLineWeight Gets or sets the lineweight of the group. For a list of possible
values for the AcLineWeight enumerated type, see Appendix B.

Name String Gets or sets the name of the group.

PlotStyleName String Gets or sets the group’s plot style name.

Visible Boolean Specifies whether the group is visible.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY530

5793appA_final.qxd 8/22/05 1:35 AM Page 530

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadGroups Collection
The AcadGroups collection contains all the groups in the drawing. Although this collection inherits
a Delete method, you can’t actually delete it. If you need to delete a specific group, use the Delete
method found in the AcadGroup object. There is no limit to the number of groups you can create
in your drawing. However, there can be only one instance of the AcadGroups collection, which is
predefined for each drawing. You can make multiple references to it by using the Groups property.

AcadGroups Collection Methods
In addition to the methods inherited from the AcadObject object, the AcadGroups collection
supports the following methods.

Name Returns Description

Add AcadGroup Creates a member object and adds it to the collection. Parameter: Name
As String.

Item AcadGroup Gets the member object at a given index in a group. Parameter: Index
As Variant (an Integer or a String). If the Index value is a String, it must
match an existing group in the collection.

AcadGroups Collection Properties
The AcadGroups collection supports the Count property, the common Application property,
and the properties inherited from the AcadObject object. It supports no other properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

AcadHatch Object
The AcadHatch object represents an area fill consisting of a pattern of lines. It is created using
the AddHatch method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object. After creat-
ing the hatch, what you must do next is add the outer loop using the AppendOuterLoop method.
You have to do this for the hatch to be a valid AutoCAD object; otherwise, AutoCAD will enter
an unpredictable state. Once you’ve successfully created the outer loop, you can add any inner
loops using the AppendInnerLoop method or any other operation carried out on the hatch.

AcadHatch Object Methods
In addition to the methods inherited from the AcadObject object, the AcadHatch object sup-
ports the following methods.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 531

5793appA_final.qxd 8/22/05 1:35 AM Page 531

Name Description

AppendInnerLoop Appends an inner loop to the hatch. You must add the outer loop before you
can add any inner loop. Parameter: ObjectArray As Variant.
The parameter is an array of objects forming a closed boundary, which can
consist of one or more objects. If more than one object is used, their end
points must coincide for the loop to be created properly. The loop may con-
tain the following types of objects: AcadLine, AcadPolyline, AcadCircle,
AcadEllipse, AcadSpline, and AcadRegion. It’s important that the object array
used in the call to AppendInnerLoop forms a closed boundary.

AppendOuterLoop Appends an outer loop to the hatch. The outer loop must be closed and must
be created before any inner loops can be added. Parameter: ObjectArray As
Variant.
For a description of the parameter, see the AppendInnerLoop method. It’s
important that the object array used in the call to AppendOuterLoop forms a
closed boundary.

Evaluate Evaluates the hatch lines or solid fill using the specified hatch pattern. For
regular hatch patterns, this method performs intersection calculations
between pattern definition lines and hatch boundary curves to form hatch
lines. For solid fill hatch patterns, this method performs triangulation of the
hatch area and fills in the triangular meshes with the given color. AutoCAD
may not succeed in evaluating an AcadHatch object when either the inner or
outer loop is too small for the hatch patterns and will return an ambiguous
output error.

GetLoopAt Gets the objects used to define a loop at the given index of the hatch. Parame-
ters: Index As Integer and ObjectArray As Variant. The Index parameter
can take any value from 0 (the index for the outer loop) to the index of the last
loop created with AppendInnerLoop. The second parameter is an object or an
array of objects that makes up the loop.

InsertLoopAt Inserts a loop at a given index of a hatch. Parameters: Index As Integer, LoopType
As AcLoopType, and ObjectArray As Variant. Values for the AcLoopType enumer-
ation are given in Appendix B. For a description of the third parameter, see the
AppendInnerLoop method.

SetPattern Sets the pattern type and name of the hatch. Note that the integer value for
the pattern type is supplied. Parameters: PatternType As AcPatternType and
PatternName As String. See the AcPatternType enumeration table in Appen-
dix B.

AcadHatch Object Properties
In addition to the properties inherited from the AcadEntity object, the AcadObject object, and
the common Application property, the AcadHatch object supports the following properties.

Name Returns Description

AssociativeHatch Boolean Specifies whether the hatch is associative. An associative
hatch is updated when its boundaries are modified.

Elevation Double Gets or sets the current elevation of the hatch object.

Gradient1 AcCmColor Gets or sets the start color of the gradient. It must be
one of the constants acColorMethodByACI or
acColorMethodByBlock.

Gradient2 AcCmColor Gets or sets the end color of the gradient. It must be one
of the constants acColorMethodByACI or
acColorMethodByBlock.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY532

5793appA_final.qxd 8/22/05 1:35 AM Page 532

Name Returns Description

GradientCentered Boolean Gets or sets whether the gradient is centered.

GradientName String Gets or sets the pattern name. The pattern name for the
gradient may be LINEAR, CYLINDER, INVCYLINDER,
SPHERICAL, HEMISPHERICAL, CURVED, INVSPHERICAL,
INVHEMISPHERICAL, or INVCURVED.

HatchObjectType AcHatchObject Gets or sets the hatch object type to be hatch, classic,
or gradient. The default value of this property is 0,
acHatchObject, which creates a classic hatch.
If the value of this property is 1, acGradientObject, a
gradient is created by the AddHatch method for hatch
creation. If a gradient is created, then PatternType
should be AcGradientPatternType and PatternName
should contain a gradient pattern name of LINEAR,
CYLINDER, INVCYLINDER, SPHERICAL, HEMISPHERICAL,
CURVED, INVSPHERICAL, INVHEMISPHERICAL, or INVCURVED.

HatchStyle AcHatchStyle Gets or sets the hatch style. For a list of possible values
for the AcHatchStyle enumerated type, see Appendix B.

ISOPenWidth AcISOPenWidth Gets or sets the ISO pen width of an ISO hatch pattern. For
a list of possible values for the AcISOPenWidth enumerated
type, see Appendix B. When you query a hatch and receive
a value of acPenWidthUnk, use the PatternScale property to
obtain the nonstandard value. Setting the pen width of
any hatch to acPenWidthUnk has no effect.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the
hatch object.

NumberOfLoops Integer Gets the number of loops in the hatch boundary. This
property’s value is read-only.

PatternAngle Double Gets or sets the angle of the hatch pattern in radians.
The valid range is 0 to 6.28. The value is stored in the
HPANG system variable.

PatternDouble Boolean Specifies whether the user-defined hatch is double-
hatched. The value of this property is stored in the
HPDOUBLE system variable. If the PatternType property
is set to acHatchPatternTypePreDefined or
acHatchPatternTypeCustomDefined, this property isn’t
used.

PatternName String Gets or sets the pattern name of the hatch, which can be
up to 34 characters long but can’t have spaces (by
default). To remove the default setting, enter a period (.),
and a NULL string is returned. If the PatternType property
is set to acHatchPatternTypePreDefined, then this prop-
erty refers to the name of a hatch pattern in acad.pat. If
the PatternType property is set to
acHatchPatternTypeCustomDefined, then this property
refers to the name of a hatch pattern in a custom .pat
file. If the PatternType property is set to
acHatchPatternTypeUserDefined, then this property isn’t
used. The value of this property is stored in the HPNAME
system variable. This property’s value is read-only.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 533

5793appA_final.qxd 8/22/05 1:35 AM Page 533

Name Returns Description

PatternScale Double Gets or sets the hatch pattern scale. The value of this
property must not be zero, and it is stored in the HPSCALE
system variable. If the PatternType property is set to
acHatchPatternTypeUserDefined, then this property isn’t
used.

PatternSpace Double Gets or sets the user-defined hatch pattern spacing.
This value is also controlled by the HPSPACE system
variable. If the PatternType property is set to
acHatchPatternTypePreDefined or
acHatchPatternTypeCustomDefined, then this
property isn’t used.

PatternType AcPatternType Gets the pattern type of the hatch. For a list of possible
values for the AcPatternType enumerated type, see
Appendix B. This property’s value is read-only.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadHyperlink Object
The AcadHyperlink object represents a URL and URL description, which is stored within the
XData of the object’s corresponding entity and not in the drawing itself. This means a hyper-
link object is created every time a URL is requested, and the name and description is read
from the XData. In this manner, it’s similar to the AcadUtility object. You should take care to
not create multiple hyperlink objects referencing the same URL. If one such object is updated,
the others won’t be.

AcadHyperlink Object Method
The AcadHyperlink object doesn’t inherit from AcadEntity or AcadObject. It supports only a
single method.

Name Description

Delete Deletes a specified hyperlink object

AcadHyperlink Object Properties
In addition to the common Application property, the AcadHyperlink object supports the fol-
lowing properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY534

5793appA_final.qxd 8/22/05 1:35 AM Page 534

Name Returns Description

URL String Gets or sets the URL for the hyperlink object. The file pointed
to by the URL can be stored locally on a network drive or via
an Internet connection.

URLDescription String Gets or sets the URL description for the hyperlink object. This
is useful if the URL name itself isn’t very helpful in identifying
the contents of the file.

URLNamedLocation String Gets or sets the named location for the hyperlink object. This
can be another AutoCAD drawing or a completely different
application, such as a word processing program. If you spec-
ify a named view to jump to in an AutoCAD drawing, AutoCAD
restores that view when the hyperlink is opened.

AcadHyperlinks Collection
The AcadHyperlinks collection contains all the hyperlinks for a given entity. To add a new
member to the collection, use the Add method. To select a specific hyperlink, use the Item
method. It is accessed via the Hyperlinks property on all AcadEntity objects.

AcadHyperlinks Collection Methods
The AcadHyperlinks collection doesn’t inherit from AcadObject. It supports the following
methods.

Name Returns Description

Add AcadHyperlink Creates a named AcadHyperlink object and adds it to the collection.
Parameters: Name As String, [Description As Variant], and
[NamedLocation As Variant].

Item AcadHyperlink Gets the member object at a given index in a collection, group, or
selection set. Parameter: Index As Integer (An Integer of a String).
If the value for Index is a String, it must match an existing object
name in the collection.

AcadHyperlinks Collection Properties
The AcadHyperlinks collection supports the common Application and Count properties. It
supports no other properties.

AcadIDPair Object
The AcadIDPair object is a transient object used as an optional parameter in the CopyObjects
method of the AcadDatabase and AcadDocument objects. It contains the object IDs of both the
source and destination objects. See the AcadDatabase object for more details. The CopyObjects
method populates the AcadIDPair object with the object IDs of the source objects and the
newly copied objects, thus creating a map between all the objects copied and created. This
object also contains information about the copy and translation process.

Note that this object is used for advanced cloning functions. General users should avoid
using this optional functionality.

The AcadIDPair object has no methods.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 535

5793appA_final.qxd 8/22/05 1:35 AM Page 535

AcadIDPair Object Properties
The AcadIDPair object supports the common Application property and the following properties.

Name Returns Description

IsCloned Boolean Determines whether the source object in a CopyObjects opera-
tion has been cloned. This property’s value is read-only.

IsOwnerXlated Boolean Determines whether the owning object in a CopyObjects opera-
tion has been translated. This property’s value is read-only.

IsPrimary Boolean Determines whether the source object in a CopyObjects opera-
tion was part of the primary set of objects being copied or if it
was simply owned by a member in the primary set. This prop-
erty’s value is read-only.

Key Integer The object ID of the source object in the CopyObjects opera-
tion. This property’s value is read-only.

Value Integer The object ID of the newly created cloned object in the
CopyObjects operation. This property’s value is read-only.

AcadLayer Object
The AcadLayer object represents a logical grouping of data, similar to transparent acetate over-
lays on a drawing. It is created using the Add method of the AcadLayers collection and can be
accessed by the Item method of the AcadLayers collection. All new objects are added to the active
layer. To make a layer active, use the ActiveLayer property of the Document object.

AcadLayer Object Methods
The AcadLayer object supports the methods inherited from the AcadObject object and no other
methods. Note that layer 0 can’t be deleted and layer DEFPOINTS shouldn’t. This restriction applies
also to layers referenced in a block definition.

AcadLayer Object Properties
In addition to the properties inherited from the AcadObject object, and the common
Application property, the AcadLayer object supports the following properties.

Name Returns Description

Color AcColor Gets or sets the color of the layer object, which will determine the
acByLayer color of the entities on the specific layer. Use a color index
number from 0 to 256 or the AcColor enumeration (see Appendix B).

Freeze Boolean Specifies the freeze status of a layer: True if frozen, False if thawed.
Freezing layers makes them invisible and excludes them from
regeneration and plotting. Thawing a layer enables these capabili-
ties. You can’t freeze the active layer or make a frozen layer active.

LayerOn Boolean Specifies whether a layer is on or off. Layers that are “off” aren’t dis-
played or plotted, though they’re regenerated when the drawing is
regenerated.

Linetype String Gets or sets the linetype for the layer. The default linetype for any
new entity will become the linetype of the layer (ByLayer).

APPENDIX A ■ AUTOCAD OBJECT SUMMARY536

5793appA_final.qxd 8/22/05 1:35 AM Page 536

Name Returns Description

Lineweight AcLineWeight Gets or sets the lineweight for the layer. For a list of possi-
ble values for the AcLineWeight enumerated type, see
Appendix B.

Lock Boolean Specifies whether a layer is locked. You can’t edit objects
on a locked layer, though they’re still visible if the layer is
on and thawed. You can activate locked layers and add
objects to them, apply snap modes, freeze and turn them
off, and change their associated colors.

Name String Gets or sets the name of the layer. Layer 0 can’t be renamed.
Layer DEFPOINTS is used for dimensioning shouldn’t be
renamed either.

PlotStyleName String Gets or sets the layer’s plot style name.

Plottable Boolean Specifies whether the layer is plottable.

ViewportDefault Boolean Specifies whether the layer is to be frozen in new viewports.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadLayers Collection
The AcadLayers collection contains all the layers in the drawing. Although this collection inherits
a Delete method, you can’t actually delete this collection. If you need to delete a specific layer,
use the Delete method found in the AcadLayer object. There is no limit to the number of layers
you can create in your drawing. However, there can be only one instance of the AcadLayers col-
lection, which is predefined for each drawing. You can make multiple references to it by using
the Layers property.

AcadLayers Collection Methods
In addition to the methods inherited from the AcadObject object, the AcadLayers collection
supports the following methods.

Name Returns Description

Add AcadLayer Creates a member object and adds it to the collection. Parameter: Name
As String.

Item AcadLayer Gets the member object at a given index in a collection, group, or selec-
tion set. Parameter: Index As Variant (an Integer or a String). If the Index
value is a String, it must match an existing object name in the collection.

AcadLayers Collection Properties
The AcadLayers collection supports the Count property, the common Application property,
and the properties inherited from the AcadObject object. It supports no other properties.

■Note Because this object inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 537

5793appA_final.qxd 8/22/05 1:35 AM Page 537

AcadLayout and AcadPlotConfiguration Objects
The AcadLayout object contains the plot settings and visual properties of a model space or paper
space block, as displayed in the AutoCAD user interface. Each AcadLayout object is associated
with a single AcadBlock object, which can be accessed through the Block property. Alternatively,
the AcadLayout object can be accessed through the Item property of the AcadLayouts collection,
the Layout property of the AcadBlock (when IsLayout is set to True), the AcadModelSpace and
AcadPaperSpace objects, or the ActiveLayout property of the Document object.

The AcadPlotConfiguration object is similar to the AcadLayout object in that it contains the
same plot settings and visual properties. The difference between the two is as follows: whereas a
layout is defined only for a particular block, a plot configuration isn’t specific to any one block;
it’s a named collection of plot settings that can be applied to any geometry.

As the two objects are all but identical, I will present their methods and properties together.

AcadLayout and AcadPlotConfiguration Objects: Methods
The AcadLayout and AcadPlotConfiguration objects support all the methods inherited from
the AcadObject object. They also support the following methods.

Name Returns Description

CopyFrom Copies the settings from the given plot configuration.
Parameter: PlotConfig As AcadPlotConfiguration. This
method is specific to the AcadPlotConfiguration object.

GetCanonicalMediaNames Variant Returns all available canonical media names for the speci-
fied plot device. You should call RefreshPlotDeviceInfo
before calling this method. This method returns the names
as an array of strings.

GetCustomScale Gets the custom scale for a layout or plot configuration,
in millimeters or inches, depending on the value of the
PaperUnits property. Parameters: Numerator As Double
and Denominator As Double.

GetLocaleMediaName String Given a canonical media name, this method returns the
localized version of the canonical media name. Parameter:
Name As String.

GetPaperMargins Gets the margins offsets for the layout or plot configuration,
the units of which depend on the values of the PaperUnits
property. The print origin is offset from the edge of the
paper by the values returned by this method. Parameters:
LowerLeft As Variant and UpperRight As Variant. (Both
parameters are two-element arrays of Doubles.)

GetPaperSize Gets the width and height of the configured paper using
the values specified by the PaperUnits property. Parame-
ters: Width As Double and Height As Double.

GetPlotDeviceNames Variant Returns all available plot device names. You should call
RefreshPlotDeviceInfo before calling this method. This
method returns the names as an array of strings.

GetPlotStyleTableNames Variant Returns all available plot style table names. You should call
RefreshPlotDeviceInfo before calling this method. This
method returns the names as an array of strings.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY538

5793appA_final.qxd 8/22/05 1:35 AM Page 538

Name Returns Description

GetWindowToPlot Gets the coordinates that define the portion of the layout
to plot, the units of which depend on the values of the
PaperUnits property. The coordinates of the window are
taken from the origin. For these coordinates to be used for
the plot, the PlotType property must be set to acWindows.
Parameters: LowerLeft As Variant and UpperRight As
Variant. (Both parameters are two-element arrays of
Doubles.)

RefreshPlotDeviceInfo Updates the plot, canonical media, and plot-style table
information to reflect the current system state. You should
call this method once before calling the
GetCanonicalMediaNames, GetPlotDeviceNames, or
GetPlotStyleTableNames method.

SetCustomScale Sets the custom scale for a layout or plot configuration, in
millimeters or inches depending on the value of the
PaperUnits property. Parameters: Numerator As Double and
Denominator As Double. Note that the parameters must be
greater than zero.

SetWindowToPlot Sets the coordinates that define the portion of the layout
to plot, the units of which depend on the values of the
PaperUnits property. The coordinates of the window are
taken from the origin. For these coordinates that can be
used for the plot, the PlotType property must be set to
acWindows. Parameters: LowerLeft As Variant and
UpperRight As Variant.

AcadLayout and AcadPlotConfiguration Objects: Properties
The AcadLayout and AcadPlotConfiguration objects inherit all the properties inherited from
the AcadObject object, as well as the common Application property. They also support the
following properties.

Name Returns Description

Block AcadBlock This property is specific to the AcadLayout object. It gets the
block associated with the layout. This property’s value is
read-only.

CanonicalMediaName String Gets or sets the name of the media that specifies the paper
size. Note that changes to this property won’t be visible until
the drawing is regenerated.

CenterPlot Boolean Specifies whether there is centering of the plot on the media.
Note that changes to this property won’t be visible until the
drawing is regenerated. Note also that this property can’t be
set to True if the PlotType property is set to acLayout.

ConfigName String Gets or sets the name of the PC3 file or print device to be used
by the layout or plot configuration. Note that this property
takes only the file name for the configuration file. Use the
PrinterConfigPath property to specify the path for printer
configuration files.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 539

5793appA_final.qxd 8/22/05 1:35 AM Page 539

Name Returns Description

ModelType Boolean Specifies whether the plot configuration applies only
to model space or to all layouts. If True, it applies
only to the model space layout; if False, it applies to
all layouts. This property’s value is read-only.

Name String Gets or sets the name of the object.

PaperUnits AcPlotPaperUnits Gets or sets the units for the display of the layout or
plot configuration in the user interface. Note that
changes to this property won’t be visible until the
drawing is regenerated. Possible values for the
AcPlotPaperUnits enumeration are acInches,
acMillimeters, and acPixels.

PlotHidden Boolean Specifies whether objects in the paper space are to
be hidden during a plot. This is True if objects are to
be hidden and False otherwise. Note that this prop-
erty does not affect objects inside floating model
space viewports.

PlotOrigin Variant Gets or sets the origin of the UCS, block, layout, or
raster image in WCS coordinates. It returns a two-
element array of Doubles representing the XY
coordinates of the origin. The origin is offset from
the media edge by the paper margin and is given in
millimeters. Note that changes to this property won’t
be visible until the drawing is regenerated.

PlotRotation AcPlotRotation Gets or sets the rotation angle for the layout or plot
configuration relative to the X-axis, with positive val-
ues going counterclockwise when viewed along the
Z-axis toward the origin. Note that changes to this
property won’t be visible until the drawing is regen-
erated. Possible values for the AcPlotRotation
enumeration are ac0degrees, ac90degrees,
ac180degrees, and ac270degrees.

PlotType AcPlotType Gets or sets the type of layout or plot configuration.
Note that changes to this property won’t be visible
until the drawing is regenerated. Note also that the
ViewToPlot property or SetWindowToPlot method
needs to be called before you can set the PlotType to
acView or acWindow, respectively. For a list of possible
values for the AcPlotType enumerated type, see
Appendix B.

PlotViewportBorders Boolean Specifies whether the viewport borders are to be
plotted.

PlotViewportsFirst Boolean Specifies whether all geometry in paper space view-
ports is plotted first rather than the geometry in the
paper space. This is True if geometry in the paper
space viewports is plotted first and False otherwise.

PlotWithLineweights Boolean Specifies whether objects are plotted with the line-
weights assigned from a plot style or from a drawing
file. This is True if the plot uses the lineweights
assigned from a plot style and False otherwise.

PlotWithPlotStyles Boolean Specifies whether objects are plotted with the plot con-
figuration assigned from a plot style or from a drawing
file. This is True if the plot uses the plot configuration
assigned from a plot style and False otherwise.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY540

5793appA_final.qxd 8/22/05 1:35 AM Page 540

Name Returns Description

ScaleLineweights Boolean Specifies whether the lineweight is scaled with the
rest of the geometry when a layout is printed. The
value of this property is stored in the LWSCALE system
variable. Note that this property is disabled for the
model space layout.

ShowPlotStyles Boolean Specifies whether plot styles are to be used in the
plot (True) or use the plot styles assigned to objects
in the drawing (False).

StandardScale AcPlotScale Gets or sets the standard scale for the layout, view-
port, or plot configuration. For a list of possible values
for the AcPlotScale enumerated type, see Appendix B.

StyleSheet String Gets or sets the name of the style sheet for the layout
or plot configuration.

TabOrder Integer Gets or sets the tab order of a layout. Controls the
order in which the layouts are displayed in the tab
control. The tab order should be unique and sequen-
tial among all layouts in the database. The model
space tab must have a tab order of 0. Paper space tabs
must have a tab order of 1 or greater. This applies to
the AcadLayout object only.

UseStandardScale Boolean Specifies whether the plot is to use a standard or
custom scale. This is True if the standard scale is to
be used and False otherwise. See the SetCustomScale
method.

ViewToPlot String Gets or sets the name of the view to be plotted. Note
that the PlotType property for the layout or plot con-
figuration has to be set to acView.

■Note Because these objects inherit from AcadObject, they both support the Modified event.

AcadLayouts and AcadPlotConfigurations Collections
The AcadLayouts collection contains all the AcadLayout objects in the drawing. It is accessed by
the Layouts property of the Document object. It is created when the document is created and can’t
be deleted (even though the collection inherits a Delete method from AcadObject). To remove a
layout definition, use the Delete method of the AcadLayout object.

The AcadPlotConfigurations collection is similar to the AcadLayouts collection, except it
contains all the AcadPlotConfiguration objects for a project. Whereas a layout is specific to a
particular block, a plot configuration contains a named collection of plot settings that can be
applied to any geometry. Once again, this collection inherits a Delete method that you can’t use.
To remove a plot configuration, use the Delete method of the AcadPlotConfiguration object.

As the two collections are all but identical, I will present their methods and properties
together.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 541

5793appA_final.qxd 8/22/05 1:35 AM Page 541

AcadLayouts and AcadPlotConfigurations Collections: Methods
The AcadLayouts and AcadPlotConfigurations collections support all the methods inherited
from the AcadObject object. They also support the following methods.

Name Returns Description

Add Creates a named member object and adds it to the appropriate collection.
Parameter: Name As String. Additional optional parameter (for the
AcadPlotConfigurations collection only): ModelType As Variant (this
is True if the plot configuration applies to a model space tab and False
otherwise).

Item Gets the member object at a given index in a collection. Parameter: Index
As Variant (an Integer or a String). If the Index value is a String, it must
match an existing object name in the collection.

AcadLayouts and AcadPlotConfigurations Collections: Properties
The AcadLayouts and AcadPlotConfigurations collections support all the properties inherited
from the AcadObject object, the Count property, and the common Application property. They
support no other properties.

■Note Because these collections inherit from AcadObject, they both support the Modified event.

AcadLeader Object
A leader line is an object that can be composed of an arrowhead attached to either splines or
straight-line segments. In addition, a short horizontal line (hook line) connects descriptive
text and/or feature control frames to the leader line. The AcadLeader object specifies such a
complex leader line, and the Leader property of the AcadDimDiametric and AcadDimRadial
objects specifies a simple leader line.

The AcadLeader object is created using the AddLeader method of the AcadBlock,
AcadModelSpace, or AcadPaperSpace object. Any annotation attached to the leader line is
defined in the Annotation property of the AcadLeader object.

AcadLeader Object Methods
The AcadLeader object inherits all the methods of the AcadEntity and AcadObject objects.
It also supports the following method.

Name Description

Evaluate Evaluates the relative position of the leader line to its associated annotation and
updates the leader line’s geometry if necessary.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY542

5793appA_final.qxd 8/22/05 1:35 AM Page 542

AcadLeader Object Properties
The AcadLeader object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 543

Name Returns Description

Annotation AcadEntity Gets or sets the annotation object for a leader, which can
be a tolerance object, a multiline text object, or a block
reference. Note that setting the Annotation property to a
new annotation object modifies the drawing but returns
an invalid input error.

ArrowheadBlock String Gets or sets the name of the block to use as the custom
arrowhead for a leader line.

ArrowheadSize Double Gets or sets the size of the leader line arrowheads and
hook lines. The initial value for this property is 0.1800.

ArrowheadType AcDimArrowheadType Gets or sets the type of arrowhead used for the leader
line. The initial value for this property is acArrowDefault.
Note that if you use the ArrowheadBlock property to spec-
ify a block to use as a custom arrowhead, this property
will be set to acArrowUserDefined. For a list of possible
values for the AcDimArrowheadType enumerated type, see
Appendix B.

Coordinate Variant Gets or sets the coordinate of a single vertex in the object.
This will replace the existing vertex for the specified object.
Use standard array-handling techniques to process the val-
ues contained in this property. It returns a three-element
array of Doubles containing 3-D coordinates in WCS. Note
that the Z coordinate will default to 0 on the active UCS.
Parameter: Index As Integer (the index in the zero-based
array for the vertex you want to set or query).

Coordinates Variant Gets or sets the coordinates for each vertex in the object.
This will replace any existing coordinates for the specified
object. Use standard array-handling techniques to process
the coordinates contained in this property. Note that you
can’t change the number of coordinates in the object by
using this property; you can change only the location of
existing coordinates. It returns a three-element array of
Doubles containing 3-D coordinates in WCS. Note also
that the Z coordinate will always default to 0 on the active
UCS.

DimensionLineColor AcColor Gets or sets the color of the leader object. Use a color index
number from 0 to 256 or one of the constants listed here:
acByBlock (where AutoCAD draws objects in the default
color), acByLayer (where AutoCAD draws objects in the
color specified for the layer), or the AcColor enumeration
(see Appendix B). This property overrides the value of the
DIMCLRD system variable for the given leader object.

DimensionLineWeight AcLineWeight Gets or sets the lineweight for the leader lines. See
Appendix B for a list of the values of the AcLineWeight
enumeration.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the
leader line.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 543

Name Returns Description

ScaleFactor Double Gets or sets the scale factor for the object. It has
to be a value greater than 0.0. A scale factor
greater than 1 enlarges the hook line. A scale fac-
tor from 0 to 1 shrinks the hook line. The initial
value for this property is 1.0000. This property
overrides the DIMSCALE system variable.

StyleName String Gets or sets the name of the style used with the
object, the default being the current style. Use
the TextStyle object to change the attributes of
a given text style. Note that the name given must
already be defined in the drawing.

TextGap Double Gets or sets the gap between the annotation and
a hook line on a leader object.

Type AcLeaderType Gets or sets type of a leader line. For a list of possi-
ble values for the AcLeaderType enumerated type,
see Appendix B.

VerticalTextPosition AcDimVerticalJustification Gets or sets the vertical position of text in rela-
tion to the leader line. This property overrides
the value of the DIMTAD system variable for the
given dimension, leader, or tolerance object.
The initial value for this property is
acVertCentered. (For a list of the values of the
AcDimVerticalJustification enumerated type,
see Appendix B.)

APPENDIX A ■ AUTOCAD OBJECT SUMMARY544

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadLine Object
The AcadLine object represents a single line segment. In AutoCAD, lines can be one segment
or a series of connected segments, but each is a separate AcadLine object. You use this object
if you want to edit individual segments. If, however, you need to draw a series of line segments
as a single object, use the AcadLWPolyline object. The AcadLine object is created using the
AddLine method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadLine Object Methods
The AcadLine object inherits all the methods of the AcadEntity and AcadObject objects. It also
supports the following method.

Name Returns Description

Offset Variant Creates a new line by offsetting the current line by a specified distance,
which can be positive or negative but can’t be zero. If the offset is negative,
this means that the line is drawn closer to the WCS origin. Parameter:
Distance As Double.

5793appA_final.qxd 8/22/05 1:35 AM Page 544

AcadLine Object Properties
The AcadLine object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Angle Double Gets the angle of the line in degrees, starting at the X-axis and pro-
ceeding counterclockwise. This property’s value is read-only.

Delta Variant Gets the delta of the line. It returns a three-element array of Doubles
representing the deltaX, deltaY, and deltaZ values for the line. This
property’s value is read-only.

EndPoint Variant Gets or sets a set of 3-D coordinates representing the end point of the
line.

Length Double Gets the length of the line. This property’s value is read-only.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the line object.

StartPoint Variant Gets or sets the set of 3-D WCS coordinates representing the start
point for the line.

Thickness Double Gets or sets the distance the AcadLine object is extruded above or
below its elevation, in a Z-axis direction. The default is 0.0.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadLineType Object
The AcadLineType object contains line definitions or components consisting of combinations
of dashes, dots, spaces, text, and shapes. You can create default linetypes programmatically
only using the Add method of the AcadLinetypes collection. However, you can load an existing
linetype definition to your drawing by using the Load method of the AcadLinetypes collection.
Although there is no limit to the number of linetypes defined in any one drawing, only one can
be active at a time. New objects are created using the linetype specified for the active layer. If
no such linetype exists for the active layer, new objects are created with the active linetype.
Linetypes are activated using the ActiveLinetype property.

AcadLineType Object Methods
The AcadLineType object inherits all the methods of the AcadObject object. It supports no
other methods.

AcadLineType Object Properties
The AcadLineType object inherits all the properties of the AcadObject object, as well as the
common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 545

5793appA_final.qxd 8/22/05 1:35 AM Page 545

Name Returns Description

Description String Gets or sets a text description of the linetype object. This can be up
to 47 characters long and can contain text or a series of characters
to represent the linetype pattern itself (using underscores, dots,
dashes, and spaces).

Name String Gets or sets the name of the linetype definition.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadLineTypes Collection
The AcadLinetypes collection contains all the linetypes defined for a drawing. You use the Add
method to add a new linetype definition to the collection, and you can select a particular line-
type using the Item method. You can load an existing linetype definition using the Load method.
The collection also inherits a Delete method from AcadObject, but you can’t use it, as the collec-
tion can’t be deleted. To remove a linetype, use the Delete method of the AcadLinetype object.
There is no limit to the number of linetypes you can create in your drawing. However, there can
be only one instance of the AcadLinetypes collection, which is predefined for each drawing. You
can make multiple references to it by using the Linetypes property.

AcadLineTypes Collection Methods
The AcadLineTypes collection inherits all the methods of the AcadObject object. It also supports
the following methods.

Name Returns Description

Add AcadLineType Creates a named AcadLinetype object and adds it to the collection.
Parameter: Name As String.

Item AcadLineType Gets the AcadLinetype object at a given index in the collection. Para-
meter: Index As Variant (an Integer or a String). If the Index value is
a String, it must match an existing linetype definition.

Load Loads a definition of a named linetype from a library (.lin) file. Para-
meters: Name As String and FileName As String.

AcadLineTypes Collection Properties
The AcadLineTypes collection inherits all the properties of the AcadObject object and supports
the Count property and the common Application property. It supports no other properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY546

5793appA_final.qxd 8/22/05 1:35 AM Page 546

AcadLWPolyline Object
The AcadLWPolyline object represents a 2-D line of adjustable width that’s composed of line and
arc segments. It’s created using the AddLWPolyline method of the AcadBlock, AcadModelSpace, or
AcadPaperSpace object.

AcadLWPolyline Object Methods
The AcadLWPolyline object inherits all the methods of the AcadEntity and AcadObject objects.
It also supports the following methods.

Name Returns Description

AddVertex Adds a vertex to the lightweight polyline, a vertex being the end point
for a new line segment. See the SetBulge method for creating an arc.
Each vertex is added to a three-element array of Doubles. Parameters:
Index As Integer and Vertex As Variant. (Index refers to the position
in the array where the new vertex is added. Vertex refers to the 3-D
OCS coordinates where the vertex is to be created.)

Explode Variant Explodes the lightweight polyline and returns the subentities as an
array of Objects (AcadLine and AcadArc).

GetBulge Double Returns the bulge value at a given index of the lightweight polyline.
A bulge is the tangent of 1/4 of the included angle for the arc between
the selected vertex and the next vertex in the polyline’s vertex list.
A negative bulge value indicates that the arc goes clockwise from the
selected vertex to the next vertex. A bulge of 0 indicates a straight seg-
ment, and a bulge of 1 is a semicircle. Parameter: Index As Integer.

GetWidth Returns segment width at a given index of the lightweight polyline.
Parameters: Index As Integer, StartWidth As Double, and EndWidth
As Double.

Offset Variant Creates a new lightweight polyline by offsetting the existing polyline
by a given distance, which must be nonzero. If the offset is negative,
this means that the line is drawn closer to the WCS origin. Parameter:
Distance As Double.

SetBulge Sets the vertex bulge of the lightweight polyline at a given index. See
GetBulge for the definition of a bulge. Parameters: Index As Integer
and bulge As Double.

SetWidth Sets the segment width of the lightweight polyline for a given index.
Parameters: Index As Integer, StartWidth As Double, and EndWidth
As Double.

AcadLWPolyline Object Properties
The AcadLWPolyline object inherits all the properties of the AcadEntity and AcadObject
objects, as well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 547

5793appA_final.qxd 8/22/05 1:35 AM Page 547

Name Returns Description

Area Double Gets the area of a lightweight polyline in square drawing units.
The area is computed as though a straight line connects the
start and end points. This property’s value is read-only.

Closed Boolean Specifies whether the lightweight polyline is closed (True) or
open (False). Open is the default.

ConstantWidth Double Gets or sets a global width for all segments in a lightweight
polyline.

Coordinate Variant Gets or sets the coordinate of a single vertex in the object.
This will replace any existing vertices for the specified object.
Use standard array-handling techniques to process the val-
ues contained in this property. This returns a two-element
array of Doubles containing 2-D coordinates in OCS. These
coordinates can be converted to and from other coordinate
systems using the TranslateCoordinates method. Parameter:
Index As Integer (the index in the zero-based array of ver-
tices for the vertex you want to set or query).

Coordinates Variant Gets or sets the coordinates for each vertex in the object. This
will replace any existing coordinates for the specified object.
Use standard array-handling techniques to process the coor-
dinates contained in this property. Note that you can’t change
the number of coordinates in the object by using this prop-
erty; you can change only the location of existing coordinates.
This returns the array point as a two-element array of Dou-
bles containing 2-D points in OCS. These coordinates can be
converted to and from other coordinate systems using the
TranslateCoordinates method.

Elevation Double Gets or sets the current elevation of the lightweight polyline.

LinetypeGeneration Boolean Specifies the linetype generation of a lightweight polyline. If
this is set to True, the linetype is generated in a continuous
pattern through the polyline vertices; if it’s set to False, the
linetype is generated starting and ending with a dash at each
polyline vertex.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the light-
weight polyline.

Thickness Double Gets or sets the distance the AcadLWPolyline object is extruded
above or below its elevation, in a Z-axis direction. The default
is 0.0.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadMenuBar Collection
The AcadMenuBar collection contains all the AcadPopupMenu objects displayed on the current
AutoCAD menu bar. Any menu from a currently loaded menu group can be displayed on the
menu bar. To display a menu on the menu bar, use the InsertInMenuBar method found on

APPENDIX A ■ AUTOCAD OBJECT SUMMARY548

5793appA_final.qxd 8/22/05 1:35 AM Page 548

the AcadPopupMenu object. To remove a menu from the current menu bar, use the
RemoveFromMenuBar method also found on the AcadPopupMenu object.

AcadMenuBar Collection Methods
Just one method is supported.

Name Returns Description

Item Object Returns the object at the specified index in the collection. Parameter:
Index As Variant (Integer or String). If the Index value is a String, it must
match an existing object name in the collection.

AcadMenuBar Collection Properties
As well as the common Application and Count properties, the AcadMenuBar collection supports
the following property.

Name Returns Description

Parent AcadApplication Returns the parent of the AcadMenuBar collection. This property’s
value is read-only.

AcadMenuGroup Object
The AcadMenuGroup object represents an AutoCAD menu group, which contains menus and tool-
bars, some or all of which may be currently displayed in AutoCAD. Each menu group contains an
AcadPopupMenus collection and an AcadToolbars collection. The former collection contains all the
menus within the menu group and can be accessed through the Menus property. The latter con-
tains all the toolbars within the menu group and can be accessed through the Toolbars property.
Menu groups are loaded into the AutoCAD session using the Load method, which adds the menu
group to the AcadMenuGroups collection.

You can’t create new menu groups. However, you can load an existing menu file contain-
ing a menu group and save it again with a new menu group name and to new menu file. The
menus and toolbars thus become available for editing.

AcadMenuGroup Object Methods
Three methods are supported by the AcadMenuGroup object.

Name Description

Save Saves the menu group. Note that certain changes to the appearance of the AutoCAD user
interface, such as changing system colors, will cause the menus and toolbars to be reloaded
from the menu file. Be certain to save changes to your menu group often, using the Save
method, to avoid losing your customizations. Parameter: MenuFileType As AcMenuFileType.
For a list of possible values for the AcMenuFileType enumerated type, see Appendix B.

SaveAs Saves the menu group and gives it the specified name using the full path and file name,
or valid URL address, for the file. The active menu group takes on the new name. Para-
meters: FileName As String and MenuFileType As AcMenuFileType.

Unload Unloads the menu group. When a menu group is unloaded from the drawing, any refer-
ences to the menus and toolbars within that group become invalid. Always delete or set
to NULL any references to toolbars and menus before unloading.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 549

5793appA_final.qxd 8/22/05 1:35 AM Page 549

AcadMenuGroup Object Properties
As well as the common Application property, the AcadMenuGroup object supports the following
properties.

Name Returns Description

MenuFileName String Gets the name of the file in which the menu group is located.
This property’s value is read-only.

Menus AcadPopupMenus Gets the AcadPopupMenus collection for the menu group.

Name String Gets the name of the menu group. The name is limited to
32 characters and can’t contain spaces or punctuation marks.
This property’s value is read-only.

Parent AcadMenuGroups Gets the parent of the AcadMenuGroup object. This property’s
value is read-only.

Toolbars AcadToolbars Gets the AcadToolbars collection for the menu group.

Type AcMenuGroupType Gets the type of the menu group. This property’s value is
read-only. The possible values for the AcMenuGroupType enu-
meration are acBaseMenuGroup and acPartialMenuGroup.

AcadMenuGroups Collection
The AcadMenuGroups collection contains all the AcadMenuGroup objects, from which you can get
a reference to all pop-up menus and toolbars loaded in the current AutoCAD session. To load
a new menu group from a file into this collection, use the Load method. Note that you can’t
create new menu groups. However, you can load an existing menu group and save it out again
with a new name and to new menu file. The menus and toolbars thus become available for
editing. To unload a menu group from this collection, use the Unload method found on the
AcadMenuGroup object.

AcadMenuGroups Collection Methods
Three methods are supported by the AcadMenuGroups object.

Name Returns Description

Item AcadMenuGroup Returns the object at the given index in the collection. Parameter:
Index As Variant (Integer or String). If the Index value is a String, it
must match an existing object name in the collection.

Load AcadMenuGroup Loads a menu group from a menu file. Parameters: MenuFileName
As String and [BaseMenu As Variant]. The MenuFileName should
have an .mnc, .mns, or .mnu extension. If the BaseMenu parameter is
set to True, then the menu group will be loaded as a base menu,
similar to the AutoCAD MENU command. If this parameter is omitted,
the menu group will be loaded as a partial menu, similar to the
AutoCAD MENULOAD command.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY550

5793appA_final.qxd 8/22/05 1:35 AM Page 550

AcadMenuGroups Collection Properties
As well as the common Application property and the Count property, the AcadMenuGroups
collection supports the following property.

Name Returns Description

Parent AcadApplication Gets the parent of the collection. This property’s value is read-only.

AcadMInsertBlock Object
The AcadMInsertBlock object represents a rectangular array of block references. It is created
using the AddMInsertBlock method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadMInsertBlock Object Methods
The AcadMInsertBlock object inherits all the methods of the AcadEntity and AcadObject
objects. It also supports the following methods.

Name Returns Description

Explode Variant Explodes the block and returns the subentities as an
array of AcadBlockReference objects.

GetAttributes Variant Returns an array of editable attribute references attached
to the multiple block reference. After you edit one
AcadAttribute object and update the AcadMInsertBlock
object, changes will appear in each nested block because
there’s only one set of attribute references for the multi-
ple inserted blocks.

GetConstantAttributes Variant Returns an array of constant attributes for the multiple
blocks.

AcadMInsertBlock Object Properties
The AcadMInsertBlock object inherits all the properties of the AcadEntity and AcadObject
objects, as well as the common Application property. It also supports the following properties.

Name Returns Description

Columns Integer Gets or sets the number of columns in a block array.

ColumnSpacing Double Gets or sets the spacing of the columns in a block array.

HasAttributes Boolean Indicates whether the block has any attributes in it. This prop-
erty’s value is read-only.

InsertionPoint Variant Represents an insertion point in the block as a set of 3-D WCS
coordinates. It returns a three-element array of Doubles.

Name String Gets or sets the name of the multiple block, which is identical to
the name of the block used in the AddMInsertBlock method.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the block.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 551

5793appA_final.qxd 8/22/05 1:35 AM Page 551

Name Returns Description

Rotation Double Gets or sets the rotation angle (in radians) for the block relative
to the X-axis, with positive values going counterclockwise when
viewed along the Z-axis toward the origin.

Rows Integer Gets or sets the number of rows in a block array.

RowSpacing Double Gets or sets the spacing of the rows in a block array.

XScaleFactor Double Gets or sets the X scale factor for the block.

YScaleFactor Double Gets or sets the Y scale factor for the block.

ZScaleFactor Double Gets or sets the Z scale factor for the block.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadMLine Object
The AcadMLine object represents multiple parallel lines. One AcadMLine object can comprise up
to 16 lines. The object is created using the AddMLine method of the AcadBlock, AcadModelSpace,
or AcadPaperSpace object.

AcadMLine Object Methods
The AcadMLine object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

AcadMLine Object Properties
The AcadMLine object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Coordinates Variant Gets or sets the coordinates for each vertex in the object. This will
replace any existing coordinates for the specified object. Use standard
array-handling techniques to process the coordinates contained in
this property. Note that you can’t change the number of coordinates
in the object by using this property; you can change only the location
of existing coordinates. Returns a three-element array of Doubles
containing 3-D coordinates in WCS. Note also that the Z coordinate
will always default to 0 on the active UCS.

StyleName String Gets the MLine style name. This property’s value is read-only.

■Note Because this object inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY552

5793appA_final.qxd 8/22/05 1:35 AM Page 552

AcadModelSpace Collection
The AcadModelSpace collection contains all the objects in model space. It is similar to the
AcadBlock object, and it supports the same methods and properties. Moreover, objects con-
tained in this collection can also be found in the blocks collection in a special block called
*MODEL_SPACE, which is to say that both the block named *MODEL_SPACE and the AcadModelSpace
collection actually point to the same data. The AcadModelSpace collection was created to provide
a faster and easier means of accessing the data in model space. There is a single AcadModelSpace
collection provided in the drawing. The collection can’t be created or deleted. To add objects to
the collection, you use the same Add* methods presented for the AcadBlock object.

Use model space for drafting and design work and to create 2-D drawings or 3-D models.

Methods and Properties
The AcadModelSpace collection supports all the methods and properties supported by the
AcadBlock object, as well as the common Application property. See the AcadBlock object for
more details.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

AcadMText Object
The AcadMText object represents a paragraph of alphanumeric characters that fits within a
nonprinting text boundary. Each AcadMText object is a single object regardless of the number
of lines it contains, and AutoCAD uses word wrap to break long lines into paragraphs. Text
can be imported into an AcadMText object, but all embedded formatting will be lost. The text
boundary definition specifies the width and alignment of the paragraph, and although it isn’t
plotted or printed, it remains part of the object’s framework. AcadMText objects are created
using the AddMText method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadMText Object Methods
The AcadMText object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

AcadMText Object Properties
The AcadMText object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 553

5793appA_final.qxd 8/22/05 1:35 AM Page 553

Name Returns Description

AttachmentPoint AcAttachmentPoint Gets or sets the attachment point for an AcadMText object. The
option selected determines both the text justification and text
spill in relation to the text boundary. When the property is
changed, the position of the existing bounding box doesn’t
change. The text is simply rejustified within the bounding box.
For a list of possible values for the AcAttachmentPoint enumer-
ated type, see Appendix B.

DrawingDirection AcDrawingDirection Gets or sets the direction in which the MText paragraph is to be
read. Possible values for the AcDrawingDirection enumeration
are acLeftToRight and acTopToBottom. (Three other values are
reserved for future use: acRightToLeft, acBottomToTop, and
acByStyle.)

Height Double Sets the height of uppercase text, measured in the current
units. This property is used as a scale factor for both the height
and width of the text. \H also indicates a height change.

InsertionPoint Variant Sets the insertion point for the text and specifies the location
for a corner of the text boundary. The AttachmentPoint prop-
erty specifies which corner of the text boundary is to be
positioned at this insertion point.

LineSpacingFactor Double Gets or sets the relative line spacing factor for the AcadMText
object, defined as the vertical distance between the baseline
of one text line and the baseline of the next text line. It’s set as
a multiple of single line spacing and should have a value
between 2.5 and 4.0.

LineSpacingStyle AcLineSpacingStyle Gets or sets the line spacing style for the AcadMText object. For
a list of possible values for the AcLineSpacingStyle enumer-
ated type, see Appendix B.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the
AcadMText object.

Rotation Double Gets or sets the rotation angle (in radians) for MText relative to
the X-axis, with positive values going counterclockwise when
viewed along the Z-axis toward the origin.

StyleName String Gets or sets the name of the style used with the object, the
default being the current style. Use the TextStyle object to
change the attribute of a given text style. Note that the name
given must already be defined in the drawing.

TextString String Gets or sets the text string for the entity. The text string may con-
tain format codes; for example, you can underline text, add a line
over text, and create stacked text.

Width Double Gets or sets the width of the text boundary in the current units.
AutoCAD wraps the text within the text boundary; therefore,
the width must be a positive number large enough to accom-
modate the text. If the width isn’t large enough, the text may be
difficult to read or may not be visible at all. \W also indicates a
width change.

■Note Because this object inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY554

5793appA_final.qxd 8/22/05 1:35 AM Page 554

AcadPaperSpace Collection
The AcadPaperSpace collection contains all the objects in paper space layout, and if a new
paper space is made active, the data in this collection will be changed to reflect the data in the
new active layout. It is similar to the AcadBlock object, and it supports the same methods and
properties, with just one additional method. Moreover, objects contained in this collection
can also be found in the blocks collection in a special block called *PAPER_SPACE, which is to
say that both the block named *PAPER_SPACE and the AcadPaperSpace collection actually point
to the same data. The AcadPaperSpace collection was created to provide a faster and easier
means of accessing the data in the active paper space layout.

Paper space layouts are used for creating a finished layout for printing or plotting the draw-
ing and not doing drafting or design work, which is carried out in the model space. Although
both 2-D and 3-D objects can exist in paper space, commands that render a 3-D viewpoint are
disabled. The AcadPaperSpace collection can’t be created or deleted.

Use paper space to create a finished layout of a drawing for printing or plotting.

AcadPaperSpace Collection Methods
The AcadPaperSpace collection inherits all the methods of the AcadBlock and AcadModelSpace
collections. It also supports the following method.

Name Returns Description

AddPViewport AcadPViewport Adds a paper space viewport, given the coordinates for the
center of the viewport, its height, and its width. Parameters:
Center As Variant, Width As Double, and Height As Double.

AcadPaperSpace Collection Properties
The AcadPaperSpace collection inherits all the properties of the AcadBlock and AcadModelSpace
collections, as well as the common Application property. It supports no other properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

AcadPlot Object
The AcadPlot object represents the set of methods and properties used for plotting specified
layouts. You can display a plot preview, plot to a file or plot to a device, or batch-plot several
plot commands. You can set the number of copies of the drawing to be plotted and specify
quiet error mode so that the plot session will be uninterrupted.

However, it should be noted that you can’t create a configured plotter (PC3) file using
ActiveX. To create a PC3 file, use the Add-a-Plotter wizard in AutoCAD. For more information
on PC3 files, see “Plotter-Specific Configuration Information” in the AutoCAD documentation.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 555

5793appA_final.qxd 8/22/05 1:35 AM Page 555

AcadPlot Object Methods
The AcadPlot object supports the following methods.

Name Returns Description

DisplayPlotPreview Displays the plot preview dialog box for the active layout.
Parameter: Preview As AcPreviewMode. For a description of
possible values for the AcPreviewMode enumerated type, see
Appendix B. Note that there’s no hourglass indicating the
regeneration process and that the user needs to dismiss the
preview for this method to return. Any VBA UserForm should
be hidden during a plot preview.

PlotToDevice Boolean Plots a layout to a device and returns whether the plot was
successfully sent. Parameter: plotConfig As String. Speci-
fies the full path and file name of the PC3 file to use instead
of the current configuration. If this parameter isn’t provided,
the current configuration will be used. A dialog window will
indicate the printing progress. Any VBA UserForm should be
hidden during a PlotToDevice operation.

PlotToFile Boolean Plots a layout to a file and returns whether the plot was
successfully sent. Parameters: PlotFile As String and
[PlotConfig As String]. PlotFile specifies the name of the
file to which to plot the active layout. When you plot multiple
layouts, the file name for each plot will be generated from
the drawing and layout names. A dialog window will indicate
the printing progress. Any VBA UserForm should be hidden
during a PlotToFile operation. PlotConfig specifies the full
path and file name of the PC3 file to use instead of the cur-
rent configuration. If this parameter isn’t provided, the
current configuration will be used.

SetLayoutsToPlot Sets the layout or layouts to be plotted. If you want a layout
other than the active layout to be plotted, you must call this
method. Parameter: LayoutList As Variant (an array of lay-
out objects). If the LayoutList parameter is NULL or this
method isn’t called at all, the active layout is sent to the plot.
Note that a call to this method has to precede each layout
plotting in an iteration. Before you enter a batch operation,
you have to specify the number of layouts to plot using the
StartBatchMode method.

StartBatchMode Invokes batch mode printing. This method allows the plot
progress dialog box to show the progress of batch plots. This
remains active until the batch is completed. Parameter:
EntryCount As Long. The EntryCount parameter specifies the
number of calls to either the PlotToFile method or the
PlotToDevice method that must follow the StartBatchMode
method.

AcadPlot Object Properties
As well as the common Application property, the AcadPlot object supports the following
properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY556

5793appA_final.qxd 8/22/05 1:35 AM Page 556

Name Returns Description

QuietErrorMode Boolean Specifies whether quiet error mode is enabled. Quiet error
mode logs all plot-related error messages into a log file. This is
essential for certain plotting applications, such as batch plot-
ting, that require uninterrupted application execution. When
the quiet error mode is disabled, errors during printing are
displayed in alert boxes.

NumberOfCopies Long Gets or sets the number of copies to be plotted.

BatchPlotProgress Boolean Specifies whether the batch plot is in progress. Setting this
property to False terminates the batch plot. You can achieve
this programmatically or by clicking the Cancel button in the
progress dialog box.

AcadPlotConfiguration Object
See the AcadLayout object.

AcadPlotConfigurations Collection
See the AcadLayouts collection.

AcadPoint Object
The AcadPoint object represents a point marker on a drawing appearing as a dot, square,
circle, X, tick, plus sign, or as any combination of these. You can specify a full 3-D location for
a point. However, the current elevation is assumed if you supply two coordinates. Points can
also act as nodes onto which you can snap objects. The Coordinates property provides an
array that can be used in any method requiring a point as an input parameter. AcadPoint
objects are created using the AddPoint method of the AcadBlock, AcadModelSpace, or
AcadPaperSpace object.

The PDMODE and PDSIZE system variables control the appearance of point objects. The
values for PDMODE are as follows:

0 Draws point as a dot (.)

1 No symbol drawn

2 Draws point as a plus (+)

3 Draws point as a cross (x)

4 Draws point as a vertical dash (|)

You can add 32, 64, or 96 to any of the preceding values to specify a shape to draw around
the point in addition to the point symbol itself. The values represent a circle, a square, and a
circle within a square, respectively.

The PDSIZE variable controls the size of the point symbols for PDMODE values 2 and 4. A set-
ting of 0 generates the point at 5 percent of the graphics area height. A positive value specifies
an absolute size for the point figures; a negative value is interpreted as a percentage of the
viewport size.

Any changes to the points (PDMODE or PDSIZE) are displayed when the drawing is regenerated.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 557

5793appA_final.qxd 8/22/05 1:35 AM Page 557

AcadPoint Object Methods
The AcadPoint object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

AcadPoint Object Properties
The AcadPoint object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Coordinates Variant Gets or sets the coordinates. It returns a three-element array of
Doubles containing 3-D coordinates in WCS.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the mesh.

Thickness Double Gets or sets the distance an AcadPoint object is extruded above or
below its elevation, in a Z-axis direction. The default is 0.0.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadPolyfaceMesh Object
The AcadPolyfaceMesh object represents a 3-D polyface mesh. It is created using the
AddPolyfaceMesh method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadPolyfaceMesh Object Methods
The AcadPolyfaceMesh object inherits all the methods of the AcadEntity and AcadObject
objects. It supports no other methods.

AcadPolyfaceMesh Object Properties
The AcadPolyfaceMesh object inherits all the properties of the AcadEntity and AcadObject
objects, as well as the common Application property. It also supports the following properties.

Name Returns Description

Coordinate Variant Gets or sets the coordinate of a single vertex in the object. This
will replace an existing vertex for the specified object. Use stan-
dard array-handling techniques to process the values contained
in this property. It returns a three-element array of Doubles con-
taining 3-D coordinates in WCS. Note that the Z coordinate will
default to 0 on the active UCS. Parameter: Index As Integer (the
index in the zero-based array of vertices for the vertex you want
to set or query).

APPENDIX A ■ AUTOCAD OBJECT SUMMARY558

5793appA_final.qxd 8/22/05 1:35 AM Page 558

Name Returns Description

Coordinates Variant Gets or sets the coordinates for each vertex in the object. This
will replace any existing coordinates for the specified object.
Use standard array-handling techniques to process the coordi-
nates contained in this property. Note that you can’t change
the number of coordinates in the object by using this property;
you can change only the location of existing coordinates. It
returns a three-element array of Doubles containing 3-D coor-
dinates in WCS. Note that the Z coordinate will always default
to 0 on the active UCS.

NumberOfFaces Integer Gets the number of faces in the mesh. This property’s value is
read-only.

NumberOfVertices Integer Gets the number of vertices in the mesh. This property’s value
is read-only.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadPolygonMesh Object
The AcadPolygonMesh object simulates the geometric representation of a mesh laid out on a 3-D
surface. It is specified as an M×N mesh, where M represents the number of vertices in a row of
the mesh and N represents the number of vertices in a column. A mesh can be open or closed in
either or both the M and N directions. A mesh that is closed in a particular direction is consid-
ered to be continuous from the last row or column on to the first row or column. If it is open, it
is treated as discontinuous between the last row and the first row. The AcadPolygonMesh object is
created using the AddPolygonMesh method of the AcadBlock, AcadModelSpace, or AcadPaperSpace
object.

AcadPolygonMesh Object Methods
The AcadPolygonMesh object inherits all the methods of the AcadEntity and AcadObject objects.
It also supports the following methods.

Name Returns Description

AppendVertex Appends a vertex to the polygon mesh, which is an array of 3-D
WCS coordinates specifying the appended row of vertices. Note that
appending a vertex is the equivalent of adding an extra row to the
polygon mesh matrix. Parameter: Vertex As Variant (a 3×M array
of Doubles). Note that an array of the wrong size will result in an
error, because a polygon mesh is a regular M×N matrix.

Explode Variant Explodes the polygon mesh and returns the subentities as an array
of Objects (Acad3DFace objects).

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 559

5793appA_final.qxd 8/22/05 1:35 AM Page 559

AcadPolygonMesh Object Properties
The AcadPolygonMesh object inherits all the properties of the AcadEntity and AcadObject
objects, as well as the common Application property. It also supports the following properties.

Name Returns Description

Coordinate Variant Gets or sets the coordinate of a single vertex in the object.
This will replace an existing vertex for the specified object.
Use standard array-handling techniques to process the val-
ues contained in this property. For simple polylines, this
property specifies simple vertices. For splines or curve-fit
polylines, this property specifies control point vertices. It
returns a three-element array of Doubles containing 3-D
coordinates in WCS. Note that the Z coordinate will default
to 0 on the active UCS. Parameter: Index As Integer (the
index in the zero-based array of vertices for the vertex you
want to set or query).

Coordinates Variant Gets or sets the coordinates for each vertex in the object.
This will replace any existing coordinates for the specified
object. Use standard array-handling techniques to process
the coordinates contained in this property. For simple poly-
lines, this property specifies simple vertices. For splines or
curve-fit polylines, this property specifies control point ver-
tices. Note that you can’t change the number of coordinates
in the object by using this property; you can change only the
location of existing coordinates. It returns a 3×M×N-element
array of Doubles containing 3-D coordinates in WCS.

MClose Boolean Specifies whether the polygon mesh is closed in the M direc-
tion. The document has to be regenerated for the changes to
appear.

MDensity Integer Gets or sets the smooth surface density of a polygon mesh
in the M direction, the value of which is an integer between
2 and 255. The initial value for this property is derived from
the value in the SURFU system variable plus 1. The M surface
density is the number of vertices in the M direction for
AcadPolygonMesh objects of the following types:
acQuadSurfaceMesh, acCubicSurfaceMesh, and
acBezierSurfaceMesh.

MVertexCount Integer Gets the vertex count in the M direction of the polygon
mesh. This property’s value is read-only. This is the number
of vertices that will be used to make up an M row in the
polygon mesh if the Type property is acSimpleMesh. For any
other polygon mesh type, the MDensity value will be used as
the row size. Note that you can’t change the number of ver-
tices for a simple mesh. This property is necessary when
appending new vertices.

NClose Boolean Specifies if the polygon mesh is closed in the N direction.
The document has to be regenerated for the changes to
appear.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY560

5793appA_final.qxd 8/22/05 1:35 AM Page 560

Name Returns Description

NDensity Integer Gets or sets the smooth surface density of a polygon mesh
in the N direction, the value of which is an integer between
2 and 255. The initial value for this property is derived from
the value in the SURFV system variable plus 1. The N surface
density is the number of vertices in the N direction for
AcadPolygonMesh objects of the following types:
acQuadSurfaceMesh, acCubicSurfaceMesh, and
acBezierSurfaceMesh.

NVertexCount Integer Gets the vertex count in the N direction of the polygon
mesh. This property’s value is read-only. This is the number
of vertices that will be used to make up an N row in the
polygon mesh if the Type property is acSimpleMesh. For any
other polygon mesh type, the MDensity value will be used as
the row size. Note that you can’t change the number of ver-
tices for a simple mesh.

Type AcPolymeshType Gets or sets type of a polygon mesh object. For a list of pos-
sible values for the AcPolymeshType enumerated type, see
Appendix B.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadPolyline Object
The AcadPolyline object represents a 2-D line of adjustable width or a 3-D line or mesh of non-
adjustable width composed of line and arc segments. Use the AcadLWPolyline object to create
polylines with an optimized format that saves memory and disk space. The AcadPolyline object
is created using the AddPolyline method of the AcadBlock, AcadModelSpace, or AcadPaperSpace
object.

AcadPolyline Object Methods
The AcadPolyline object inherits all the methods of the AcadEntity and AcadObject objects. It
also supports the following methods.

Name Returns Description

AppendVertex Appends a vertex to the polyline, which is an array of 3-D coordi-
nates. The X and Y coordinates are given in OCS; the Z coordinate
is ignored. Parameter: vertex As Variant (a three-element array
of doubles).

Explode Variant Explodes the polyline and returns the subentities as an array of
Objects (AcadLine and AcadArc).

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 561

5793appA_final.qxd 8/22/05 1:35 AM Page 561

Name Returns Description

GetBulge Double Returns the vertex bulge value at a given index of the polyline. A bulge is
the tangent of 1⁄4 of the included angle for the arc between the selected
vertex and the next vertex in the polyline’s vertex list. A negative bulge
value indicates that the arc goes clockwise from the selected vertex to
the next vertex. A bulge of 0 indicates a straight segment, and a bulge of
1 is a semicircle. Note that this method will fail if the polyline Type prop-
erty isn’t acSimplePoly. Parameter: Index As Integer.

GetWidth Returns segment width at a given index of the polyline. Parameters:
Index As Integer, StartWidth As Double, and EndWidth As Double.

Offset Variant Creates a new polyline by offsetting the polyline by a given distance,
which must be nonzero. If the offset is negative, this means that the
line is drawn closer to the WCS origin. Parameter: Distance As Double.

SetBulge Sets the vertex bulge of the polyline at a given index. See GetBulge for
the definition of a bulge. Note that this method will fail if the polyline
Type property isn’t acSimplePoly. Parameters: Index As Integer and
bulge As Double.

SetWidth Sets the segment width of the polyline for a given index. Parameters:
Index As Integer, StartWidth As Double, and EndWidth As Double.

AcadPolyline Object Properties
The AcadPolyline object inherits all the properties of the AcadEntity and AcadObject objects,
as well as the common Application property. It also supports the following properties.

Name Returns Description

Area Double Gets the area of the polyline in square drawing units. The area is
computed as though a straight line connects the start and end
points. This property’s value is read-only.

Closed Boolean Specifies whether the polyline is closed (True) or open (False).
Open is the default.

ConstantWidth Double Gets or sets a global width for all segments in a polyline.

Coordinate Variant Gets or sets the coordinate of a single vertex in the object. This will
replace an existing vertex for the specified object. Use standard
array-handling techniques to process the values contained in this
property. For simple polylines, this property specifies simple ver-
tices. For splines or curve-fit polylines, this property specifies
control point vertices. It returns a three-element array of Doubles
containing 3-D coordinates in OCS (the Z coordinate is ignored).
These coordinates can be converted to and from other coordinate
systems using the TranslateCoordinates method. Parameter: Index
As Integer (the index in the zero-based array of vertices for the
vertex you want to set or query).

APPENDIX A ■ AUTOCAD OBJECT SUMMARY562

5793appA_final.qxd 8/22/05 1:35 AM Page 562

Name Returns Description

Coordinates Variant Gets or sets the coordinates for each vertex in the
object. This will replace any existing coordinates for
the specified object. Use standard array-handling tech-
niques to process the coordinates contained in this
property. For simple polylines, this property specifies
simple vertices. For splines or curve-fit polylines, this
property specifies control point vertices. Note that you
can’t change the number of coordinates in the object by
using this property; you can change only the location
of existing coordinates. It returns the array point as a
three-element array of Doubles containing 3-D points
in OCS (the Z coordinate is ignored). These coordinates
can be converted to and from other coordinate systems
using the TranslateCoordinates method.

Elevation Double Gets or sets the current elevation of the polyline.

LinetypeGeneration Boolean Specifies the linetype generation of a polyline. If it’s set
to True, the linetype is generated in a continuous pat-
tern through the polyline vertices; if it’s set to False, the
linetype is generated starting and ending with a dash at
each polyline vertex.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the
polyline.

Thickness Double Gets or sets the distance an AcadPolyline object is
extruded above or below its elevation, in a Z-axis direc-
tion. The default is 0.0.

Type AcPolylineType Gets or sets type of a polyline object. For a list of possi-
ble values for the AcPolylineType enumerated type, see
Appendix B.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadPopupMenu Object
The AcadPopupMenu object represents an AutoCAD cascading menu of which there are two types:
pull-down menus, which are accessed from the AutoCAD menu bar, and shortcut menus, which
are accessed by pressing Shift and right-clicking. A pop-up menu is a collection of menu items
that includes AcadPopMenuItems, separators, and submenus, which can be added to the collec-
tion using the AddMenuItem, AddSeparator, and AddSubmenu methods.

To create a new pull-down menu, use the Add method to add a new AcadPopupMenu
object to the AcadPopupMenus collection, and then add the menu to the menu bar using the
InsertInMenuBar method. To create a new shortcut menu, you must first delete any existing
shortcut menu, as there can be only one shortcut menu per menu group. If there is no other
shortcut menu in a menu group, you can then add a menu with the label POP0, which will be
recognized as the new shortcut menu. This label will tell AutoCAD that you want to create a
cursor menu. Consult the AcadPreferenceUser object for the list of properties to customize
the shortcut menu.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 563

5793appA_final.qxd 8/22/05 1:35 AM Page 563

AcadPopupMenu Object Methods
The AcadPopupMenu object supports the following methods.

Name Returns Description

AddMenuItem AcadPopupMenuItem Adds an item to the pop-up menu. Parameters: Index
As Variant (Integer or String), Label As String, and
Macro As String.
The Index parameter for this property and the four
that follow must be between 0 and N minus 1 (if it’s an
Integer), where N is the number of objects in the pop-
up menu. The new item will be added immediately
before the specified index location. To add the new
menu item to the end of a menu, set the index to be
greater than N. If a String is specified and the indexed
item doesn’t exist, then the new menu item is added at
the end of the menu.
The Label parameter may contain DIESEL string
expressions. Labels also identify the accelerator keys
(keyboard key sequences) that correspond to the
menu item by placing an ampersand (&) in front of the
accelerator character.

AddSeparator AcadPopupMenuItem Adds a separator to the pop-up menu. The first item in
a menu can’t be a separator. You can’t add a separator
immediately next to another separator. Parameter:
Index As Variant (Integer or String).

AddSubmenu AcadPopupMenu Adds a submenu to the pop-up menu. Parameters: Index
As Variant (Integer or String) and Label As String.
The Label parameter may contain DIESEL string expres-
sions. Labels also identify the accelerator keys (keyboard
key sequences) that correspond to the menu item by
placing an ampersand (&) in front of the accelerator
character.

InsertInMenuBar Inserts the pop-up menu into the menu bar at the
location specified by the index. Parameter: Index As
Variant.

Item AcadPopupMenuItem Returns the member of the collection specified by the
index. Parameter: Index As Variant (Integer or String).
If the Index value is a String, it must match an existing
object name in the collection. To determine if the
returned item is a menu item, a separator, or a sub-
menu, use the Type property of the returned
AcadPopupMenuItem object.

RemoveFromMenuBar Removes the pop-up menu from the menu bar.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY564

5793appA_final.qxd 8/22/05 1:35 AM Page 564

AcadPopupMenu Object Properties
As well as the common Application property and the Count property, the AcadPopupMenu object
supports the following properties.

Name Returns Description

Name String Gets or sets the name of the AcadPopupMenu object.

NameNoMnemonic String Gets the name of the menu without the underscore mnemonic.

OnMenuBar Boolean Specifies whether the menu is on the menu bar. This property’s
value is read-only.

Parent Object Gets the parent of the AcadPopupMenu object. This property’s value
is read-only. The valid object types are AcadMenuBar and
AcadPopupMenus.

ShortcutMenu Boolean Specifies whether the menu is a shortcut menu.

TagString String Gets the menu’s tag string, which can consist of alphanumeric
and underscore (_) characters. This string uniquely identifies
the item within a given menu file. This string is automatically
assigned when the object is created and is used internally by
AutoCAD for toolbar and menu identification. This property’s
value is read-only.

AcadPopupMenuItem Object
The AcadPopupMenuItem object represents a single menu item on an AutoCAD pull-down menu.
There are three types: a simple menu item, a separator, and a submenu item. They are created
using the AddMenuItem, AddSeparator, or AddSubmenu method of the AcadPopupMenu object.

Simple menu items have an index, a label, a tag, and a macro. The index is the position on
the menu where the individual menu item is located. The label is a string that defines the con-
tent and formatting of the menu item as it appears to the user. The tag is a string consisting of
alphanumeric and underscore (_) characters, which uniquely identifies the menu item within
a given menu. The macro is a series of commands that execute specific actions when a menu
item is selected.

Separators have only an index, which specifies where on the menu the separator is to
appear. Submenu items have an index, a label, and a tag, but no macro. Instead, they have
an entire AcadPopupMenu object associated with them, which appears when the user selects
the submenu item. To find an AcadPopupMenu object associated with a submenu item, use the
SubMenu property.

AcadPopupMenuItem Object Methods
The AcadPopupMenuItem object supports a single method.

Name Description

Delete Deletes the item from the menu

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 565

5793appA_final.qxd 8/22/05 1:35 AM Page 565

AcadPopupMenuItem Object Properties
As well as the common Application property, the AcadPopupMenuItem object supports the
following properties.

Name Returns Description

Caption String Gets the text seen by the user for the menu item. This prop-
erty is derived from the Label property by removing any
DIESEL string expressions. This property’s value is read-only.

Check Boolean Specifies the check status for the menu item (the tick to the
left of the menu item caption).

Enable Boolean Specifies whether the item is enabled (grayed out).

EndSubMenuLevel Integer Gets or sets the last item in a submenu. The default value
for this property is 0, specifying that this menu item isn’t
the last item in the submenu. A value of 1 indicates that this
item is the last item in a submenu. A value of 2 indicates
that this item is the last item of a submenu and also of its
parent menu. This value should be incremented for each
parent menu for which this item terminates.

HelpString String Gets or sets the help string for the menu item, which
appears in the AutoCAD status line when a user highlights
a menu item.

Index Integer Gets the index for the menu item. The first position in the
index is 0. This property’s value is read-only.

Label String Gets or sets the content and formatting of the menu item
as they appear to the user.

Macro String Gets or sets the name of the macro associated with the
menu item.

Parent AcadPopupMenu Gets the parent of the object. This property’s value is read-only.

SubMenu AcadPopupMenu Gets the submenu, if the item is associated with one. This
information can be obtained from the object Type property.
This property’s value is read-only.

TagString String Gets or sets the item’s tag string, which can consist of
alphanumeric and underscore (_) characters. This string
uniquely identifies the item within a given menu file. This
string is automatically assigned when the object is created
and is used internally by AutoCAD for toolbar and menu
identification.

Type AcMenuItemType Gets the item’s type. This property’s value is read-only.
Possible values for the AcMenuItemType enumeration are
acMenuItem, acMenuSeparator, and acMenuSubMenu.

AcadPopupMenus Collection
The AcadPopupMenus collection contains all the AcadPopupMenu objects loaded in the menu
group, some or all of which may be currently displayed in AutoCAD. To load an existing menu
into the current session, use the Load method of the AcadMenuGroups collection. To access this
collection, use the Menus property on the specific AcadMenuGroup. To create a new menu, use
the Add method. To display a menu on the AutoCAD menu bar, use the InsertMenuInMenuBar
method. To remove a menu from the menu bar, use the RemoveMenuFromMenuBar method.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY566

5793appA_final.qxd 8/22/05 1:35 AM Page 566

AcadPopupMenus Collection Methods
The AcadPopupMenus collection supports four methods.

Name Returns Description

Add AcadPopupMenu Creates an AcadPopupMenu object and adds it to the
collection. Parameter: Name As String.

InsertMenuInMenuBar Inserts a menu into the menu bar immediately
before the position specified by the index. Parame-
ters: MenuName As String and Index As Variant
(Integer or String). If the Index is an Integer, it must
be between 0 and N minus 1, where N is the number
of pop-up menus in the menu bar. If the Index is a
String, the name of the pop-up menu must contain
any underscore (_) that appears in the menu. This
method is equivalent to the InsertInMenuBar
method of the AcadPopupMenu object.

Item AcadPopupMenu Returns the item in the collection specified by the
index. Parameter: Index As Variant (Integer or
String).

RemoveMenuFromMenuBar Removes the menu specified by the index from the
menu bar. Parameter: Index As Variant (Integer or
String). If the Index is an Integer, it must be between
0 and N minus 1, where N is the number of pop-up
menus in the menu bar. If it is a String, the name of
the pop-up menu must contain any underscore (_)
that appears in the menu, which corresponds to the
TagString property of the AcadPopupMenu object.

AcadPopupMenus Collection Properties
As well as the common Application property, the AcadPopupMenus collection supports the fol-
lowing property.

Name Description

ParentAcadMenuGroup Gets the collection’s parent object. This property’s value is read-only.

AcadPreferences Object
The AcadPreferences object specifies the current AutoCAD setting, holding all the options from
the Options dialog box that reside in the Registry. Consult this dialog box from the Tools menu
for a list of all the current settings, most of them being accessed using the AcadPreferences
object. Options that reside in the drawing can be found through the AcadDatabasePreferences
object. The AcadPreferences object can be referenced from the Preferences property on the
AcadApplication object. The AcadPreferences object has no methods.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 567

5793appA_final.qxd 8/22/05 1:35 AM Page 567

AcadPreferences Object Properties
In addition to the common Application property, the AcadPreferences object supports the
following properties.

Name Returns Description

Drafting Gets the AcadPreferencesDrafting object for the application. This prop-
erty’s value is read-only.

Display Gets the AcadPreferencesDisplay object for the application. This prop-
erty’s value is read-only.

Files Gets the AcadPreferencesFiles object for the application. This property’s
value is read-only.

OpenSave Gets the AcadPreferencesOpenSave object for the application. This prop-
erty’s value is read-only.

Output Gets the AcadPreferencesOutput object for the application. This prop-
erty’s value is read-only.

Profiles Gets the AcadPreferencesProfiles object for the application. This prop-
erty’s value is read-only.

Selection Gets the AcadPreferencesSelection object for the application. This prop-
erty’s value is read-only.

System Gets the AcadPreferencesSystem object for the application. This prop-
erty’s value is read-only.

User Gets the AcadPreferencesUser object for the application. This property’s
value is read-only.

AcadPreferencesDisplay Object
The AcadPreferencesDisplay object contains the options from the Display tab on the Options
dialog box. The object has no methods.

AcadPreferencesDisplay Object Properties
In addition to the common Application property, the AcadPreferencesDisplay object supports
the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY568

Name Returns Description

AutoTrackingVecColor VBA.ColorConstants Gets or sets the color of the autotracking vector. The
default color for this property is vbWhite. Possible values:
any member of VBA.ColorConstants.

CursorSize Integer Gets or sets the size of the crosshairs as a percentage of
the size of the screen. The default value for this property
is 5 percent. The allowable range is 1 to 100 percent of the
total screen. At 100 percent, the ends of the crosshairs
aren’t visible. The value for this property is stored in the
CURSORSIZE system variable.

DisplayLayoutTabs Boolean Specifies whether the Model and Layout tabs appear in
the drawing editor. True is the initial value.

5793appA_final.qxd 8/22/05 1:35 AM Page 568

Name Returns Description

DisplayScreenMenu Boolean Specifies whether the screen menu appears
on the right side of the drawing window.
False is the initial value.

DisplayScrollBars Boolean Specifies whether scrollbars appear at the
bottom and right sides of the drawing win-
dow. False is the initial value.

DockedVisibleLines Integer Gets or sets the number of lines of text visi-
ble in the command window. The initial
value for this property is 3. Note that while
it’s still available, this property has no effect
in AutoCAD 2004 products.

GraphicsWinLayout-BackgrndColor VBA.ColorConstants Gets or sets the background color of the
paper space layouts. The initial value for
this property is a color halfway between the
Windows standard background color and
the Windows standard active button color.
Possible values: any member of
VBA.ColorConstants.

GraphicsWinModel-BackgrndColor VBA.ColorConstants Gets or sets the background color of the
model space window. The default color for
this property is vbBlack. Possible values:
any member of VBA.ColorConstants.

HistoryLines Integer Gets or sets the number of lines of text from
the text window kept in the memory. The
initial value is 400.

ImageFrameHighlight Boolean Specifies how the raster image is displayed
when the image is selected. If True, only the
raster image is displayed. If False, the raster
image content is displayed. The value for
this property is stored in the IMAGEHLT sys-
tem variable.

LayoutCreateViewport Boolean Specifies whether a viewport is automati-
cally created for each new layout. True is
the initial value.

LayoutCrosshairColor VBA.ColorConstants Gets or sets the color of the crosshairs and
text in paper space layouts. The initial value
for this property is the Windows standard
text color. Possible values: any member of
VBA.ColorConstants.

LayoutDisplayMargins Boolean Specifies whether margins are displayed in
layouts. True is the initial value.

LayoutDisplayPaper Boolean Specifies whether the paper background is
displayed in layouts. True is the initial value.

LayoutDisplayPaperShadow Boolean Specifies whether the paper background
shadow is displayed in layouts. True is the
initial value.

LayoutShowPlotSetup Boolean Specifies whether the plot setup dialog box
is displayed when a new layout is created.
True is the initial value.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 569

5793appA_final.qxd 8/22/05 1:35 AM Page 569

Name Returns Description

MaxAutoCADWindow Boolean Specifies whether AutoCAD occupies the entire screen
at the start of the session.

ModelCrosshairColor VBA.ColorConstants Gets or sets the color of the crosshairs and of the text
for the model space. The initial value of this property
is vbWhite. Possible values: any member of
VBA.ColorConstants.

ShowRasterImage Boolean Specifies how raster images are displayed during real-
time pan and zooms. If True, the image content is
displayed. If False, only the image outline is displayed
(the default). If the dragging display is turned on and
you enable ShowRasterImage, a copy of the image moves
with the cursor as you reposition the original image.
The value for this property is stored in the RTDISPLAY
system variable.

TextFontSize Integer Gets or sets the font size for new text. The initial value
for this property is 10.

TextFont String Gets or sets the font for new text. The initial value for
this property is Courier.

TextFontStyle AcTextFontStyle Gets or sets the font style for new text. For a list of pos-
sible values for the AcTextFontStyle enumerated type,
see Appendix B.

TextWinBackgrndColor VBA.ColorConstants Gets or sets the text window’s background color. The
default color for this property is the Windows standard
window color. Possible values: any member of
VBA.ColorConstants.

TextWinTextColor VBA.ColorConstants Gets or sets the text window’s text color. The default
color for this property is the Windows standard window
text color. Possible values: any member of
VBA.ColorConstants.

TrueColorImages Boolean Gets or sets how the colors in raster images and render
images are displayed. If True, the highest possible color
resolution is used. If False, palette colors are used (the
default).

XrefFadeIntensity Long Gets or sets the percentage of fade for external refer-
ences. The value must be between 1 and 90. The default
value is 50.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY570

AcadPreferencesDrafting Object
The AcadPreferencesDrafting object contains the options from the Drafting tab on the
Options dialog box. The object has no methods.

AcadPreferencesDrafting Object Properties
In addition to the common Application property, the AcadPreferencesDrafting object
supports the following properties.

5793appA_final.qxd 8/22/05 1:35 AM Page 570

Name Returns Description

AlignmentPointAcquisition AcAlignmentPointAcquisition Gets or sets how autoalignment points
are acquired. For a list of possible values
for the AcAlignmentPointAcquisition
enumerated type, see Appendix B.

AutoSnapAperture Boolean Specifies whether the autosnap aperture
is displayed in the center of the cross-
hairs when you snap to an object. This
option is available only when the auto-
snap marker, magnet, or tooltip is
enabled. The value for this property is
stored in the APBOX system variable. The
initial value for this property is True.

AutoSnapApertureSize Long Gets or sets whether the size of the auto-
snap aperture in pixels. This option is
available only when the autosnap marker,
magnet, or tooltip is enabled. The value
for this property is stored in the APERTURE
system variable. The initial value is 10.

AutoSnapMagnet Boolean Specifies whether the autosnap magnet
is enabled. The value for this property is
stored in the AUTOSNAP system variable.
True is the initial value.

AutoSnapMarker Boolean Specifies whether the autosnap marker
is enabled. The value for this property is
stored in the AUTOSNAP system variable.
True is the initial value.

AutoSnapMarkerColor AcColor Gets or sets the autosnap marker’s color.
For a list of possible values for the AcColor
enumerated type, see Appendix B.

AutoSnapMarkerSize Long Gets or sets the autosnap marker’s size
in pixels. The value must be between
1 and 20.

AutoSnapToolTip Boolean Specifies whether the autosnap tooltips
are enabled. The value for this property
is stored in the AUTOSNAP system variable.
True is the initial value.

AutoTrackToolTip Boolean Specifies whether the autotrack tooltips
are displayed. When it’s enabled, the user
sees a tooltip whenever the cursor is over
an alignment path. When it’s disabled,
the tooltip doesn’t appear. The value for
this property is stored in the AUTOSNAP
system variable. True is the initial value.

FullScreenTrackingVector Boolean Specifies whether full-screen tracking
vectors are displayed. The value for this
property is stored in the TRACKPATH sys-
tem variable. True is the initial value.

PolarTrackingVector Boolean Specifies whether polar tracking vectors
are displayed. The value for this property
is stored in the TRACKPATH system vari-
able. True is the initial value.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 571

5793appA_final.qxd 8/22/05 1:35 AM Page 571

AcadPreferencesFiles Object
The AcadPreferencesFiles object contains the options from the Files tab on the Options
dialog box.

AcadPreferencesFiles Object Methods
The AcadPreferencesFiles object supports just two methods.

Name Returns Description

GetProjectFilePath String Returns the directory where external reference files are
sought. This name is also controlled by the PROJECTNAME
system variable. Parameter: ProjectName As String.

SetProjectFilePath Sets the directory where external reference files are sought.
This name is also controlled by the PROJECTNAME system vari-
able. Parameters: ProjectName As String and
ProjectFilePath As String.

AcadPreferencesFiles Object Properties
In addition to the common Application property, the AcadPreferencesFiles object supports
the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY572

Name Returns Description

AltFontFile String Gets or sets the location of the font file used if the original font can’t be
located and an alternative font isn’t specified in the font-mapping file.

AltTabletMenuFile String Gets or sets the path for an alternative menu to swap with the Auto-
CAD standard tablet menu. This property is applicable only if you use
a digitizer.

AutoSavePath String Gets or sets the path for the file that is created if automatic saving is
enabled with the AutoSaveInterval property of the
AcadPreferencesOpenSave object. The value for this property is stored
in the SAVEFILEPATH system variable.

ConfigFile String Gets the location of the configuration file where information about the
hardware device driver is stored. This value is read-only and can be
changed only using the /c command-line switch, which is added to the
acad.exe command line at startup.

CustomDictionary String Gets or sets the custom dictionary for the AutoCAD session. This prop-
erty contains its drive, path, and file name.

DefaultInternetURL String Gets or sets the default Internet address. The value for this property is
stored in the INETLOCATION system variable.

DriversPath String Gets or sets the directory where to look for ADI device drivers for the
video display, pointing devices, printers, and plotters. Specify a drive
letter and path for each path. Separate multiple directory listing with a
semicolon (;).

FontFileMap String Gets or sets the location of the file that defines how fonts are converted
if they can’t be located.

HelpFilePath String Gets or sets the location of the AutoCAD help file. This property speci-
fies its drive, path, and file name.

5793appA_final.qxd 8/22/05 1:35 AM Page 572

Name Returns Description

LicenseServer String Gets a list of client license servers available to the network license
manager program. The value for this property is stored in the
ACADSERVER environment variable. This property’s value is read-only.

LogFilePath String Gets or sets the location of the log file. The value for this property is
stored in the LOGFILEPATH system variable. Use the LogFileOn prop-
erty of the AcadPreferencesOpenSave object to enable or disable log
file capabilities.

MainDictionary String Gets or sets the dictionary used for spell checking.

MenuFile String Gets or sets the location of the menu file for the AutoCAD session.
This property contains the drive, path, and file name for an .mnu,
.mns, or .mnc file.

ObjectARXPath String Gets or sets the location for ObjectARX applications.

PostScriptPrologFile String Gets or sets a name for a customized prolog section in the acad.psf
file. The value for this property is stored in the PSPROLOG system
variable.

PrinterConfigPath String Gets or sets the location of the printer configuration files. A semi-
colon is used to separate multiple directories but shouldn’t be used
at the end of the string.

PrinterDescPath String Gets or sets the location of the printer description files. A semicolon
is used to separate multiple directories but shouldn’t be used at the
end of the string.

PrinterStyleSheetPath String Gets or sets the location of the printer style sheet files. A semicolon
is used to separate multiple directories but shouldn’t be used at the
end of the string.

PrintFile String Gets or sets an alternative name for the temporary plot file. The
default is the name of the drawing followed by the extension .plt.

PrintSpoolerPath String Gets or sets the directory of the print spool files. The plot is written
to this location.

PrintSpoolExecutable String Gets or sets the application used for print spooling including the
drive, the path, and the application name of the print spooling exe-
cutable used with autospool.

SupportPath String Gets or sets the directories to look for support files (support, fonts,
help, and bonus files). A semicolon is used to separate multiple
directories but shouldn’t be used at the end of the string.

TempFilePath String Gets or sets the directory used to store temporary files.

TemplateDWGPath String Gets or sets the path for the template files used by the startup
wizards.

TempXrefPath String Gets or sets the location of the external reference files. This location
is used for the copy of the external reference if you choose
acEnableWithCopy demand loading on the XrefDemandLoad property
of the AcadPreferencesOpenSave object.

TextEditor String Gets or sets the name of the text editor for the MTEXT command.

TextureMapPath String Gets or sets the directory where to look for rendering texture maps.
Multiple paths can be entered by using a semicolon (;) to paths.

WorkspacePath String Gets or sets the path for the database workspace file.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 573

5793appA_final.qxd 8/22/05 1:35 AM Page 573

AcadPreferencesOpenSave Object
The AcadPreferencesOpenSave object contains the options from the Open and Save tab on the
Options dialog box. The object has no methods.

AcadPreferencesOpenSave Object Properties
In addition to the common Application property, the AcadPreferencesOpenSave object sup-
ports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY574

Name Returns Description

AutoEdit Boolean Specifies whether an audit should be performed after a
DXFIN or DXBIN interchange command is rendered.

AutoSaveInterval Integer Gets or sets an interval for automatic saving. The value
must be between 0 and 600. A value of 0 indicates that no
automatic saving is required. The timer starts as soon as
you make a change to a drawing. It is reset and restarted
whenever the drawing is saved. The value for this property
is stored in the SAVETIME system variable. The initial set-
ting for this property is 120.

CreateBackup Boolean Specifies whether a backup file is used. The value of this
property is stored in the ISAVEBAK system variable. True is
the initial value.

DemandLoadARXApp AcARXDemandLoad Gets and sets when a third-party application is loaded if a
drawing contains custom objects created in that applica-
tion. The value for this property is stored in the DEMANDLOAD
system variable. For a list of possible values for the
AcARXDemandLoad enumerated type, see Appendix B.

FullCRCValidation Boolean Specifies whether a cyclic redundancy check (CRC) should
be performed whenever an object is read into the drawing.
False is the initial value. If your drawings are being cor-
rupted and you suspect a hardware problem or an AutoCAD
error, set this property to True.

IncrementalSavePercent Integer Gets or sets the wasted space allowed in a file as a per-
centage. When the specified percentage is reached, a full
save occurs instead of an incremental save. Full saves
eliminate wasted space. If this property is 0, every save
is a full save. Incremental saves increase the size of the
drawing, but full saves take longer. The value of this
property is stored in the ISAVEPERCENT system variable.
The initial value of this property is 50. Autodesk recom-
mends a setting of zero (0) when problems occur during
file saves in network environments.

LogFileOn Boolean Specifies whether the contents of the text window are
written to a log file. The value for this property is stored in
the LOGFILEMODE system variable. True is the initial value.

MRUNumber Long Gets the number of most recently used files appearing in
the File menu. The default value for this property is 4. This
property’s value is read-only.

ProxyImage AcProxyImage Gets or sets how objects are displayed in a drawing that
has been created in a third-party application. Possible val-
ues for the AcProxyImage enumeration are acProxyNotShow,
acProxyShow (default), and acProxyBoundingBox.

5793appA_final.qxd 8/22/05 1:35 AM Page 574

Name Returns Description

SaveAsType AcSaveAsType Gets or sets the drawing type the drawing is saved as. The
initial value for this property is ac2004_DWG. For a list of
possible values for the AcSaveAsType enumerated type, see
Appendix B.

SavePreviewThumbnail Boolean Specifies whether .bmp preview images are saved with the
drawing. The value for this property is saved in the
RASTERPREVIEW system variable. True is the initial value.

ShowProxyDialogBox Boolean Specifies whether a warning message is displayed when a
drawing that contains custom objects is opened. The value
of this property is stored in the PROXYNOTICE system vari-
able. True is the initial value.

TempFileExtension String Gets or sets the extension for temporary files. The string can
contain up to three characters. The default value is "ac$".

XrefDemandLoad AcXrefDemandLoad Gets or sets demand loading of external references. The
value for this property is stored in the XLOADCTL system
variable. Demand loading improves performance by load-
ing only the parts of the referenced drawing needed to
regenerate the current drawing. The initial value for this
property is acDemandLoadEnabled. For a list of possible val-
ues for the AcXrefDemandLoad enumerated type, see
Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 575

AcadPreferencesOutput Object
The AcadPreferencesOutput object contains the options from the Output tab on the Options
dialog box. The object has no methods.

AcadPreferencesOutput Object Properties
As well as the common Application property, the AcadPreferencesOutput object supports the
following properties.

Name Returns Description

DefaultOutputDevice String Gets or sets the default output device for new layouts and
model space. If there are no devices on the system, None
will be returned.

DefaultPlotStyleForLayer String Gets or sets the default plot style for new drawings or for
drawings created with earlier releases that haven’t been
saved in AutoCAD 2000 format. This property is available
only when PlotPolicy is set to acPolicyNamed. The initial
value of this property is Normal. The value for this property
is stored in the DEFLPLSTYLE system variable.

DefaultPlotStyleForObjects String Gets or sets the default plot style name for newly created
objects. This property is available only if PlotPolicy is set
to acPolicyNamed. The initial value is ByLayer. The value for
this property is stored in the DEFPLSTYLE system variable.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 575

Name Returns Description

OLEQuality AcOleQuality Gets or sets the plot quality of OLE objects. The initial
value is acOQText. The value for this property is stored
in the OLEQUALITY system variable. Possible values for
the AcOleQuality enumeration are acOQLineArt,
acOQText (default), acOQGraphics, acOQPhoto, and
acOQHighPhoto.

PlotLegacy Boolean Gets or sets whether legacy plot scripts can run. The
value for this property is stored in the PLOTLEGACY sys-
tem variable. The initial value is False.

PlotPolicy AcPlotPolicy Gets or sets whether an object’s color property is
associated with its plot style name when a new draw-
ing is created. The value for this property is stored in
the PSTYLEPOLICY system variable. The initial value for
this property is acPolicyNamed. For a list of possible
values for the AcPlotPolicy enumerated type, see
Appendix B.

PrinterPaperSizeAlert Boolean Specifies whether the user is alerted when a layout is
configured with a paper size that is different from the
default setting for the PC3 file. The value for this
property is stored in the PAPERALERT system variable.
The initial value is True.

PrinterSpoolAlert AcPrinterSpoolAlert Gets or sets whether the user is alerted when output
needs to be spooled through a system printer
because of a conflict with an I/O port. The value for
this property is stored in the PSPOOLALERT system vari-
able. The initial value is acPrinterAlwaysAlert. For a
list of possible values for the AcPrinterSpoolAlert
enumerated type, see Appendix B.

UseLastPlotSettings Boolean Specifies whether the settings of the last successful
plot are applied.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY576

AcadPreferencesProfiles Object
The AcadPreferencesProfiles object contains the options from the Profiles tab on the Options
dialog box.

AcadPreferencesProfiles Object Methods
This object supports the following methods.

Name Description

CopyProfile Copies a profile in the Registry. Parameters: oldProfileName As String
and newProfileName As String.

DeleteProfile Deletes a profile from the Registry. Parameter: ProfileName As String.

ExportProfile Exports a profile to a file so that other users can use it. Parameters:
Profile As String and RegFile As String. The extension of the RegFile
should be .arg.

GetAllProfileNames Gets all profiles available to the system. Parameter: PNames As Variant.

5793appA_final.qxd 8/22/05 1:35 AM Page 576

Name Description

ImportProfile Imports a profile from a file created by another user. Parameters: Profile As
String, RegFile As String, and IncludePathInfo As Boolean. The imported
Registry file specified by the RegFile parameter should have an .arg exten-
sion. The IncludePathInfo parameter is True if the path information in the
Registry file will be preserved and False otherwise.

RenameProfile Renames a profile. Parameters: OrigProfileName As String and
NewProfileName As String.

ResetProfile Resets the value in a profile to its default values. The specified profile must
be the currently active profile. Parameter: Profile As String.

AcadPreferencesProfiles Object Properties
As well as the common Application property, the AcadPreferencesProfiles object supports
the following property.

Name Returns Description

ActiveProfile String Gets or sets the active profile for the session. The available pro-
file names are returned by the GetAllProfileNames method.

AcadPreferencesSelection Object
The AcadPreferencesSelection object contains the options from the Selection tab on the
Options dialog box. The object has no methods.

AcadPreferencesSelection Object Properties
As well as the common Application property, the AcadPreferencesSelection object supports
the following properties.

Name Returns Description

DisplayGrips Boolean Specifies whether selection set grips are displayed for
the stretch, move, rotate, scale, and mirror grip modes.
The value for this property is stored in the GRIPS sys-
tem variable. The initial value is True.

DisplayGripsWithinBlocks Boolean Specifies whether grips are assigned within blocks.
The value for this property is stored in the GRIPBLOCK
system variable. The initial value is False.

GripColorSelected AcColor Gets or sets the color of selected grips. The value for
this property is stored in the GRIPHOT system variable.
The initial value is acRed. For a list of possible values
for the AcColor enumerated type, see Appendix B.

GripColorUnselected AcColor Gets or sets the color of grips that aren’t selected. The
value for this property is stored in the GRIPCOLOR sys-
tem variable. The initial value is acBlue. For a list of
possible values for the AcColor enumerated type, see
Appendix B.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 577

5793appA_final.qxd 8/22/05 1:35 AM Page 577

Name Returns Description

GripSize Long Gets or sets the size of grips in pixels. The value for this property is
stored in the GRIPSIZE system variable. The value may be between
1 and 255, but a size greater than 20 isn’t recommended. The initial
value is 3.

PickAdd Boolean Specifies whether objects are added to the selection set by using the
Shift key. The value for this property is stored in the PICKADD system
variable. The initial value is False.

PickAuto Boolean Specifies whether windowing is automatic at the select objects prompt.
The value for this property is stored in the PICKAUTO system variable.
The initial value is True.

PickBoxSize Long Gets or sets the size of the object selection target. The value for this
property is stored in the PICKBOX system variable. The initial value is 3.

PickDrag Boolean Specifies how a selection window is drawn. The value for this prop-
erty is stored in the PICKDRAG system variable. If True, the selection
window is drawn by dragging. If False, the selection window is drawn
by clicking the corners. The initial value is False.

PickFirst Boolean Specifies whether objects are selected before a command is issued.
The value for this property is stored in the PICKFIRST system variable.
The initial value is True.

PickGroup Boolean Specifies whether picking an object in a group selects the entire
group. The initial value is False.

■Note The GRIPHOVER system variable added in AutoCAD 2004 isn’t exposed through ActiveX in any API.

AcadPreferencesSystem Object
The AcadPreferencesSystem object contains the options from the System tab on the Options
dialog box. The object has no methods.

AcadPreferencesSystem Object Properties
As well as the common Application property, the AcadPreferencesSystem object supports the
following properties.

Name Returns Description

BeepOnError Boolean Specifies whether an invalid entry causes an alarm to
beep. The initial value is False.

DisplayOLEScale Boolean Specifies whether the OLE scaling dialog box is displayed
when an OLE object is inserted into a drawing. The initial
value is True.

EnableStartupDialog Boolean Specifies whether the startup dialog box is displayed at
the beginning of the session. The initial value is True.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY578

5793appA_final.qxd 8/22/05 1:35 AM Page 578

Name Returns Description

LoadAcadLspInAllDocuments Boolean Specifies when acad.lsp is loaded. The value for
this property is stored in the ACADLSPASDOC system
variable. If True, it’s loaded with each drawing. If
False, it’s loaded at startup.

ShowWarningMessages Boolean Specifies whether all dialog boxes with a Don’t
Display This Warning Again check box are dis-
played again. The initial value is False.

SingleDocumentMode Boolean Specifies whether AutoCAD runs in single-
document mode rather than in multiple-document
mode. The value for this property is stored in the
SDI system variable. The initial is False.

StoreSQLIndex Boolean Specifies whether the SQL index is stored in the
drawing. The initial value is True.

TablesReadOnly Boolean Specifies whether database tables are opened in
read-only mode rather than read-write mode. The
initial value is False.

AcadPreferencesUser Object
The AcadPreferencesUser object contains the options from the User tab on the Options dialog
box. The object has no methods.

AcadPreferencesUser Object Properties
As well as the common Application property, the AcadPreferencesUser object supports the
following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 579

Name Returns Description

ADCInsertUnits-DefaultSource AcInsertUnits Gets or sets the units that are automatically used for
objects in the AutoCAD Design Center for a source
drawing without assigned insert units. The value of this
property is stored in the INSUNITSDEFSOURCE system
variable. The initial value is acInsertUnitsUnitless.
For a list of possible values for the AcInsertUnits
enumerated type, see Appendix B.

ADCInsertUnits-DefaultTarget AcInsertUnits Gets or sets the units that are automatically used for
objects in the AutoCAD Design Center for a target
drawing without assigned insert units. The value of this
property is stored in the INSUNITSDEFTARGET system
variable. The initial value is acInsertUnitsUnitless.
For a list of possible values for the AcInsertUnits
enumerated type, see Appendix B.

HyperlinkDisplayCursor Boolean Specifies whether the hyperlink cursor and shortcut
menu are displayed. When it’s enabled, the user sees
a small bitmap (just below and to the right of the
crosshairs) whenever the cursor is over an object
that contains a hyperlink. The initial value is True.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 579

Name Returns Description

HyperlinkDisplayTooltip Boolean Specifies whether the hyperlink tooltips are dis-
played. When it’s enabled, the user sees a tooltip
whenever the cursor is over an object that con-
tains a hyperlink. This property is automatically
disabled when the HyperlinkDisplayCursor
property is disabled. The initial value is True.

KeyboardAccelerator AcKeyboardAccelerator Gets or sets the keyboard used. The initial value
is acPreferenceCustom. For a list of possible val-
ues for the AcKeyboardAccelerator enumerated
type, see Appendix B.

KeyboardPriority AcKeyboardPriority Gets or sets the response to the input of coordi-
nate data. The value of this property is stored in
the OSNAPCOORD system variable. The initial value
is acKeyboardEntryExceptScripts. For a list of
possible values for the AcKeyboardPriority enu-
merated type, see Appendix B.

SCMCommandMode AcDrawingAreaSCMCommand Gets or sets the right-click functionality in the
drawing area while in command mode (that is,
while a command is currently in progress). The
value of this property (and the three that follow)
is stored in the SHORTCUTMENU system variable.
This property can be set only when the
ShortcutMenuDisplay property is set to True. The
initial value is acEnableSCMOptions. For a list of
possible values for the AcDrawingAreaSCMCommand
enumerated type, see Appendix B.

SCMDefaultMode AcDrawingAreaSCMDefault Gets or sets the right-click functionality in the
drawing area while in default mode (that is,
while no objects are selected and no commands
are in progress). This property can be set only
when the ShortcutMenuDisplay property is set to
True. The initial value is acSCM. The initial value is
acEnableSCMOptions. For a list of possible values
for the AcDrawingAreaSCMDefault enumerated
type, see Appendix B.

SCMEditMode AcDrawingAreaSCMEdit Gets or sets the right-click functionality in the
drawing area while in edit mode (that is, while
one or more objects are selected and no com-
mands are in progress). This property can be set
only when the ShortcutMenuDisplay property is
set to True. The initial value is acEdSCM. For a list
of possible values for the AcDrawingAreaSCMEdit
enumerated type, see Appendix B.

ShortCutMenuDisplay Boolean Specifies whether right-clicking in the drawing
area displays a shortcut. If False, a right-click
will be interpreted as an Enter. The initial value
is True.

AcadPViewport Object
The AcadPViewport object represents rectangular objects created in paper space that display views. The
functionality of this object is slightly different from what is used in the AutoCAD user interface. In

APPENDIX A ■ AUTOCAD OBJECT SUMMARY580

5793appA_final.qxd 8/22/05 1:35 AM Page 580

ActiveX Automation, the ActiveSpace property (of the Document object) is used to control the
TILEMODE system variable. Also, the MSpace property (also of the Document object) is the equiva-
lent of both AutoCAD’s MSPACE and PSPACE commands. In addition, the ActiveX Automation
user is required to use the Display method before setting the MSpace property to acOn. It’s good
practice to activate the display using the Display method for at least one AcadPViewport object
before setting the MSpace property, or else the latter will throw an exception.

The AcadPViewport object is created using the AddPViewport method of the AcadPaperSpace
object.

AcadPViewport Object Methods
The AcadPViewport object inherits all the methods of the AcadEntity and AcadObject objects. It
also supports the following methods.

Name Description

Display Determines whether viewport is on or off. The display control must be on
before the MSpace property can be used to activate the model space editing
capabilities. Use the ViewportOn property to determine whether a paper space
viewport display has already been turned on with this method. Parameter:
Status As Boolean.

GetGridSpacing Gets the grid spacing for the viewport. Parameters: XSpacing As Double and
YSpacing As Double.

GetSnapSpacing Gets the snap spacing for the viewport. Parameters: XSpacing As Double and
YSpacing As Double.

SetGridSpacing Sets the grid spacing for the viewport. Parameters: XSpacing As Double and
YSpacing As Double.

SetSnapSpacing Sets the snap spacing for the viewport. Parameters: XSpacing As Double and
YSpacing As Double.

AcadPViewport Object Properties
The AcadPViewport object inherits all the properties of the AcadEntity and AcadObject objects,
as well as the common Application property. It also supports the following properties.

Name Returns Description

ArcSmoothness Integer Gets or sets the smoothness of circles, arcs, and ellipses. The ini-
tial value for this property is 100. The higher the number, the
smoother the object, but AutoCAD needs longer to regenerate it.
Performance can be improved by setting this property to a low
value for drawing and increasing the value for rendering. The
valid range is 1 to 20,000.

Center Variant Gets or sets the center of the viewport as a set of 2-D coordinates
(as Doubles). The default center is (0,0).

Clipped Boolean Determines whether the viewport has been clipped. This prop-
erty’s value is read-only.

CustomScale Double Gets or sets the custom scale factor for the viewport. To set the
viewport to a custom scale, first set the StandardScale property to
acVpCustomScale, and then use this property to define the custom
scale value.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 581

5793appA_final.qxd 8/22/05 1:35 AM Page 581

Name Returns Description

Direction Variant Gets or sets the viewing direction for a 3-D visualiza-
tion of the drawing. This property puts the viewer in a
position to look at the drawing as if looking back at the
origin (0, 0, 0) from a specified point in space. It’s simi-
lar to AutoCAD’s VPOINT command. It returns a
three-element array of Doubles.

DisplayLocked Boolean Determines whether the viewport is locked, that is,
whether it can or can’t be modified (scaled, rotated, or
moved). It’s True if it is locked and False otherwise.

GridOn Boolean Specifies the status of the viewport grid. It’s True if it’s
on and False otherwise. The value of this property is
stored in the GRIDMODE system variable. Note that the
grid is used only for visual reference. It isn’t plotted
and it isn’t considered part of the drawing. The grid
origin is set by the SnapBasePoint method. When you
turn the grid on or off on a viewport, the visibility of
the grid won’t change until the viewport is made active
or is reset (using the ActiveViewport property).

Height Double Use to set the height of the viewport, which is the
Y-axis measurement of the viewport frame. The height
also determines the magnification parameter in a
ZoomCenter.

LensLength Double Gets or sets the lens length (in millimeters) used in
perspective viewing, the value of which is stored in the
LENSLENGTH system variable.

RemoveHiddenLines Boolean Specifies whether hidden lines are to be plotted on a
paper space viewport.

SnapBasePoint Variant Gets or sets the snap base point for the viewport, the
value of which is stored in the SNAPBASE system vari-
able. The snap base point can’t be changed for the
active paper space viewport. Any changes to this prop-
erty aren’t reflected in the display until the drawing is
regenerated.

SnapOn Boolean Specifies the status of snap mode. The value of this
property is stored in the SNAPMODE system variable, and
its style is changed using the SNAPSTYLE system vari-
able. This property activates snap mode using the
current snap grid resolution, rotation, and style. Note
that the snap grid is invisible. Use the GridOn property
to activate a separate visible grid.

SnapRotationAngle Double Gets or sets the snap rotation angle (in radians) of the
viewport relative to the current UCS, the value of which
is stored in the SNAPANG system variable. Changes to this
property aren’t reflected in the drawing until it’s
updated. The valid range is 0 to 6.28.

StandardScale AcViewportScale Gets or sets the standard scale for the viewport.
Changes to this property won’t be visible until the
drawing is regenerated. For a list of possible values for
the AcViewportScale enumerated type, see Appendix B.

StyleSheet String Gets or sets the named style sheet for the viewport.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY582

5793appA_final.qxd 8/22/05 1:35 AM Page 582

Name Returns Description

Target Variant Gets or sets the target point for the viewport as a set of 3-D
WCS coordinates representing the target point. The line of sight
is drawn from the center to the target point. It returns a three-
element array of Doubles.

TwistAngle Double Gets or sets the twist angle (in radians) for the viewport. This
method twists or tilts the view around the line of sight, meas-
ured counterclockwise.

UCSIconAtOrigin Boolean Specifies whether the UCS icon is displayed at the origin.

UCSIconOn Boolean Specifies whether the UCS icon is on.

UCSPerViewport Boolean Specifies whether the UCS is saved with the viewport.

ViewportOn Boolean Specifies the display status of the viewport. This property is set
by the Display method.

Width Double Sets the width of the viewport, which is the X-axis measure-
ment of the viewport frame.

■Note Because this object inherits from AcadObject, it supports the Modified event. There is no direct
programmatic means to create or manipulate polygonal PViewport objects.

AcadRasterImage Object
The AcadRasterImage object represents an image consisting of a rectangular grid, or raster,
of small squares or dots known as pixels. It is created using the AddRaster method of the
AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadRasterImage Constant Methods
The AcadRasterImage object inherits all the methods of the AcadEntity and AcadObject objects.
It also supports the following method.

Name Description

ClipBoundary Sets the clipping boundary for a raster image as an array of 2-D WCS coordinates.
This must be a closed and visible polygon or rectangle completely contained
within the boundaries of the image. You can use this method to define a region of
an image for display or plotting. Multiple instances of the same image can have
different boundaries. Parameter: Boundary As Variant (an array of two-element
array of Doubles).

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 583

5793appA_final.qxd 8/22/05 1:35 AM Page 583

AcadRasterImage Constant Properties
The AcadRasterImage object inherits all the properties of the AcadEntity and AcadObject
objects, as well as the common Application property. It also supports the following properties.

Name Returns Description

Brightness Integer Gets or sets the current brightness value of an image, with val-
ues between 0 and 100. The default is 50. You adjust this value
to darken or lighten an image. Note that you can’t use this
property with bitonal images.

ClippingEnabled Boolean Enables or disables the clipping boundary, defined with the
ClipBoundary method.

Contrast Integer Gets or sets the current contrast value of an image, with values
between 0 and 100. The default is 50. You adjust this value to
make a dull image clearer. Note that you can’t use this property
with bitonal images.

Fade Integer Gets or sets the current fade value of an image, with values of 0
to 100. You adjust this value to make vectors easier to see over
images and to create a watermark effect in your plotted output.
Note that you can’t use this property with bitonal images.

Height Double Gets the height of the raster image in pixels. This property’s
value is read-only.

ImageFile String Gets or sets the full path and file name of the raster image file.
This property can be used to load a new raster image into an
existing raster entity.

ImageHeight Double Gets or sets the height of the raster image in current units. For
uniform stretching/shrinking of the image, use the ScaleFactor
property.

ImageVisibility Boolean Specifies whether image visibility is on or off. Image redrawing
speed is increased by turning off image visibility. Hidden images
aren’t displayed or plotted only the image boundary. Images can
be hidden regardless of the current viewport coordinate system or
when it isn’t aligned with the current viewport coordinate system.

ImageWidth Double Gets or sets the width of the raster image in current units. For
uniform stretching/shrinking of the image, use the ScaleFactor
property.

Name String Gets or sets the name of the raster object, but not its path (see
the ImageFile property).

Origin Variant Gets or sets the origin of the raster image in WCS coordinates,
relative to the lower-left corner. Returned an array of Doubles.

Rotation Double Gets or sets the rotation angle (in radians) for the object, rela-
tive to the X-axis of the object’s WCS with positive angles going
counterclockwise when viewed down from the Z-axis toward
the origin.

ScaleFactor Double Gets or sets the scale factor for the object. It has to be a value
greater than 0. A scale factor greater than 1 enlarges the object.
A scale factor between 0 and 1 shrinks the object. The initial
value for this property is 1.0000.

ShowRotation Boolean Determines whether a raster image is displayed at the value of
its Rotation property.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY584

5793appA_final.qxd 8/22/05 1:35 AM Page 584

Name Returns Description

Transparency Boolean Specifies whether the transparency for a particular bitonal
image is on or off. Attached bitonal images inherit current
layer settings for background and foreground color. In addition
to the modifications you can make to any attached image, you
can modify bitonal images by turning the transparency of the
background on and off. Note that bitonal images and bitonal
image boundaries are always the same color.

Width Double Gets the width of the raster image in pixels. This property’s
value is read-only.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadRay Object
The AcadRay object represents a semi-infinite line and is commonly used as a construction line.
A ray has a finite starting point and extends to infinity. The AcadRay object is created using the
AddRay method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadRay Object Methods
The AcadRay object inherits all the methods of the AcadEntity and AcadObject objects. It sup-
ports no other methods.

AcadRay Object Properties
The AcadRay object inherits all the properties of the AcadEntity and AcadObject objects, as well
as the common Application property. It also supports the following properties.

Name Returns Description

BasePoint Variant Gets or sets the point through which the ray passes. It returns a
set of 3-D coordinates as a three-element array of Doubles.

DirectionVector Variant Gets or sets the direction for the ray through a vector. It returns
a three-element array of Doubles.

SecondPoint Variant Gets or sets the second point of the ray. It returns a set of 3-D
WCS coordinates as a three-element array of Doubles. Note
that you can’t set the second point of a ray equal to its base
point.

■Note Because this object inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 585

5793appA_final.qxd 8/22/05 1:35 AM Page 585

AcadRegion Object
The AcadRegion object represents a bounded planar face consisting of lines, circles, arcs,
elliptical arcs, and spline curves. All objects in the region retain their layer, linetype, and
color. AutoCAD deletes the original objects after converting them to regions and doesn’t
hatch the regions by default. The AcadRegion object is created using the AddRegion method
of the AcadBlock, AcadModelSpace, or AcadPaperSpace object. Regions are mostly used as loops
for AcadHatch objects to calculate the area of a composite figure or to find its Centroid and
other physical characteristics.

AcadRegion Object Methods
The AcadRegion object inherits all the methods of the AcadEntity and AcadObject objects. It
also supports the following methods.

Name Returns Description

Boolean Performs a Boolean operation against another region, allowing you to cre-
ate composite regions from the intersection, union, or subtraction of one
region from another. Parameters: Operation As AcBooleanType and Object
As AcadRegion. For a list of AcBooleanType constants, see Appendix B.

Explode Variant Explodes the region and returns the subentities as an array of Objects. The
individual loops of the regions are converted to lines, circular or elliptical
arcs, or spline curves.

AcadRegion Object Properties
The AcadRegion object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Area Double Gets the enclosed area of a region, which equals the com-
bined area for all the objects in the region. The area of the
object is specified in square drawing units. This property’s
value is read-only.

Centroid Variant Gets the center of area or mass for a region or solid as a 2-D
coordinate. It returns as a two-element array of Doubles.
This property’s value is read-only.

MomentOfInertia Variant Gets the moment of inertia for the region as a 3-D coordi-
nate. It returns as a three-element array of Doubles. This
property’s value is read-only.

Normal Variant Gets the 3-D (Z-axis) normal unit vector for the region. This
property’s value is read-only.

Perimeter Double Gets the total length of the inner and outer region loops in
drawing units. This property’s value is read-only.

PrincipalDirections Variant Gets the principal directions of the region as X, Y, and Z
coordinates calculated on the current coordinate system.
This property’s value is read-only.

PrincipalMoments Variant Gets the principal moments property of the region as X, Y,
and Z coordinates calculated on the current coordinate sys-
tem. This property’s value is read-only.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY586

5793appA_final.qxd 8/22/05 1:35 AM Page 586

Name Returns Description

ProductOfInertia Double Gets the product of inertia of the region, as X, Y, and Z coordinates
calculated on the current coordinate system. This property’s value
is read-only.

RadiiOfGyration Variant Gets the radius of gyration of the region, as X, Y, and Z coordinates
calculated on the current coordinate system. This property’s value
is read-only.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadRegisteredApplication Object
The AcadRegisteredApplication object represents an external application that has been added to
the drawing. To be recognized by AutoCAD, an application must register the name or names that it
uses. This happens only once per drawing. These application names are then saved along with the
extended data (XData) of each entity that uses them. Every instance of extended data referenced
in a drawing must have its application registered in the drawing. Each AcadRegisteredApplication
object is created using the Add method of the AcadRegisteredApplications collection and can be
accessed using the Item method of the AcadRegisteredApplications collection.

AcadRegisteredApplication Object Methods
The AcadRegisteredApplication object inherits all the methods of the AcadObject object. It
supports no other methods.

AcadRegisteredApplication Object Properties
The AcadRegisteredApplication object inherits all the properties of the AcadObject object, as
well as the common Application property. It also supports the following property.

Name Returns Description

Name String Gets or sets the name of the registered application

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadRegisteredApplications Collection
The AcadRegisteredApplications collection contains a collection of all registered applications
in the drawing. To add a new member to the collection, use the Add method. To select a spe-
cific registered application, use the Item method. Although this collection inherits a Delete

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 587

5793appA_final.qxd 8/22/05 1:35 AM Page 587

method, you can’t actually delete this collection. If you need to delete a specific registered
application, use the Delete method found in the AcadRegisteredApplication object. There is no
limit to the number of registered applications you can create in your drawing. However, there
can be only one instance of the AcadRegisteredApplications collection, which is predefined
for each drawing. You can make multiple references to it by using the RegisteredApplications
property.

AcadRegisteredApplications Collection Methods
The AcadRegisteredApplications collection inherits all the methods of the AcadObject object.
It also supports the following methods.

Name Returns Description

Add Creates a member object and adds it to the collection. Parameter: Name As
String.

Item Gets the member object at a given index in a collection. Parameter: Index
As Variant (an Integer or a String). If the Index value is a String, it must
match an existing object name in the collection.

AcadRegisteredApplications Collection Properties
The AcadRegisteredApplications collection inherits all the properties of the AcadObject
object, the Count property, and the common Application property. It supports no other
properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

AcadSelectionSet Object
The AcadSelectionSet object represents a group of one or more AutoCAD objects specified for
processing as a single unit. It is created by the Add method of the AcadSelectionSets collections
and can be accessed by the Item method of the AcadSelectionSets collection. Four methods
can be used to remove selection sets or their contents: Clear, RemoveItems, Erase, and Delete.

AcadSelectionSet Object Methods
The AcadSelectionSet object supports the following methods. Note that it does not inherit
from AcadObject.

Name Returns Description

AddItems Adds an object or objects to the selection set. Parameter: Items As
Variant. The parameter must be an array containing a unique or
multiple objects.

Clear The Clear method removes all the items from the selection set. The
objects still exist, but they no longer reside in the selection set.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY588

5793appA_final.qxd 8/22/05 1:35 AM Page 588

Name Returns Description

Delete The Delete method deletes a selection set object, but not the
objects that were contained within it. The key (Name) is removed
from the collection and is available for further use.

Erase The Erase method deletes all items in a selection set. The selec-
tion set still exists but the objects removed do not.

Highlight Sets the highlight status for all objects in the selection set. Once
the highlight flag for an object has been set, a call to the Update
or Regen method is required to view the change. Parameter:
HighlightFlag As Boolean. The parameter is True if the object
is highlighted and False otherwise.

Item Object Gets the member of the selection set specified by the index. Para-
meter: Index As Variant (Integer or String). If the Index value is a
String, it must match an existing object name in the collection.

RemoveItems The RemoveItems method removes one or more items from a
selection set. These objects still exist but they no longer reside in
the selection set. Parameter: Objects As Variant. The parameter
must be an array containing a unique or multiple objects.

Select Adds objects to the selection set. Parameters: Mode As AcSelect,
[Point1 As Variant, Point2 As Variant], and [FilterType As
Integer, FilterData As Variant]. For a list of possible values
for the AcSelect enumeration (the Mode parameter), see Appendix
B. The second and third parameters are three-element arrays of
Doubles representing 3-D WCS coordinates. For this method and
the three that follow, FilterType is a DXF group code specifying
the type of filter to use. FilterData is the value to filter on. All
four Select methods support the filtering mechanism.

SelectAtPoint Adds an object containing a point to the selection set. Parame-
ters: Point As Variant and [FilterType As Integer, FilterData
As Variant]. Point is a three-element array of Doubles repre-
senting 3-D WCS coordinates.

SelectByPolygon Adds any objects inside a polygon to the selection set. Parame-
ters: Mode As AcSelect, PointsList As Variant, and [FilterType
As Integer, FilterData As Variant]. For a list of possible val-
ues for the AcSelect enumeration (the Mode parameter), see
Appendix B. PointsList is a three-element array of Doubles
representing 3-D WCS coordinates.

SelectOnScreen Prompts the user to select an object from the screen. Parameters:
[FilterType As Integer, FilterData As Variant].

Update Updates the selection set.

AcadSelectionSet Object Properties
As well as the common Application property, the AcadSelectionSet object supports the fol-
lowing properties.

Name Returns Description

Count Integer Gets the number of items in the selection set.

Name String Gets name of the selection set. This property’s value is read-only.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 589

5793appA_final.qxd 8/22/05 1:35 AM Page 589

AcadSelectionSets Collection
The AcadSelectionSets collection contains all the selection sets in the drawing. To add a new
member to the collection, use the Add method. To select a specific selection set, use the Item
method. To delete a specific selection set, use the Delete method of the AcadSelectionSet
object. AutoCAD allows you up to 128 selection sets objects. However, there can be only one
instance of the AcadSelectionSets collection, which is predefined for each drawing. You can
make multiple references to it by using the SelectionSets property of the AcadDocument object.

AcadSelectionSets Collection Methods
The AcadSelectionSets collection supports just two methods. Note that it does not inherit
from AcadObject.

Name Returns Description

Add AcadSelectionSet Creates an AcadSelectionSet object and adds it to the collec-
tion. Parameter: Name As String.

Item AcadSelectionSet Returns the member of the collection specified by the index.
Parameter: Index As Variant (Integer or String). If the Index
value is a String, it must match an existing object name in the
collection.

AcadSelectionSets Collection Properties
The AcadSelectionSets collection supports the Application property and the Count property
but no others.

AcadShape Object
The AcadShape object represents an object comprising lines, arcs, and circles defined in an
.shx file. Note that before inserting a shape, you must load the file containing the desired
shape file by using the LoadShapeFile method. The AcadShape object is created using the
AddShape method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadShape Object Methods
The AcadShape object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

AcadShape Object Properties
The AcadShape object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Height Double Sets the height of the shape object in drawing units.

InsertionPoint Variant Gets or sets the insertion point for a shape as a set of 3-D WCS
coordinates. It returns a three-element array of Doubles.

Name String Gets or sets the name of the object.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY590

5793appA_final.qxd 8/22/05 1:35 AM Page 590

Name Returns Description

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the shape
object.

ObliqueAngle Double Gets or sets the oblique angle of the attribute and is measured
from the vertical axis. The units are radians within the range of
–85 to +85 degrees. A positive value denotes a lean toward the
right.

Rotation Double Gets or sets the rotation angle (in radians) for the shape, relative
to the X-axis with positive values going counterclockwise when
viewed along the Z-axis toward the origin.

ScaleFactor Double Gets or sets the scale factor for the object. It has to be a value
greater than 0.0. A scale factor greater than 1 enlarges the object.
A scale factor between 0 and 1 shrinks the object. The initial
value for this property is 1.0000.

Thickness Double Gets or sets the distance the AcadShape object is extruded above
or below its elevation, in a Z-axis direction. The default is 0.0.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadSolid Object
The AcadSolid object represents a solid-filled polygon. Solid objects are filled only when the
FILLMODE system variable is on, which can be set or queried by the SetVariable and GetVariable
methods. The AcadSolid object is created using the AddSolid method of the AcadBlock,
AcadModelSpace, or AcadPaperSpace object.

AcadSolid Object Methods
The AcadSolid object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

AcadSolid Object Properties
The AcadSolid object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Coordinate Variant Gets or sets the coordinate of a single vertex in the object. This will
replace an existing vertex for the specified object. Use standard
array-handling techniques to process the values contained in this
property. It returns a three-element array of Doubles containing
3-D coordinates in WCS. Note that the Z coordinate will default to
0 on the active UCS. Parameter: Index As Integer (the index in
the zero-based array of vertices for the vertex you want to set or
query).

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 591

5793appA_final.qxd 8/22/05 1:35 AM Page 591

Name Returns Description

Coordinates Variant Gets or sets the coordinates for each vertex in the object. This will
replace any existing coordinates for the specified object. Use stan-
dard array-handling techniques to process the coordinates
contained in this property. Note that you can’t change the number
of coordinates in the object by using this property, you can only
change the location of existing coordinates. It returns a three-
element array of Doubles containing 3-D coordinates in WCS.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the solid object.

Thickness Double Gets or sets the distance the AcadSolidobject is extruded above or
below its elevation, in a Z-axis direction. The default is 0.0.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadSortEntsTable Object
This object contains and manipulates draw order information.

AcadSortEntsTable Methods
The AcadSortEntsTable object does not support any methods.

AcadSortEntsTable Properties
The AcadSortEntsTable object inherits no properties. However, it does support the following
properties.

Name Returns Description

Block AcadBlock Returns the block of a SortentsTable object.

GetFullDrawOrder Returns all of the objects in a block, sorted by draw
order with the bottom object first. Parameters: Objects
As Variant, HonorSortentsSysVar As Boolean. If True,
uses the setting in the DRAWORDERCTL system variable.

GetRelativeDrawOrder Returns the objects specified, sorted by the draw order,
with the bottom object first. Parameters: Objects As
Variant, HonorSortentsSysVar As Boolean. If True, uses
the setting in the DRAWORDERCTL system variable.

MoveAbove Moves objects above the target in the draw order. Para-
meters: Objects As Variant, Target As AcadEntity.

MoveBelow Moves objects below the target in the draw order. Para-
meters: Objects As Variant, Target As AcadEntity.

MoveToBottom Moves objects to the bottom of the draw order. Parame-
ters: Objects As Variant.

MoveToTop Moves objects to the top of the draw order. Parameters:
Objects As Variant.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY592

5793appA_final.qxd 8/22/05 1:35 AM Page 592

Name Returns Description

SetRelativeDrawOrder Sets the relative draw order specified, with the bottom
objects first. Parameters: Objects As Variant.

SwapOrder Swaps the draw order positions of two objects. Parame-
ters: Object1 As AcadEntity, Object2 As AcadEntity.

AcadSpline Object
A spline is a smooth curve passing through a given set of points. AutoCAD uses a particular
type of spline known as a nonuniform rational B-spline (NURBS) curve, which produces a
smooth curve between control points. Splines are useful for creating irregularly shaped curves,
for example, drawing contour lines for geographic information system applications or automo-
bile design. Splines are created by specifying coordinate points and can form a closed loop if
the start and end points and tangents are coincident. You can also alter the spline-fitting toler-
ance. Fit tolerance refers to how closely the spline fits the set of given coordinates. The lower
the tolerance, the more closely the spline fits the points. Zero tolerance means that the spline
passes through all the points.

The AcadSpline object represents a NURBS curve and is created using the AddSpline
method of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadSpline Object Methods
The AcadSpline object inherits all the methods of the AcadEntity and AcadObject objects. It
also supports the following methods.

Name Returns Description

AddFitPoint Adds the fit point (a set of 3-D WCS coordinates) to the spline at
a given index. If the index is negative, then the point is added to
the beginning of the spline. If the index exceeds the maximum
value of the index, then the point is added to the end of the
spline. The fit point is added to the spline and is refitted
through the new set of points. The changes can be viewed only
if the drawing is regenerated. Parameters: Index As Integer
and FitPoint As Variant.

DeleteFitPoint Deletes the fit point of the spline at a given index, which must
be a positive integer between 0 and N minus 1, where N is the
total number of fit points for the spline. The fit point is
removed, and the spline refitted through the remaining points.
There must be at least three fit points in the spline for this
method to succeed. The changes can be viewed only if the
drawing is regenerated. Parameter: Index As Integer.

ElevateOrder Elevates the order of the spline. The range of values is one
above the current order (which is the value of the Degree prop-
erty plus 1) to a maximum of 26. When a spline is elevated, it is
converted from an interpolated (fit) spline to a control point
spline. Note that, once elevated, the spline order can’t be
reduced. The StartTangent and EndTangent properties are no
longer used or accessible, the spline being editable by the
mean of its control points. Parameter: Order As Integer.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 593

5793appA_final.qxd 8/22/05 1:35 AM Page 593

Name Returns Description

GetControlPoint Variant Returns the 3-D WCS coordinates of the control point of the
spline at a given index as an array of Doubles. Control points
fine-tune a spline definition by adding weight to a portion of
the spline curve. Parameter: Index As Integer.

GetFitPoint Variant Returns the 3-D WCS coordinates of the fit point of the spline at
a given index as an array of Doubles. Parameter: Index As
Integer.

GetWeight Double Returns the weight of the spline at a given control point index.
Parameter: Index As Integer.

Offset Variant Creates a new spline by offsetting the current spline by a speci-
fied distance, which must be nonzero. If the offset is negative,
this means that the spline is drawn closer to the WCS origin.
Parameter: Distance As Double.

PurgeFitData Purges the fit data of the spline.

Reverse Reverses the direction of the spline.

SetControlPoint Sets the indexed control point of the spline at a specified point.
Parameters: Index As Integer and ControlPoint As Variant.

SetFitPoint Sets the indexed fit point of the spline at a specified point.
Parameters: Index As Integer and FitPoint As Variant.

SetWeight Sets the weight of the spline for a given control point index.
Parameters: Index As Integer and Weight As Double.

AcadSpline Object Properties
The AcadSpline object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

Area Double Gets the enclosed area of the spline in square drawing units. The
area is computed as though a straight line connects the start and
end points. This property’s value is read-only.

Closed Boolean Determines whether the spline is closed. When you close a
spline, you make it tangent-continuous at both ends. If the
spline’s start and end points are already the same, closing the
spline makes it tangent-continuous at both points. When you
open a closed spline, if the start and end points were the same
before the close, this property returns the spline to its original
state. The start and end points remain the same but lose their
tangent continuity. If the spline’s start and end points were not
the same before the close, opening the spline returns it to its
original state and removes tangent continuity. This property’s
value is read-only.

ControlPoints Variant Gets or sets the control points of a spline storing the 3-D WCS
coordinates as an array of Doubles. Control points fine-tune a
spline definition by adding weight or density to a portion of the
spline curve.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY594

5793appA_final.qxd 8/22/05 1:35 AM Page 594

Name Returns Description

Degree Integer Gets the degree of the spline’s polynomial representa-
tion. The return value must be in the range 1 to 25. This
property’s value is read-only. To set a higher value for
the degree, use the ElevateOrder method. The higher
the degree is, the higher the control points are.

EndTangent Variant Gets or sets the end tangent of the spline as a directional
vector. This property is inaccessible to control points.

FitPoints Variant Gets or sets the fit points of a spline, which define the
path of the spline.

FitTolerance Double Refits the spline to the existing points with new tolerance
values. If this value is 0, the spline passes through all fit
points. A value greater than zero allows the curve to pass
through the fit points within the specified tolerance.

IsPeriodic Boolean Determines whether the given spline is periodic. This
property’s value is read-only.

IsPlanar Boolean Determines whether the spline is planar. This property’s
value is read-only.

IsRational Boolean Determines whether the given spline is rational. This
property’s value is read-only.

Knots Variant Gets the knot vector for a spline.

NumberOfControlPoints Integer Gets the number of control points of the spline. This
property’s value is read-only.

NumberOfFitPoints Integer Gets the number of fit points of the spline. This prop-
erty’s value is read-only.

StartTangent Variant Gets or sets the start tangent for the spline as a direc-
tional vector. This property is inaccessible to control
points for an elevated spline.

Weights Variant Gets the weight vector for spline.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadState Object
The AcadState object is a special object for use in monitoring the state of AutoCAD from out-
of-process applications. It is a transient object that is returned from the GetAcadState method
of the AcadApplication object and is used to check for AutoCAD quiescence from out-of-
process applications. This object has no methods.

AcadState Object Properties
Other than the common Application property, the AcadState object supports just one property.

Name Returns Description

IsQuiescent Boolean Returns True if AutoCAD is idle and False if AutoCAD is busy. This
property’s value is read-only.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 595

5793appA_final.qxd 8/22/05 1:35 AM Page 595

AcadSummaryInfo Object
This object accesses drawing properties such as the Title, Subject, Author, and Keywords
properties.

AcadSummaryInfo Methods
The AcadSummaryInfo object does not inherit any methods. However, it does support the fol-
lowing methods.

Name Returns Description

AddCustomInfo Adds a custom property field at the end of the existing list
of fields. Parameters: Key As String, Value As String.

GetCustomByIndex String Returns the custom property name (key) and value that
correspond to an index value. Parameters: Index As Long,
Key As String, Value As String.

GetCustomByKey String Returns the custom property value that corresponds to a
name (key) value. Parameters: Key As String, Value As
String.

NumCustomInfo Long Returns the number of custom property fields that have
been set.

RemoveCustomByIndex Deletes the custom property name (key) and value that cor-
respond to an index value. Parameter: Index As Long.

RemoveCustomByKey Deletes the custom property value that corresponds to a
name (key) value. Parameter: Key As String.

SetCustomByIndex Sets the custom property name (key) and value that corre-
spond to an index value. Parameters: Index As Long, Key As
String, Value As String.

SetCustomByKey Sets the custom property value that corresponds to a name
(key) value. Parameters: Key As String, Value As String.

AcadSummaryInfo Properties
The AcadSummaryInfo object inherits no properties. However, it does support the following
properties.

Name Returns Description

Author String Gets or sets the author of the drawing.

Comments String Gets or sets the comments you want to use to locate the drawing.

HyperlinkBase String Gets or sets the base address used for all relative links inserted
within the drawing. An Internet address or path to a folder on a
network drive may be specified as well.

Keywords String Gets or sets the keywords you want to use to locate the drawing.

LastSavedBy String Gets or sets the name of the last person who modified the file.

RevisionNumber String Gets or sets the drawing revision number.

Subject String Gets or sets the subject of the drawing.

Title String Gets or sets the title used to locate the drawing.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY596

5793appA_final.qxd 8/22/05 1:35 AM Page 596

AcadTable Object
A table contains data in rows and columns. You can use the Table object to add and modify
tables in a drawing.

To add a table to a drawing, use the AddTable method. After you add a table, you can
modify the number of columns, the number of rows, and other settings.

All methods that change the Table object do the following:

1. Open the Table object in write mode.

2. Modify the Table object based on the input parameters.

3. Close the Table object, which recomputes the Table.

Recomputing large tables consumes a lot of time and memory because the Table object is
reconstructed from scratch. If you are making multiple calls to update a table, you can improve
performance by setting RegenerateTableSuppressed before and after making the modifications.

AcadTable Methods
The AcadTable object inherits all the methods of the AcadEntity and AcadObject objects. It also
supports the following methods.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 597

Name Returns Description

ClearSubSelection Removes a subselection set of cells from a table.

ClearTableStyleOverrides Clears table style overrides. Parameter: Flag As Long. 0 deletes
all table and cell overrides. 1 deletes all table overrides but
retains cell overrides. 2 deletes all cell overrides but retains
table overrides.

DeleteCellContent Deletes the cell content in the specified row and column. Para-
meters: Row As Long, Column As Long.

DeleteColumns Deletes columns from a table. Parameters: Row As Long, Column
As Long.

DeleteRows Deletes rows from a table. Parameters: Row As Long, Rows As Long.

GenerateLayout Generates the layout of a table. This method updates the
Table object according to the current table style. This
method computes the table geometry, including gridlines,
text content, block content, and background fills.

GetAlignment AcRowType Returns the cell alignment for a row type. For a list of the values
for the AcRowType enumeration, see Appendix B.

GetAttachmentPoint Sets the attachment point for the specified row and column.
Parameters: Row As Long, Column As Long.

GetAutoScale Boolean Returns the value specifying whether auto scale is used in the
specified row and column. Parameters: Row As Long, Column As
Long.

GetBackgroundColor AcCmColor Returns the background color value for the specified row type.
Parameter: RowType As AcRowType. For a list of possible values
for the AcRowType enumeration, see Appendix B.

Continued

5793appA_final.qxd 8/22/05 1:35 AM Page 597

Name Returns Description

GetBackgroundColorNone Boolean Returns the value specifying that there is no back-
ground color for the specified row type. For a list of
the values for the AcRowType enumeration, see
Appendix B.

GetBlockAttributeValue String Returns the attribute value of the specified cell for the
attribute definition object contained in the block.
Parameters: Row As Long, Column As Long, AttDefId
As Long.

GetBlockRotation Double Returns the block rotation angle for the specified row
and column. Parameters: Row As Long, Column As Long.

GetBlockScale Double Returns the block scale value for the specified row and
column. Parameters: Row As Long, Column As Long.

GetBlockTableRecordId Long Returns the block table record ID of the cell. Parame-
ters: Row As Long, Column As Long.

GetCellAlignment AcCellAlignment Returns the alignment for the cell in the specified row
and column. Parameters: Row As Long, Column As
Long. For a list of possible values for the
AcCellAlignment enumeration, see Appendix B.

GetCellBackgroundColor AcCmColor Returns the background true color value of a cell in
the specified row and column. Parameters: Row As
Long, Column As Long. For a list of possible values for
the AcCmColor enumeration, see Appendix B.

GetCellBackgroundColorNone Boolean Returns the value specifying that there is no back-
ground color for the specified row and column.
Parameters: Row As Long, Column As Long.

GetCellContentColor AcCmColor Returns the true color value for the content of the
specified row and column. Parameters: Row As Long,
Column As Long. For a list of possible values for the
AcCmColor enumeration, see Appendix B.

GetCellExtents Returns the cell extents for the specified row and
column. Parameters: Row As Long, Column As Long,
OuterCell As Boolean. The specified cell is an outer
cell when the OuterCell parameter is True, an inner
cell when False.

GetCellGridColor AcCmColor Returns the grid color value for an edge of the speci-
fied row and column. Parameters: Row As Long,
Column As Long, Edge As AcCellEdgeMask. For a list of
possible values for the AcCmColor and AcCellEdgeMask
enumerations, see Appendix B.

GetCellGridLineWeight Acad_LWeight Returns the grid lineweight value for an edge of the
specified row and column. Parameters: Row As Long,
Column As Long, Edge As AcCellEdgeMask. For a list
of possible values for the Acad_LWeight and
AcCellEdgeMask enumerations, see Appendix B.

GetCellGridVisibility Boolean Returns the grid visibility value for an edge of the
specified row and column. Parameters: Row As Long,
Column As Long, Edge As AcCellEdgeMask. For a list of
possible values for the AcCellEdgeMask enumeration,
see Appendix B.

GetCellStyleOverrides Returns the cell style overrides. Parameters: Row As
Long, Column As Long.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY598

5793appA_final.qxd 8/22/05 1:35 AM Page 598

Name Returns Description

GetCellTextHeight Double Returns the text height for the specified row and column.
Parameters: Row As Long, Column As Long.

GetCellTextStyle String Returns the text style name for the specified row and column.
Parameters: Row As Long, Column As Long.

GetCellType AcCellType Returns the cell type for the specified row and column. Para-
meters: Row As Long, Column As Long. For a list of possible
values for the AcCellType eumeration, see Appendix B.

GetColumnWidth Double Returns the column width for the column at the specified
column index in the table. Parameters: Column As Long.

GetContentColor AcCmColor Returns the true color value for the specified row type. Para-
meters: RowType As AcRowType. For a list of possible values for
the AcCmColor and AcRowType enumerations, see Appendix B.

GetFieldId Long Returns the field object ID of the specified cell. Parameters:
Row As Long, Column As Long.

GetGridColor AcCmColor Returns the grid color value for a grid linetype and row type.
Parameters: GridLineType As AcGridLineType, RowType As
AcRowType. For a list of possible values for the AcCmColor,
AcGridLineType, and AcRowType enumerations, see Appendix
B.

GetGridLineWeight Acad_LWeight Returns a grid lineweight value for a grid linetype and row
type. Parameters: GridLineType As AcGridLineType, RowType
As AcRowType. For a list of possible values for the
Acad_LWeight, AcGridLineType, and AcRowType enumerations,
see Appendix B.

GetGridVisibility Boolean Returns a grid visibility value for the specifed grid linetype
and row type. Parameters: GridLineType As AcGridLineType,
RowType As AcRowType. For a list of possible values for the
AcGridLineType, and AcRowType enumerations, see Appendix
B.

GetMinimumColumnWidth Double Gets the minimum column width for the column at the spec-
ified column index in the table. Parameter: Column As Long.

GetMinimumRowHeight Double Returns the minimum row height for the specified row. Para-
meter: Row As Long.

GetRowHeight Double Returns the row height for the row at the specified row index
in the table. Parameter: Row As Long.

GetRowType AcRowType Returns the row type for the specified row. Parameter: Row As
Long. For a list of possible values for the AcRowType enumera-
tion, see Appendix B.

GetSubSelection Returns the row and column indexes of the cells in a subse-
lection set. This method gets the row and column indices of
the cells in the subselection set. The total number of selected
cells is equal to (rowMax – rowMin + 1) * (colMax - colMin + 1).
Parameters: RowMin As Long, RowMax As Long, ColumnMin As
Long, ColumnMax As Long.

GetText String Returns the text value for the specified row and column.
Parameters: Row As Long, Column As Long.

GetTextHeight Double Returns the text height for the specified row type. Parameter:
RowType As AcRowType. For a list of possible values for the
AcRowType enumeration, see Appendix B.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 599

5793appA_final.qxd 8/22/05 1:35 AM Page 599

Name Returns Description

GetTextRotation AcRotationAngle Returns the text rotation for the specified row and column.
Parameters: Row As Long, Column As Long. For a list of possi-
ble values for the AcRotationAngle enumeration, see
Appendix B.

GetTextStyle String Returns the text style name for the specified row type. Para-
meter: RowType As AcRowType. For a list of possible values for
the AcRowType enumeration, see Appendix B.

HitTest Boolean Returns the cell at the specified location. This function per-
forms a hit test by specifying a point and viewing direction.
The cell hit by the ray is returned. Parameters: InputPick-
Point As Variant, ViewVector As Variant, ResultRowIndex
As Long, ResultColumnIndex As Long.

InsertColumns Inserts columns in a table. Parameters: StartColumn As Long,
Width As Double, NumberOfColumns As Long.

InsertRows Inserts rows in a table. Parameters: StartRow As Long, Height
As Double, NumberOfRows As Long.

IsMergedCells Boolean Returns the merge status of a cell. Parameters: Row As Long,
Column As Long, MinRow As Long, MaxRow As Long, MinColumn
As Long, MaxColumn As Long.

MergedCells Merges cells in a table. This method merges a rectangular
region of cells. The total number of cells to be merged is
equal to (maxRow - minRow + 1) * (maxCol - minCol + 1). Parame-
ters: MinRow As Long, MaxRow As Long, MinColumn As Long,
MaxColumn As Long.

RecomputeTableBlock Updates a table block. This function updates the table block
record that the Table object references to match changes
made to the Table object since the most recent update of the
table block record. Parameter: ForceUpdate As Boolean. An
update will occur when the parameter value is True.

ReselectSubRegion Returns subentities of a selection set in a table.

Select Selects a cell in a table. This function selects a cell in the table
by specifying a point, viewing direction, and orientation. Para-
meters: InputPickPoint As Variant, ViewVector As Variant,
ViewOrientationVector As Variant, ApertureBoxWidth As
Double, ApertureBoxHeight As Double, AllowOutside As
Boolean, ResultRowIndex As Long, ResultColumnIndex As Long.

SelectSubRegion Selects a set of cells in a table. Parameters: WindowPoint1 As
Variant, WindowPoint2 As Variant, ViewVector As Variant,
ViewOrientationVector As Variant, Type As AcSelectType,
IncludeCurrentSelection As Boolean, MinRow As Long,
MaxRow As Long, MinColumn As Long, MaxColumn As Long.

SetAlignment Sets a cell alignment for the specified row types. Parameters:
RowTypes As Long, CellAlignment As AcCellAlignment. For a
list of possible values for the AcCellAlignment enumeration,
see Appendix B.

SetAutoScale Sets the value specifying whether auto scale is used in the
specified row and column. Parameters: Row As Long, Column
As Long, AutoScale As Boolean. Autoscale is used when True.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY600

5793appA_final.qxd 8/22/05 1:35 AM Page 600

Name Returns Description

SetBackgroundColor Sets a background color value for the specifed row types.
Parameters: RowTypes As Long, Color As AcCmColor. For a list
of possible values for the AcCmColor enumeration, see Appen-
dix B.

SetBackgroundColorNone Sets the value specifying whether there is no background
color for the specified row types. Parameters: RowTypes As
Long, Value As Boolean. No background color used when
Value is True.

SetBlockAttributeValue Sets the attribute value of the specified cell for the attribute
definition object that is contained in the block. Parameters:
Row As Long, Column As Long, AttDefId As Long, Attribute-
Value As String.

SetBlockRotation Sets the block rotation angle for the specified row and col-
umn. Parameters: Row As Long, Column As Long, Rotation As
Double.

SetBlockScale Sets the block scale value for the specified row and column.
Parameters: Parameters: Row As Long, Column As Long, Scale
As Double.

SetBlockTableRecordId Sets the block table record ID of the cell. Parameters: Row As
Long, Column As Long, BlockId As Long, AutoFit As Boolean.

SetCellAlignment Sets the cell alignment for the specified row and column.
Parameters: Row As Long, Column As Long, CellAlignment As
AcCellAlignment. For a list of possible values for the AcCel-
lAlignment enumeration, see Appendix B.

SetCellBackgroundColor Sets the background true color value for the specified row
and column. Parameters: Row As Long, Column As Long, Color
As AcCmColor. For a list of possible values for the AcCmColor
enumeration, see Appendix B.

SetCellBackgroundColorNone Sets the value specifying that there is no background color
for the specified row and column. Parameters: Row As Long,
Column As Long, Value As Boolean. No background color
used when Value is True.

SetCellContentColor Sets the true color value for the content of the specified row
and column. Parameters: Row As Long, Column As Long, Color
As AcCmColor.

SetCellGridColor Sets the grid color value for an edge of the specified row and
column. Parameters: Row As Long, Column As Long, Color As
AcCmColor.

SetCellGridLineWeight Sets the grid lineweight value for an edge of the specified row
and column. Parameters: Row As Long, Column As Long, Edges
As Long, Lineweight As AcadLWeight. For a list of possible
values for the AcadLWeight enumeration, see Appendix B.

SetCellGridVisibility Sets the grid visibility value for an edge of the specified row
and column. Parameters: GridLineTypes As Long, RowTypes
As Long, Value As Boolean. Grid cell will be visible when
value is True.

SetCellTextHeight Sets the text height for the specified row and column. Para-
meters: Row As Long, Column As Long, TextHeight As Double.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 601

5793appA_final.qxd 8/22/05 1:35 AM Page 601

Name Returns Description

SetCellTextStyle Sets the text style name for the specified row and column.
Parameters: Row As Long, Column As Long, TextStyle As
String.

SetCellType Sets the cell type for the specified row and column. Parame-
ters: Row As Long, Column As Long, CellType As AcCellType.
For a list of possible values for the AcCellType enumeration,
see Appendix B.

SetColumnWidth Sets the column width for the column at the specified col-
umn index in the table. Parameters: Column As Long, Width
As Double.

SetContentColor Sets the true color value for the specified row types. Parame-
ters: RowTypes As Long, Color As AcCmColor. For a list of
possible values for the AcCmColor enumeration, see Appendix
B.

SetFieldId Sets the field object ID of the specified cell. Parameters: Row
As Long, Column As Long, FieldId As Long.

SetGridColor Sets the grid color value for the specified grid linetypes and
row types. Parameters: GridLineTypes As Long, RowTypes As
Long, Color As AcCmColor. For a list of possible values for the
AcCmColor enumeration, see Appendix B.

SetGridLineWeight Sets the grid lineweight value for the specified grid linetypes
and row types. . Parameters: GridLineTypes As Long, Row-
Types As Long, Lineweight As AcadLWeight. For a list of
possible values for the AcadLWeight enumeration, see Appen-
dix B.

SetGridVisibility Sets the grid visibility value for the specified grid linetype and
row types. Parameters: GridLineTypes As Long, RowTypes As
Long, Value As Boolean. Grid will be visible when value is
True.

SetRowHeight Sets the height for the row at the specified row index in the
table. Parameters: Row As Long, Height As Double.

SetSubSelection Sets the row and column indices of the cells in a subselection
set. This method sets the row and column indices of the cells
in the subselection set. The total number of selected cells is
equal to (rowMax - rowMin + 1) * (colMax - colMin + 1). Parame-
ters: RowMin As Long, RowMax As Long, ColumnMin As Long,
ColumnMax As Long.

SetText Sets the text value for the specified row and column. Row As
Long, Column As Long, Text As String.

SetTextHeight Sets the text height for the specified row types. Parameters:
RowTypes As Long, Height As Double.

SetTextRotation Sets the text rotation for the specified row and column.
Parameters: Row As Long, Column As Long, Rotation As AcRo-
tationAngle. For a list of possible values for the
AcRotationAngle enumeration, see Appendix B.

SetTextStyle Sets the text style name for the specified row types. Parame-
ters: RowTypes As Long, TextStyle As String.

UnmergeCells Splits merged cells in a table. Parameters: RowMin As Long,
RowMax As Long, ColumnMin As Long, ColumnMax As Long.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY602

5793appA_final.qxd 8/22/05 1:35 AM Page 602

AcadTable Properties
The AcadTable object inherits all the properties of the AcadEntity and AcadObject objects as
well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 603

Name Returns Description

Columns Long Gets or sets the number of columns in the table.

ColumnWidth Double Gets or sets the uniform width of all columns in the
table.

Direction Variant Gets or sets the direction vector of the table. The vec-
tor (X-axis, in WCS coordinates) defines the horizontal
plane containing the table.

FlowDirection AcTableDirection Gets or sets whether the title and header rows are at
the bottom or the top of the table. For a list of possible
values for the AcTableDirection enumeration, see
Appendix B.

HasSubSelection Boolean Gets whether the table contains a subselection set.
Read-only.

HeaderSuppressed Boolean Gets or sets whether the header of the table is
suppressed.

Height Double Gets or sets the height of the table.

HorzCellMargin Double Gets or sets the value of the horizontal margin of cells.

InsertionPoint Variant Gets or sets insertion point for a table

MinimumTableHeight Double Gets the minimum height of the table. Read-only.

MinimumTableWidth Double Gets the minimum width of the table. Read-only.

RegenerateTableSuppressed Boolean Enables or disables regeneration of the table block. All
methods that change the Table object do the follow-
ing: open the Table object in write mode, modify the
Table object based on the input parameters, close
the Table object, which recomputes the Table.
Recomputing large tables consumes a lot of time and
memory because the Table object is reconstructed
from scratch. To avoid performance problems, you
should temporarily disable the regeneration of the
Table object when modifying large tables through the
VBA APIs and then apply the modifications and re-
enable regeneration. To access this property, use the
IAcadTable2 interface.

RowHeight Double Gets or sets a uniform height for all rows in the table.

Rows Long Gets or sets the number of rows in the table.

StyleName String Gets or sets the name of the table style.

TableStyleOverrides Variant Gets the table style overrides. Read-only.

TitleSuppressed Boolean Gets or sets whether the title of the table is suppressed.

VertCellMargin Double Gets or sets the value of the vertical margin of cells.

Width Double Gets or sets the width of the table.

■Note Because this object inherits from AcadObject, it supports the Modified event.

5793appA_final.qxd 8/22/05 1:35 AM Page 603

AcadTableStyle Object
You can use the TableStyle object to store table formatting, such as grid visibility, lineweight,
and color. The object controls the initial formatting of a newly created Table object.

AcadTableStyle Methods
The AcadTableStyle object inherits all the methods of the AcadObject object. It also supports
the following methods.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY604

Name Returns Description

GetAlignment AcRowType Returns the cell alignment for a row type. For a list of the val-
ues for the AcRowType enumeration, see Appendix B.

GetBackgroundColor AcCmColor Returns the background color value for the specified row
type. Parameter: RowType As AcRowType. For a list of possible
values for the AcRowType enumeration, see Appendix B.

GetBackgroundColorNone Boolean Returns the value specifying that there is no background
color for the specified row type. For a list of the values for the
AcRowType enumeration, see Appendix B.

GetColor AcCmColor Returns the true color value for the specified row type. Para-
meter: RowType As AcRowType. For a list of the values for the
AcCmColor and AcRowType enumerations, see Appendix B.

GetGridColor AcCmColor Returns the grid color value for a grid linetype and row type.
Parameters: GridLineType As AcGridLineType, RowType As
AcRowType. For a list of possible values for the AcCmColor,
AcGridLineType, and AcRowType enumerations, see Appendix B.

GetGridLineWeight Acad_LWeight Returns a grid lineweight value for a grid linetype and row
type. Parameters: GridLineType As AcGridLineType, RowType
As AcRowType. For a list of possible values for the
Acad_LWeight, AcGridLineType, and AcRowType enumerations,
see Appendix B.

GetGridVisibility Boolean Returns a grid visibility value for the specifed grid linetype
and row type. Parameters: GridLineType As AcGridLineType,
RowType As AcRowType. For a list of possible values for the
AcGridLineType, and AcRowType enumerations, see Appendix B.

GetTextHeight Double Returns the text height for the specified row type. Parameter:
RowType As AcRowType. For a list of possible values for the
AcRowType enumeration, see Appendix B.

GetTextStyle String Returns the text style name for the specified row type. Para-
meter: RowType As AcRowType. For a list of possible values for
the AcRowType enumeration, see Appendix B.

SetAlignment Sets a cell alignment for the specified row types. Parameters:
RowTypes As Long, CellAlignment As AcCellAlignment. For a
list of possible values for the AcCellAlignment enumeration,
see Appendix B.

SetBackgroundColor Sets a background color value for the specifed row types.
Parameters: RowTypes As Long, Color As AcCmColor. For a
list of possible values for the AcCmColor enumeration, see
Appendix B.

5793appA_final.qxd 8/22/05 1:35 AM Page 604

Name Returns Description

SetBackgroundColorNone Sets the value specifying whether there is no background color for
the specified row types. Parameters: RowTypes As Long, Value As
Boolean. No background color used when Value is True.

SetColor Sets the true color value for the specified row types. Parameters:
RowTypes As Long, Color As AcCmColor. For a list of possible val-
ues for the AcCmColor enumeration, see Appendix B.

SetGridColor Sets the grid color value for the specified grid linetypes and row
types. Parameters: GridLineTypes As Long, RowTypes As Long,
Color As AcCmColor. For a list of possible values for the AcCmColor
enumeration, see Appendix B.

SetGridLineWeight Sets the grid lineweight value for the specified grid linetypes and
row types. Parameters: GridLineTypes As Long, RowTypes As Long,
Lineweight As AcadLWeight. For a list of possible values for the
AcadLWeight enumeration, see Appendix B.

SetGridVisibility Sets the grid visibility value for the specified grid linetype and row
types. Parameters: GridLineTypes As Long, RowTypes As Long,
Value As Boolean. Grid will be visible when value is True.

SetTextHeight Sets the text height for the specified row types. Parameters:
RowTypes As Long, Height As Double.

SetTextStyle Sets the text style name for the specified row types. Parameters:
RowTypes As Long, TextStyle As String.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 605

AcadTableStyle Properties
The AcadTableStyle object inherits all the properties of the AcadObject objects as well as the
common Application property. It also supports the following properties.

Name Returns Description

BitFlags Long Gets and sets the bit flag values of a table style.

Description String Gets and sets the description of an object.

FlowDirection AcTableDirection Gets or sets whether the title and header rows are at
the bottom or the top of the table. For a list of possible
values for the AcTableDirection enumeration, see
Appendix B.

HeaderSuppressed Boolean Gets or sets whether the header of the table is
suppressed.

HorzCellMargin Double Gets or sets the value of the horizontal margin of cells.

Name String Gets or sets the name of the table style.

TitleSuppressed Boolean Gets or sets whether the title of the table is suppressed.

VertCellMargin Double Gets or sets the value of the vertical margin of cells.

■Note Because this object inherits from AcadObject, it supports the Modified event.

5793appA_final.qxd 8/22/05 1:35 AM Page 605

AcadText Object
The AcadText object represents a single line of alphanumeric characters. This object differs
from the AcadMText object in that it creates only a single line of text, whereas the AcadMText
object creates a paragraph of text. The AcadText object is created using the AddText method
of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadText Object Methods
The AcadText object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

AcadText Object Properties
The AcadText object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY606

Name Returns Description

Alignment AcAlignment Gets or sets both the vertical and horizontal align-
ments for the text. For a full list of the values of the
AcAlignment enumerated type, see Appendix B. See
also the InsertPoint and TextAlignmentPoint
properties.

Backward Boolean Specifies the direction of text. True is for backward;
False is for forward.

Height Double Use to set the height of uppercase text, measured in
the current units. This property is used as a scale fac-
tor for both the height and width of the text.

HorizontalAlignment AcHorizontalAlignment Gets or sets the horizontal alignment for the text. For
a full list of the values of the AcHorizontalAlignment
enumerated type, see Appendix B. See also the
InsertPoint and TextAlignmentPoint properties.

InsertionPoint Variant Gets or sets the insertion point for text. This prop-
erty’s value is read-only except for text whose
Alignment property is set to acAlignmentLeft,
acAlignmentAligned, or acAlignmentFit. To position
text whose justification is other than left, aligned, or
fit, use the TextAlignmentPoint property. Also, text
with the HorizontalAlignment property set to
acHorizontalAlignmentLeft,
acHorizontalAlignmentAligned, or
acHorizontalAlignmentFit uses this property to
position the text. All other settings for
HorizontalAlignment use the TextAlignmentPoint
property.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for
the text object.

ObliqueAngle Double Gets or sets the oblique angle of the attribute, and is
measured from the vertical axis. The units are radians
within the range of –85 to +85 degrees. A positive
value denotes a lean toward the right.

5793appA_final.qxd 8/22/05 1:35 AM Page 606

Name Returns Description

Rotation Double Gets or sets the rotation angle (in radians) for the text
object, relative to the X-axis with positive values going
counterclockwise when viewed along the Z-axis toward
the origin. The rotation angle is read-only for text whose
Alignment property is set to acAlignmentAligned or
acAlignmentFit.

ScaleFactor Double Gets or sets the scale factor for the object. It has to be
a value greater than 0.0. A scale factor greater than 1
enlarges the object. A scale factor between 0 and 1
shrinks the object. The initial value for this property
is 1.0000.

StyleName String Gets or sets the name of the style used with the object,
the default being the current style. Use the TextStyle
object to change the attribute of a given text style. Note
that the name given must already be defined in the
drawing.

TextAlignmentPoint Variant Gets or sets the alignment point for text, returning a
three-element array of Doubles. If the Alignment prop-
erty is set to acAlignmentLeft, this property will be reset
to (0,0,0) and will become read-only. Also, you can’t use
this property to position text with the
HorizontalAlignment property set to
acHorizontalAlignmentLeft. In both cases, use the
InsertPoint property.

TextGenerationFlag Gets or sets the attribute text generation flag. Possible
values: acTextFlagBackward and acTextFlagUpsideDown.

TextString String Gets or sets the text string for the entity.

Thickness Double Gets or sets the distance the AcadText object is extruded
above or below its elevation, in a Z-axis direction. The
default is 0.0.

UpsideDown Boolean Specifies the direction of text. True is for upside down;
False is for the right way up.

VerticalAlignment AcVerticalAlignment Gets or sets vertical alignment for the text. For a list of
the values of the AcVerticalAlignment enumerated type,
see Appendix B.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 607

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadTextStyle Object
The AcadTextStyle object represents a named, saved collection of settings that determine the
appearance of text characters. The ActiveTextStyle property sets the active text style, which is
used to format new text created in the drawing and also existing text that has no individual
text style specified. If changes are made to the active text style, the new AcadTextStyle object
must be reset as the active text style, and the drawing must be regenerated for the changes to

5793appA_final.qxd 8/22/05 1:35 AM Page 607

appear. To specify a distinct individual text style for an object so that it won’t change along
with the active text style, use the StyleName property for that particular object.

AcadTextStyle Object Methods
The AcadTextStyle object inherits all the methods of the AcadObject object. It also supports
the following methods.

Name Description

GetFont Gets the definition data of the font for the text style. Parameters: TypeFace As String,
Bold As Boolean, Italic As Boolean, Charset As Integer, and PitchAndFamily As
Integer. The TypeFace parameter specifies the font name of the text style. The Bold
parameter is set to True for text to be bold. The Italic parameter is set to True for text
to be italic. The Charset parameter specifies the character set for the font. The default
value is 1. The PitchAndFamily parameter combines several constants (by a Boolean
OR operation) to give the pitch and family values for the font. The default value is 0.
A full list of constants can be found in the win32api.txt file supplied with the Visual
Basic IDE.

SetFont Sets the definition data of the font for the text style. Parameters: TypeFace As String,
Bold As Boolean, Italic As Boolean, Charset As Integer, and PitchAndFamily As
Integer.

AcadTextStyle Object Properties
The AcadTextStyle object inherits all the properties of the AcadObject object, as well as the
common Application property. It also supports the following properties.

Name Returns Description

BigFontFile String Gets or sets the name of the Asian language big font file
associated with the text or attribute. The only valid file type
is .shx, and the property can’t be set to NULL or contain an
empty string.

FontFile String Gets or sets the primary font file path and name. Fonts define
the shapes of the text characters that make up each character
set. Note that once this property has been set, you have to
regenerate the drawing to see the changes to the text.

Height Double Sets the height of the text in current units.

LastHeight Double Gets or sets the last text height value used.

Name String Gets the name of the object. This property’s value is read-only.

ObliqueAngle Double Gets or sets the oblique angle of the attribute and is meas-
ured from the vertical axis. The units are radians within the
range of –85 to +85 degrees. A positive value denotes a lean
toward the right.

TextGenerationFlag Integer Gets or sets the attribute text generation flag. Possible values
are acTextFlagBackward and acTextFlagUpsideDown.

Width Double Gets or sets the width of the text boundary and sets the char-
acter spacing. Entering a value of less than 1.0 condenses the
text. Entering a value of greater than 1.0 expands it. The max-
imum value is 100.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY608

5793appA_final.qxd 8/22/05 1:35 AM Page 608

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadTextStyles Collection
The AcadTextStyles collection contains all the text styles in the drawing. To add a new member
to the collection, use the Add method. To select a specific text style, use the Item method. Although
this collection inherits a Delete method, you can’t actually delete this collection. If you need to
delete a specific text style, use the Delete method found in the AcadTextStyle object. There is no
limit to the number of text styles you can create in your drawing. However, there can be only one
instance of the AcadTextStyles collection, which is predefined for each drawing. You can make
multiple references to it by using the TextStyles property.

AcadTextStyles Collection Methods
The AcadTextStyles collection inherits all the methods of the AcadObject object. It also sup-
ports the following methods.

Name Returns Description

Add AcadTextStyle Creates a member object and adds it to the collection. Parameter:
Name As String.

Item AcadTextStyle Gets the member object at a given index in a collection. Parameter:
Index As Variant (an Integer or a String). If the Index value is a String,
it must match an existing text style definition.

AcadTextStyles Collection Properties
The AcadTextStyles collection inherits all the properties of the AcadObject object, the Count
property, and the common Application property. It supports no other properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

AcadTolerance Object
The AcadTolerance object represents a geometric tolerance contained in a feature control
frame. Tolerances are influenced by several system variables, which can be set and queried
using the SetVariable and GetVariable methods. The color of the feature control frame is con-
trolled by DIMCLRD. The color of the tolerance text is controlled by DIMCLRT. The gap between
the feature control frame and the text is controlled by DIMGAP. The size of the tolerance text is
controlled by DIMTXT. Finally, the style of the tolerance text is controlled by DIMTXTSTY.

The AcadTolerance object is created using the AddTolerance method of the AcadBlock,
AcadModelSpace, or AcadPaperSpace objects.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 609

5793appA_final.qxd 8/22/05 1:35 AM Page 609

AcadTolerance Object Methods
The AcadTolerance object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

AcadTolerance Object Properties
The AcadTolerance object inherits all the properties of the AcadEntity and AcadObject objects,
as well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY610

Name Returns Description

Arrowhead1Type AcDimArrowheadType Gets or sets the type of arrowhead for the tolerance object.
It overrides the value of the DIMBLK1 system variable. For
the values of the AcDimArrowheadType enumerated type,
see Appendix B.

DecimalSeparator String Gets or sets the character used as the decimal separator
in tolerance values. The initial value for this property is
the period (.), though any character will be accepted as
a valid value for this property. It overrides the value of
the DIMSEP system variable.

DimensionLineColor AcColor Gets or sets the color of the tolerance object. Use a color
index number from 0 to 256 or one of the constants listed
here: acByBlock (where AutoCAD draws objects in the
default color) or acByLayer (where AutoCAD draws objects
in the color specified for the layer). For a list of possible
values for the AcColor enumerated type, see Appendix B.
This property overrides the value of the DIMCLRD system
variable for the given object.

DirectionVector Variant Gets or sets the direction for the tolerance through a
vector. It returns a three-element array of Doubles.

FractionFormat AcDimFractionType Gets or sets the formats of fractional values. It overrides
the value of the DIMFRAC system variable. Possible values
are acHorizontal, acDiagonal, and acNotStacked.

InsertionPoint Variant Represents an insertion point in the tolerance object as
a set of 3-D WCS coordinates. It returns a three-element
array of Doubles.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the
tolerance object.

PrimaryUnitsPrecision AcDimPrecision Gets or sets the number of decimal places displayed for
the primary units. For a list of possible values for the
AcDimPrecision enumerated type, see Appendix B.

ScaleFactor Double Gets or sets the scale factor for the object. It has to be a
value greater than 0.0. A scale factor greater than 1 enlarges
the object. A scale factor between 0 and 1 shrinks the
object. The initial value for this property is 1.0000. This
property overrides the DIMSCALE system variable.

StyleName String Gets or sets the name of the style used with the object,
the default being the current style. Use the TextStyle
object to change the attribute of a given text style. Note
that the name given must already be defined in the
drawing.

5793appA_final.qxd 8/22/05 1:35 AM Page 610

Name Returns Description

TextColor AcColor Gets or sets the color of the tolerance text. Use a color index number from 0
to 256 or one of the constants listed here: acByBlock (where AutoCAD draws
objects in the default color), acByLayer (where AutoCAD draws objects in
the color specified for the layer), and the AcColor enumerated type (see
Appendix B). This property overrides the value of the DIMCLRD system vari-
able for the given object.

TextHeight Double Gets or sets the height for the tolerance text, the value of which overrides
the value of the DIMTXT system variable. This property is ignored if the cur-
rent text style has a fixed text height. The initial value is 0.1800.

TextString String Gets or sets the text string for the entity.

TextStyle String Gets or sets the text style for the tolerance text, the value of which overrides
the value of the DIMTXSTY system variable. The initial value is STANDARD.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 611

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadToolbar Object
The AcadToolbar object represents an AutoCAD toolbar, which provides access to frequently
used or custom commands, settings, and macros. You can add tools to or remove tools from
the AutoCAD default toolbars and reposition them. You can also create your own toolbars.

You create a new toolbar with the Add method. AddToolbarButton inserts a new button to
the toolbar, and AddSeparator adds a separator. Use the ToolbarItem object to add functional-
ity to the toolbar button or to create flyout toolbar buttons. You can change the position of
toolbars by docking them along the top, bottom, or sides of the AutoCAD screen, or you can
float toolbars anywhere on the screen.

AcadToolbar Object Methods
The AcadToolbar object supports the following methods.

5793appA_final.qxd 8/22/05 1:35 AM Page 611

Name Returns Description

AddToolbarButton AcadToolbarItem Adds an item to the toolbar immediately before the position
specified by the index. To associate a toolbar to a flyout button,
use the AttachToolbarToFlyout method on the returned
AcadToolbarItem object. Note that to add a button to a toolbar,
it has to be visible. Parameters: Index As Variant (Integer or
String), Name As String, HelpString As String, Macro As
String, and [FlyoutButton As Variant].
The Index parameter for this property, and the one that follows,
must be between 0 and N minus 1 (if it is an Integer), where N
is the number of objects in the pop-up menu. The new item will
be added immediately before the specified index location. To
add the new menu item to the end of a menu, set the index to
be greater than N. If a String is specified and the indexed item
doesn’t exist, then the new menu item is added at the end of the
menu.
The Name must be composed of alphanumeric characters with
no punctuation other than a dash (-) or an underscore (_). This
will show up as the tooltip.
The FlyoutButton parameter is a Boolean variable determining
whether the new button is to be a flyout button (True) (False).
False is the default value returned if this option is ignored.

AddSeparator AcadToolbarItem Adds a separator to the toolbar immediately before the position
specified by the index. The first item in a menu can’t be a sepa-
rator. You can’t add a separator immediately next to another
separator. Parameter: Index As Variant (Integer or String).

Delete Deletes an item from the toolbar. Note that the item must have
no Index parameter.

Dock Docks the toolbar to its owning frame window. Parameter: Side
As AcToolbarDockStatus. For a list of possible values for the
AcToolbarDockStatus enumeration, see Appendix B.

Float Floats the toolbar. Parameters: Top As Integer, Left As
Integer, and NumberFloatRows As Integer.
The Top and Left parameters specify the pixel location for the
top and left edges of the toolbar, respectively, and are screen
coordinates. Get the position of the document window to float
in the drawing limits.
The NumberFloatRows parameter designates the number of rows
to create in the horizontal toolbar. The buttons on the toolbar
will be distributed automatically across the number of rows
designated.

Item AcadToolbarItem Returns the item from the collection specified by the index.
Parameter: Index As Variant (Integer or String). If the Index
value is a String, it must match an existing object name in the
collection.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY612

AcadToolbar Object Properties
As well as the common Application property and the Count property, the AcadToolbar object
supports the following properties.

5793appA_final.qxd 8/22/05 1:35 AM Page 612

Name Returns Description

DockStatus AcToolbarDockStatus Gets whether and where the toolbar is docked. This
property’s value is read-only. For a list of possible values
for the AcToolbarDockStatus enumerated type, see
Appendix B.

FloatingRows Integer Gets or sets the number of rows if the toolbar is floating.

Height Integer Gets the height of the toolbar. This property’s value is
read-only.

HelpString String Gets or sets the toolbar’s help string.

LargeButtons Boolean Specifies whether the toolbar buttons are large. This
property’s value is read-only.

Left Integer Gets or sets the position in pixels of left edge of the
toolbar from the left side of the screen.

Name String Gets or sets the toolbar’s name.

Parent AcadToolbars Gets the object to which the toolbar object belongs.
This property’s value is read-only.

TagString String Gets the menu’s tag string, which can consist of alpha-
numeric and underscore (_) characters. This string
uniquely identifies the item within a given menu file. This
string is automatically assigned when the object is cre-
ated and is used internally by AutoCAD for toolbar and
menu identification. This property’s value is read-only.

Top Integer Gets or sets the position in pixels of the top edge of the
toolbar from the top of the screen.

Visible Boolean Specifies whether the toolbar is visible.

Width Double Gets the width of the toolbar. This property’s value is
read-only.

AcadToolbarItem Object
The AcadToolbarItem object represents a single button or separator on an AutoCAD toolbar.
A toolbar button can contain a macro to be executed when it is selected by the user, or it can
contain a nested toolbar called a flyout. Separators can’t contain macros or flyouts. The Macro
property is used to add or change the button’s associated macro.

AcadToolbarItem Object Methods
The AcadToolbarItem object supports the following methods.

Name Description

AttachToolbarToFlyout Attaches the toolbar to a toolbar button defined as a flyout. To create a
new button as a flyout, you must first use the AddToolbarButton method
of the AcadToolbar object with the FlyoutButton parameter set to True.
Only then can you attach the toolbar to the flyout using this method.
Parameters: MenuGroupName As String and ToolbarName As String.

Delete Deletes a specified toolbar item. Note that you can only add or
remove toolbar items when the toolbar is visible.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 613

5793appA_final.qxd 8/22/05 1:35 AM Page 613

Name Description

GetBitmaps Gets the large and small bitmaps used as icons for the toolbar item. Parameters:
SmallIconName As String and LargeIconName As String. The parameters require
both the path and file name of the bitmaps.

SetBitmaps Sets the large (24×22 pixels) and small (15×16 pixels) bitmaps used as icons for the
toolbar item. Parameters: SmallIconName As String and LargeIconName As
String. The parameters require both the path and file name of the bitmaps.

AcadToolbarItem Object Properties
As well as the common Application property, the AcadToolbarItem object supports the follow-
ing properties.

Name Returns Description

Flyout AcadToolbar Gets the toolbar associated with the item, if it’s a flyout tool-
bar item. This property’s value is read-only.

HelpString String Gets or sets the help string for the menu item, which
appears in the AutoCAD status line when a user highlights
a menu item.

Index Integer Gets the index for the menu item. The first position in the
index is 0. This property’s value is read-only.

Macro String Gets or sets the macro associated with the toolbar item.

Name String Gets or sets the name of the toolbar item.

Parent AcadToolbar Gets the parent object of the toolbar item. This property’s
value is read-only.

TagString String Gets the menu’s tag string, which can consist of alphanu-
meric and underscore (_) characters. This string uniquely
identifies the item within a given menu file. This string is
automatically assigned when the object is created and is
used internally by AutoCAD for toolbar and menu identifi-
cation.

Type AcToolbarItemType Gets the toolbar item’s type. This property’s value is
read-only. Possible values for the AcToolbarItemType
enumeration are acToolbarButton, acToolbarFlyout, and
acToolbarControl.

AcadToolbars Collection
The AcadToolbars collection contains all the toolbars loaded in the current AutoCAD session,
some or all of which may be currently displayed in AutoCAD. To load an existing toolbar into
the current session, load the menu group that contains the toolbar using the Load method of
the AcadMenuGroups collection. To display large buttons for all toolbars, set the LargeButtons
property to True.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY614

5793appA_final.qxd 8/22/05 1:35 AM Page 614

AcadToolbars Collection Methods
The AcadToolbars collection supports just two methods.

Name Returns Description

Add AcadToolbar Creates an AcadToolbar object and adds it to the collection. Parameter:
Name As String.

Item AcadToolbar Returns the member of the collection specified by the index. Parame-
ter: Index As Variant.

AcadToolbars Collection Properties
As well as the common Application property and the Count property, the AcadToolbars collec-
tion supports the following properties.

Name Returns Description

LargeButtons Boolean Specifies whether the displayed toolbar buttons are large.

ParentAcadMenuGroup Gets the collection’s parent object. This property’s value is
read-only.

AcadTrace Object
The AcadTrace object represents a 2-D solid line of specified width. The end points of a trace are
always positioned on the centerline and are cut square. AutoCAD automatically calculates the
correct bevels when connecting adjacent trace segments. Traces are solid-filled when the fill
mode is on. Otherwise, only the outline of the trace appears. The fill mode uses the system vari-
able FILLMODE, which is set using the SetVariable method and queried using the GetVariable
method. The system variable TRACEWID stores the current width used for an AcadTrace object.

The AcadTrace object is created using the AddTrace method of the AcadBlock,
AcadModelSpace, or AcadPaperSpace object.

AcadTrace Object Methods
The AcadTrace object inherits all the methods of the AcadEntity and AcadObject objects. It
supports no other methods.

AcadTrace Object Properties
The AcadTrace object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 615

5793appA_final.qxd 8/22/05 1:35 AM Page 615

Name Returns Description

Coordinate Variant Gets or sets the coordinate of a single vertex in the object. This will
replace an existing vertex for the specified object. Use standard array-
handling techniques to process the values contained in this property.
It returns a three-element array of Doubles containing 3-D coordi-
nates in WCS. Note that the Z coordinate will default to 0 on the active
UCS. Parameter: Index As Integer (the index in the zero-based array
of vertices for the vertex you want to set or query).

Coordinates Variant Gets or sets the coordinates for each vertex in the object. This will
replace any existing coordinates for the specified object. Use standard
array-handling techniques to process the coordinates contained in
this property. Note that you can’t change the number of coordinates in
the object by using this property, you can only change the location of
existing coordinates. It returns a three-element array of Doubles con-
taining 3-D coordinates in WCS. Note that the Z coordinate will always
default to 0 on the active UCS.

Normal Variant Gets or sets the 3-D (Z-axis) normal unit vector for the trace object.

Thickness Double Gets or sets the distance the AcadTrace object is extruded above or
below its elevation, in a Z-axis direction. The default is 0.0.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadUCS Object
The AcadUCS object represents a User-defined Coordinate System (UCS) that determines the ori-
entation of the X-, Y-, and Z-axes in 3-D space. With this object you can change the location of
the origin and the orientation of the XY plane and the Z-axis, and the resulting UCS definition
can be orientated anywhere within the 3-D layout. Many UCSs can be defined as required for
each drawing. The GetUCSMatrix method returns the transformation matrix for a given UCS. To
turn on the UCS icon for a given viewport, use the UCSIconOn property of the AcadPViewport and
AcadViewport objects. Note that all coordinates in ActiveX Automation are entered in the WCS.

The AcadUCS object is created by the Add method of the AcadUCSs collection and accessed
by the Item method of the AcadUCSs collection. UCSs can also be activated using the ActiveUCS
property of the Document object. If any changes are made to the active UCS, the new UCS object
must be reset as the active UCS for the changes to appear.

AcadUCS Object Methods
The AcadUCS object inherits all the methods of the AcadObject object. It also supports the fol-
lowing method.

Name Returns Description

GetUCSMatrix Variant Gets the transformation matrix consisting of UCS coordinate
system data. It returns a 4×4 array of Doubles. This matrix is the
passed as a parameter to the TransformBy method of a drawing
object to apply a given UCS to that object.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY616

5793appA_final.qxd 8/22/05 1:35 AM Page 616

AcadUCS Object Properties
The AcadUCS object inherits all the properties of the AcadObject object and the common
Application property. It also supports the following properties.

Name Returns Description

Name String Gets or sets the name of the UCS object.

Origin Variant Gets or sets the origin of the UCS object in WCS coordinates, relative to
the lower-left corner. It returns an array of Doubles.

XVector Variant Gets or sets the X direction of the given UCS. It returns a three-element
array of Doubles, which is stored in the UCSXDIR system variable. If the
X vector value is changed on the active UCS, you must reset the active
UCS to see the change.

YVector Variant Gets or sets the Y direction of the given UCS. It returns a three-element
array of Doubles, which is stored in the UCSYDIR system variable. If the Y
vector value is changed on the active UCS, you must reset the active
UCS to see the change.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadUCSs Collection
The AcadUCSs collection contains all the UCS definitions in the drawing. To add a new member
to the collection, use the Add method. To select a specific UCS definition, use the Item method.
Although this collection inherits a Delete method, you can’t actually delete this collection. If you
need to delete a specific UCS definition, use the Delete method found in the AcadUCS object. There
is no limit to the number of UCS definitions you can create in your drawing. However, there can be
only one instance of the AcadUCSs collection, which is predefined for each drawing. You can make
multiple references to it by using the UserCoordinateSystems property.

AcadUCSs Collection Methods
The AcadUCSs collection inherits all the methods of the AcadObject object. It also supports the
following methods.

Name Returns Description

Add AcadUCS Creates a member object and adds it to the collection. Parameters: Origin
As Variant, XAxisPoint As Variant, YAxisPoint As Variant, and Name As
String. The Origin parameter specifies where the UCS is to be added. The
XAxisPoint parameter specifies a point on the positive X-axis of the UCS.
The YAxisPoint parameter specifies a point on the positive Y-axis of the
UCS. (The Z-axis follows by applying the right-hand rule.) These coordi-
nates are all 3-D in WCS. Note that XAxisPoint and YAxisPoint together
can’t specify the same location as the Origin. The Name parameter specifies
the name of the UCS to add to the collection.

Item AcadUCS Gets the member object at a given index in a collection. Parameter: Index
As Variant (an Integer or a String). If the Index value is a String, it must
match an existing object name in the collection.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 617

5793appA_final.qxd 8/22/05 1:35 AM Page 617

AcadUCSs Collection Properties
The AcadUCSs collection inherits all the properties of the AcadObject object, the Count property,
and the common Application property. It supports no other properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

AcadUtility Object
The AcadUtility object represents a series of methods provided for utility purposes.

AcadUtility Object Methods
The following methods are supported.

Name Returns Description

AngleFromXAxis Double Returns the angle (in radians) of a line passing through two
points from the X-axis. Parameters: Point1 As Variant and
Point2 As Variant. The parameters are three-element arrays
of Doubles.

AngleToReal Double Converts an angle as a string to a real number (Double). Para-
meters: Angle As String and Unit As AcAngleUnits. For the
possible values of the AcAngleUnits enumerated type, see
Appendix B.

AngleToString String Converts an angle from a real number (Double) to a string.
Parameters: Angle As Double, Unit As AcAngleUnits, and Pre-
cision As Integer. For the possible values of the AcAngleUnits
enumerated type, see Appendix B. The range of values for the
third parameter is 0 to 8.

CreateTypedArray Creates an array that contains the values specified by the
parameters. The resulting array can be passed into any Auto-
CAD method or property that accepts an array of numbers.
Parameters: VarArr As Variant, Type As (Visual Basic Con-
stant), Value1 As Type, [Value2 As Type], …, and [ValueN As
Type]. The values for Type are vbBoolean, vbInteger, vbLong,
vbSingle, and vbDouble.

DistanceToReal Double Converts a distance from a string to a real number (Double).
Parameters: Distance As String and Unit As AcUnits. For the
possible values of the AcUnits enumerated type, see Appendix B.

GetAngle Double Asks the user to input an angle and then returns its value, taking
into account the value in the ANGBASE system variable. The value
of the angle returned is expressed in radians. The direction of
angular increase is always counterclockwise. Parameters: [Point
As Variant] and [Prompt As String]. The Point parameter in
this method and the two that follow specifies 3-D WCS coordi-
nates. The Prompt parameter in this method and the methods
that follow specifies text string used to prompt the user for
input.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY618

5793appA_final.qxd 8/22/05 1:35 AM Page 618

Name Returns Description

GetCorner Variant Asks the user to input the corner of a rectangle and returns the
point as an array of three Doubles. Note that a call to GetCorner
will frequently follow a call to GetPoint, the first point selected
being used as the first parameter for the GetCorner method.
Parameters: Point As Variant and [Prompt As String].

GetDistance Variant Asks the user to input a linear distance from the keyboard or by
specifying two locations on the graphics screen, and returns it as
a Double number or as an array of Double numbers. Parameters:
[Point As Variant] and [Prompt As String].

GetEntity Asks the user to select a drawing object by picking a point on the
screen. The object is then placed in the first parameter. Parameters:
Object As Object, PickedPoint As Variant, and [Prompt As
String]. The PickedPoint parameter specifies 3-D WCS coordinates.

GetInput String Asks the user to input text and returns it. A call to this method
must follow a call to a user-input function returning the “User
input is a keyword” error description. The input must be no longer
than 511 characters.

GetInteger Integer Asks the user to input an integer and returns it. The AutoCAD user
can enter any short integer in the range of –32,768 to +32,767.
Parameter: [Prompt As String].

GetKeyword String Asks the user to input a keyword and returns it. The keyword must
be no longer than 511 characters. If the user doesn’t enter any-
thing but presses the Enter key, this method returns an empty
string. This method can be used only if InitializeUserInput is
called first. Parameter: [Prompt As String].

GetOrientation Double Asks the user to input an angle and then returns its value in radi-
ans without regard to the values stored in the ANGBASE system
variable. The 0 angle employed by this method is always to the
right (east). Parameters: [Point As Variant] and [Prompt As
String]. The Point parameter specifies 3-D WCS coordinates.

GetPoint Variant Asks the user to choose a point and returns it. Parameters: [Point
As Variant] and [Prompt As String]. The Point parameter and
the return value specify 3-D WCS coordinates.

GetReal Double Asks the user to input a real (Double) number and returns it.
Parameter: [Prompt As String].

GetRemoteFile Downloads the specified file from a URL. Parameters: URL As
String, LocalFile As String, and IgnoreCache As Boolean. The
third parameter specifies whether to download the file, even if it
has already been transferred earlier in this session.

GetString String Asks the user to input a string and returns it. Parameters:
HasSpaces As Boolean and [Prompt As String]. HasSpaces deter-
mines whether the return string can contain spaces. If True, the
string can contain spaces but terminated by a carriage return only.
If False, the string can’t contain spaces. It can be terminated by a
carriage return or a space.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 619

5793appA_final.qxd 8/22/05 1:35 AM Page 619

Name Returns Description

GetSubEntity Asks the user to select a drawing object by specifying the
object and the selected in the first two parameters. Para-
meters: Object As Object, PickedPoint As Variant,
TransMatrix As Variant, ContextData As Variant, and
[Prompt As String].
The PickedPoint parameter specifies 3-D WCS coordinates.
The TransMatrix parameter represents the translation
matrix applied to this entity.
The Variant parameter is a 4×4 array of Doubles.
The ContextData parameter is an array of Longs, contain-
ing the object IDs for any nested objects in the selected
object. More specifically, this argument returns an array
holding the object ID(s) of the subentity’s container block
references. The first array element is the object ID of the
block reference containing the picked entity. The last array
element is the object ID of the block reference inserted
directly in the drawing. The array of object IDs is therefore
ordered from the most deeply nested block reference that
contains the subentity to the object ID of the block refer-
ence that would have been picked with the GetEntity
function. If the picked entity isn’t a subentity (i.e., it isn’t
nested in a block reference), then the GetSubEntity func-
tion returns an empty array for the ContextData parameter.

InitializeUserInput Initializes the GetKeyword method. Parameter: Bits As
Integer and [Keyword As String]. For the values for the
Bits parameter and their explanations, see the following
table. The second parameter specifies the keywords, delim-
ited by spaces, that the GetKeyword method will recognize.
This method must be called before GetKeyword.

IsRemoteFile Boolean Returns whether the specified file was downloaded from
a remote location. This method is the inverse of the IsURL
method and provides a mapping from a local file to the
corresponding URL that the file was downloaded from.
Parameters: LocalFile As String and URL As String.

IsURL Boolean Returns whether a string is a valid URL for the application.
The default functionality of this method for AutoCAD sup-
ports the FTP, HTTP, HTTPS, and FILE protocols.
Parameter: URL As String.

LaunchBrowserDialog Boolean Runs the web browser dialog box that allows the user to
navigate to any URL and select a URL. It returns whether
the operation was successful. Parameters: SelectedURL
As String, DialogTitle As String, OpenButtonCaption As
String, StartPageURL As String, RegistryRootKey As
String, and OpenButtonAlwaysEnabled As Boolean.
The first four parameters specify the selected URL, the title
to be displayed for the browser dialog box, the caption for
the OK/Open button, and the URL that the web browser
should use as its start page, respectively.
The fifth parameter is used to specify where in the Registry
persistent web browser dialog box information is stored.
Input an empty string to disregard this functionality.
The sixth parameter determines whether the user can
select HTML links in addition to downloadable file. If True,
the Open button is enabled, allowing a file or link to be
selected. If False, the Open button is disabled and is only
enabled when the user selects a file for download.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY620

5793appA_final.qxd 8/22/05 1:35 AM Page 620

Name Returns Description

PolarPoint Variant Returns a point at the specified angle (in radians) and dis-
tance (in current units) from the specified point. Parameters:
Point As Variant, Angle As Double, and Distance As Double.
The value for Point and the return value are both 3-D WCS
coordinates.

Prompt Sends a message to the command line. Parameter: Message
As String.

PutRemoteFile Puts a local file at the location specified by a URL. This
method is designed to complement GetRemoteFile method.
When accessing a secure URL, a dialog box will be posted
prompting the user for the necessary password information.
Message boxes may also appear if the user hasn’t suppressed
this activity in the browser. Parameter: URL As String.

RealToString String Converts a real number into a properly formatted string.
Parameters: Value As Double, Unit As AcUnits, and
Precision As Integer. For a list of possible values for the
AcUnits enumerated type, see Appendix B. The range of
values for the third parameter is 0 to 8.

TranslateCoordinates Variant Changes a point from one coordinate system to another.
You can’t directly translate a set of coordinates from one
OCS to another OCS. If you want to do this, you must first
translate the OCS coordinates to WCS and then change
these coordinates to the second OCS. Parameters: Origi-
nalPoint As Variant, From As AcCoordinateSystem, To As
AcCoordinateSystem, Disp As Boolean, and [OCSNormal
As Variant].
OriginalPoint specifies the original 3-D WCS coordinates
to be translated. This parameter can be treated as a point
or a displacement vector depending on the value of Disp.
For a list of possible values for the AcCoordinateSystem enu-
meration (the From and To parameters), see Appendix B.
Disp is a displacement vector flag. If True, OriginalPoint is
treated as a displacement vector. Otherwise it is treated as
a point.
The optional last parameter represents the normal for the
OCS.

AcadUtility Object Properties
The AcadUtility object inherits the common Application property. It supports no other
properties.

AcadView Object
The AcadView object represents a graphical representation of a 2-D drawing or 3-D model from
a specific location (viewpoint) in space. The line of sight is drawn from the viewpoint, repre-
sented by the Center property, to the target point. The Height and Width properties crop the
view to fit into the viewport.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 621

5793appA_final.qxd 8/22/05 1:35 AM Page 621

AcadView Object Methods
The AcadView object inherits all the methods of the AcadObject object. It supports no other
methods.

AcadView Object Properties
The AcadView object inherits all the properties of the AcadObject object, as well as the common
Application property. It also supports the following properties.

Name Returns Description

Center Variant Gets or sets the center of the view as a set of 2D coordinates (as Doubles).
The default center is (0,0).

Direction Variant Gets or sets the viewing direction for a 3-D visualization of the drawing.
This property puts the viewer in a position to look at the drawing as if
looking back at the origin (0, 0, 0) from a specified point in space. It is
similar to AutoCAD’s VPOINT command. It returns a three-element array
of Doubles.

Height Double Gets or sets the height of the view, which is the Y-axis measurement of
the area within a viewport that is used to display the model.

Name String Gets or sets the name of the view.

Target Variant Gets or sets the target point for the view as a set of 3-D WCS coordi-
nates representing the target point. The line of sight is drawn from the
center to the target point. It returns a three-element array of Doubles.

Width Double Gets or sets the width of the view, which is the X-axis measurement of
the area within a viewport that is used to display the model.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadViewport Object
The AcadViewport object represents a bounded area that displays some portion of a drawing’s
model space. You can activate it by using the ActiveViewport property of the Document object.
The ActiveSpace property, which is equivalent to the TILEMODE system variable, determines the
type of viewport used. You can make changes to the view only while the viewport is active, and
you can see any changes only once the viewport has been reactivated.

AcadViewport Object Methods
The AcadViewport object inherits all the methods of the AcadObject object. It also supports the
following methods.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY622

5793appA_final.qxd 8/22/05 1:35 AM Page 622

Name Description

GetGridSpacing Gets the grid spacing for the viewport. Parameters: XSpacing As Double and
YSpacing As Double.

GetSnapSpacing Gets the snap spacing for the viewport. Parameters: XSpacing As Double and
YSpacing As Double.

SetGridSpacing Sets the grid spacing for the viewport. Parameters: XSpacing As Double and
YSpacing As Double.

SetSnapSpacing Sets the snap spacing for the viewport. Parameters: XSpacing As Double and
YSpacing As Double.

SetView Sets the view in a viewport to a saved view in the AcadViews collection. Para-
meter: View As AcadView.

Split Splits a viewport into the given number of views. Parameter: NumWins As
AcViewportSplitType. For a list of possible values for the AcViewportSplitType
enumerated type, see Appendix B.

AcadViewport Object Properties
The AcadViewport object inherits all the properties of the AcadObject object, as well as the
common Application property. It also supports the following properties. Note that many of
these properties are identical to those of the AcadPViewport object. See the AcadPViewport
object for more details for the ArcSmoothness, Center, Direction, GridOn, SnapBasePoint,
SnapOn, and SnapRotationAngle properties.

Name Returns Description

ArcSmoothness Integer Gets or sets the smoothness of circles, arcs, and ellipses. The
valid range of values is from 1 to 20000. The initial value for this
property is 100.

Center Variant Gets or sets the center of the viewport as a set of 2-D coordinates
(as Doubles). The default center is (0,0).

Direction Variant Gets or sets the viewing direction for a 3-D visualization of the
drawing. This property puts the viewer in a position to look at
the drawing as if looking back at the origin (0, 0, 0) from a speci-
fied point in space.

GridOn Boolean Specifies the status of the viewport grid. The value of this prop-
erty is stored in the GRIDMODE system variable.

Height Double Gets or sets the height of the viewport, which is the Y-axis meas-
urement of the area within a viewport that is used to display the
model.

LowerLeftCorner Variant Gets the lower-left corner of the current active viewport, which
with the UpperRightCorner property represents the graphic
placement of the viewport on the display. It returns a set of 2-D
coordinates as an array of Doubles. This property’s value is
read-only.

Name String Gets or sets the name of the viewport.

OrthoOn Boolean Specifies status of the Ortho mode for the viewport. You can use
Ortho mode to restrict the cursor to the horizontal or vertical
axis, which helps you draw parallel lines or move objects.

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 623

5793appA_final.qxd 8/22/05 1:35 AM Page 623

Name Returns Description

SnapBasePoint Variant Gets or sets the snap base point for the viewport, the value
of which is stored in the SNAPBASE system variable. The snap
base point can’t be changed for the active paper space view-
port. Any changes to this property aren’t reflected in the
display until the drawing is regenerated.

SnapOn Boolean Specifies the status of snap mode. The value of this property
is stored in the SNAPMODE system variable.

SnapRotationAngle Double Gets or sets the snap rotation angle (in radians) of the view-
port relative to the current UCS. The value of this property is
stored in the SNAPANG system variable. The valid range is 0 to
6.28.

Target Variant Gets or sets the target point for the viewport as a set of 3-D
WCS coordinates representing the target point. The line of
sight is drawn from the center to the target point. It returns
a three-element array of Doubles.

UCSIconAtOrigin Boolean Specifies whether the UCS icon is displayed at the origin or at
the WCS coordinate defined by the UCSORG system variable.

UCSIconOn Boolean Specifies whether the UCS icon is on.

UpperRightCorner Variant Gets the upper-right corner of the current active viewport,
which with the LowerLeftCorner property represents the
graphic placement of the viewport on the display. It returns
a set of 2-D coordinates as an array of Doubles. This prop-
erty’s value is read-only.

Width Double Gets or sets the width of the viewport, which is the X-axis
measurement of the area within a viewport that is used to
display the model.

■Note Because this object inherits from AcadObject, it supports the Modified event. There is no pro-
grammatic means to directly create or manipulate polygonal viewports.

AcadViewports Collection
The AcadViewports collection contains all the viewports in the drawing. Although this collection
inherits a Delete method, you can’t actually delete this collection. If you need to delete a specific
viewport, use the DeleteConfiguration method or the Delete method of the AcadViewport
object. The number of viewports you can have active at one time is controlled by the MAXACTVP
system variable. However, there can be only one instance of the AcadViewports collection, which
is predefined for each drawing. You can make multiple references to it by using the Viewports
property of the Document object.

AcadViewports Collection Methods
The AcadViewports collection inherits all the methods of the AcadObject object. It also sup-
ports the following methods.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY624

5793appA_final.qxd 8/22/05 1:35 AM Page 624

Name Returns Description

Add AcadViewport Creates a member object and adds it to the collection.
Parameter: Name As String.

DeleteConfiguration Deletes a viewport configuration, which consists of
a single viewport that has been split using the Split
method. Once a viewport has been split, the resulting
viewports are considered a viewport configuration
and have the same name as the original viewport before
the split. Parameter: Name As String.

Item AcadViewport Gets the member object at a given index in a collec-
tion. Parameter: Index As Variant (an Integer or a
String). If the Index value is a String, it must match an
existing viewport in the collection.

AcadViewports Collection Properties
The AcadViewports collection inherits all the properties of the AcadObject object, the Count
property, and the common Application property. It supports no other properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

AcadViews Collection
The AcadViews collection contains all the views in the drawing. Although this collection inher-
its a Delete method, you can’t actually delete this collection. If you need to delete a specific
view, use the Delete method of the AcadView object. There is no limit to the number of views
you can create in your drawing. However, there can be only one instance of the AcadViews col-
lection, which is predefined for each drawing. You can make multiple references to it by using
the Views property of the Document object.

AcadViews Collection Methods
The AcadViews collection inherits all the methods of the AcadObject object. It supports no
other methods.

AcadViews Collection Properties
The AcadViews collection inherits all the properties of the AcadObject object, the Count prop-
erty, and the common Application property. It supports no other properties.

■Note Because this collection inherits from AcadObject, it supports the Modified event.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 625

5793appA_final.qxd 8/22/05 1:35 AM Page 625

AcadXline Object
The AcadXline object represents a construction line that is infinite in both directions, unlike the
AcadRay object, which is infinite in only one direction. It is created using the AddXline method
of the AcadBlock, AcadModelSpace, or AcadPaperSpace object.

AcadXline Object Methods
The AcadXline inherits all the methods of the AcadEntity and AcadObject objects. It also sup-
ports the following method.

Name Returns Description

Offset Variant Creates a new line by offsetting the current Xline by a specified distance,
which can be positive or negative but can’t be zero. If the offset is negative,
this means that the line is drawn closer to the WCS origin. Parameter:
Distance As Double.

AcadXline Object Properties
The AcadXline object inherits all the properties of the AcadEntity and AcadObject objects, as
well as the common Application property. It also supports the following properties.

Name Returns Description

BasePoint Variant Gets or sets the point through which the Xline passes. It
returns a set of 3-D coordinates as a three-element array of
Doubles.

DirectionVector Variant Gets or sets the direction for the Xline through a vector. It
returns a three-element array of Doubles.

SecondPoint Variant Gets or sets a second point on the Xline. It returns a set of 3-D
WCS coordinates as a three-element array of Doubles.

■Note Because this object inherits from AcadObject, it supports the Modified event.

AcadXRecord Object
The AcadXRecord object is used to store and manage arbitrary data. XRecords are similar in con-
cept to XData but are not limited by size or order. They use standard AutoCAD group codes, the
values of which are all below 1000, which means in addition to all the normally used data types,
XRecords are capable of storing object IDs, allowing ownership of many other objects. For a list
of supported group codes, see the AutoCAD documentation.

XRecord objects are saved with the drawing and can be directly accessed by other
ObjectARX and LISP programs. For this reason, you should take care when storing security
information in XRecords. XRecords are created using the AddXRecord method of the Dictionary
object and accessed programmatically through the Item method of the Dictionary object.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY626

5793appA_final.qxd 8/22/05 1:35 AM Page 626

The only basic operations that can be performed on XRecords are Add, Get, and Delete. There
is no means to update (modify) an XRecord other than to delete and re-create it.

AcadXRecord Object Methods
The AcadXRecord object inherits all the methods of the AcadObject object. It also supports the
following methods.

Name Description

GetXRecordData Gets the extended record data associated with a dictionary. Parameters:
XRecordDataType As Variant and XRecordDataValue As Variant.

SetXRecordData Sets the extended record data associated with a dictionary. Parameters:
XRecordDataType As Variant and XRecordDataValue As Variant.

AcadXRecord Object Properties
The AcadXRecord object inherits all the properties of the AcadObject object, as well as the com-
mon Application property. It also supports the following properties.

Name Returns Description

Name String Gets or sets the name of the object within the dictionary. This name
doesn’t represent the class name of the object.

TranslateIDs Boolean Specifies whether translation of any contained object IDs occurs
during deepClone or wblockClone operations.

■Note Because this object inherits from AcadObject, it supports the Modified event.

SecurityParams Object
The SecurityParams object stores settings for drawing security. The SecurityParams object
encrypts and digitally signs drawing files.

The object properties included provide information about cryptography providers and
other settings for drawing security. Additional information about cryptography providers is
available on MSDN (http://msdn.microsoft.com).

Name Returns Description

Action Long Gets or sets the desired security operation to be performed. Use one or
more of the following constants for drawing encryption, drawing proper-
ties encryption, a digital signature, or a timestamp:
ACADSECURITYPARAMS_ENCRYPT_DATA = 0×00000001
ACADSECURITYPARAMS_ENCRYPT_PROPS = 0×00000002
ACADSECURITYPARAMS_SIGN_DATA = 0×00000010
ACADSECURITYPARAMS_ADD_TIMESTAMP = 0×00000020

Continued

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 627

5793appA_final.qxd 8/22/05 1:35 AM Page 627

Name Returns Description

Algorithm Long Gets or sets the identifier of the encryption algorithm. This value
can only be the following constant:
ACADSECURITYPARAMS_ALGID_RC4 = 0×00006801

Comment String Gets or sets the comment to be included with a digital signature.

Issuer String Gets or sets the issuer of a digital certificate.

KeyLength Long Gets or sets the length of the encryption key, which is based upon
the value in the ProviderName property.

Password String Gets or sets the encryption password.

ProviderName String Gets or sets the encryption provider name. More information
about cryptography providers is available on MSDN.

ProviderType Long Gets or sets the encryption provider type. More information
about cryptography providers is available on MSDN.

SerialNumber String Gets or sets the serial number of the digital certificate.

Subject String Gets or sets the subject name of the digital certificate.

TimeServer String Gets or sets the name of the time server to be used for a digital
signature. If you don’t set this property, the time from the local
machine is used as the timestamp for the digital signature.

AcCmColor Object
The AcCmColor object represents colors within AutoCAD. You use the AcCmColor object to set
colors and perform other color-related operations on objects.

AcCmColor Object Methods
Unlike the other AutoCAD objects, the AcCmColor object doesn’t inherit methods from any
other AutoCAD objects. It supports the following methods.

Name Description

SetColorBookColor Sets the color name from an existing color book. Parameters: ColorName
As String and ColorBook As String.

SetNames Sets the color name and book name of the color. Parameters: ColorName
As String and BookName As String.

SetRGB Sets the RGB values of the True Color. Parameters: Red As Long, Green As
Long, and Blue As Long.

AcCmColor Object Properties
Unlike the other AutoCAD objects, the AcCmColor object doesn’t inherit properties from any
other AutoCAD objects. It supports the following properties.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY628

5793appA_final.qxd 8/22/05 1:35 AM Page 628

Name Returns Description

Blue Long Gets the blue component, from 0 to 255, of AcCmColor.
This property’s value is read-only.

BookName String Gets the name of the color book that the color came
from. This property’s value is read-only.

ColorIndex acColor enum Gets or sets the default color designation in acByLayer.
Use a color index number from 0 to 256 or one of the
constants listed here:
acByBlock
acByLayer (not valid for the Layer object)
acRed
acYellow
acGreen
acCyan
acBlue
acMagenta
acWhite

ColorMethod acColorMethod enum Gets or sets the default color method in
acColorMethodByLayer. To directly determine how
a color is set, use the constants listed here:
acColorMethodByACI
acColorMethodByBlock
acColorMethodByLayer
acColorMethodByRGB
acColorMethodForeground

ColorName String Gets the name (if any) of the color. This property’s value
is read-only.

EntityColor Long Gets or sets the 32-bit AcCmEntityColor portion of the
color.

Green Long Gets the green component, from 0 to 255, of AcCmColor.
This property’s value is read-only.

Red Long Gets the red component, from 0 to 255, of AcCmColor.
This property’s value is read-only.

LayerStateManager Object
The LayerStateManager object provides a set of functions for working with saved layer settings.
The LayerStateManager object manipulates XRecord objects that define the properties of a layer.
These XRecords are stored in the ACAD_LAYERSTATE dictionary, which is an extension dictionary in
the drawing’s Layers collection. (An extension dictionary is a mechanism for attaching data to
objects. Every AutoCAD object can have an extension dictionary.)

After you retrieve the LayerStateManager object and associate a database with it, then you
can access the object’s methods. Use the SetDatabase method to associate a database with the
LayerStateManager object.

LayerStateManager Object Methods
Unlike the other AutoCAD objects, the LayerStateManager object doesn’t inherit methods from
any other AutoCAD objects. It supports the following methods.

APPENDIX A ■ AUTOCAD OBJECT SUMMARY 629

5793appA_final.qxd 8/22/05 1:35 AM Page 629

Name Description

Delete Name representing the layer state to be deleted. Parameter: Name As String.

Export Exports an AutoCAD drawing or a group of saved layer settings to a file.
Parameters: Filename As String, Extension As String, and SelectionSet As
SelectionSet.

Import Imports a drawing or a group of saved layer settings from a file. Parameters:
Filename As String, InsertionPoint As Variant, and ScaleFactor As Double.

Rename Renames a set of saved layer settings. Parameters: OldName As String and NewName
As String.

Restore Restores a group of layer property settings. Parameter: Name As String.

Save Saves a group of layer property settings. Parameters: Name As String and Mask
(set the Mask property as described in the next table).

SetDatabase Gets AutoCAD database associated with the LayerStateManager object.

LayerStateManager Object Properties
Unlike the other AutoCAD objects, the LayerStateManager object doesn’t inherit properties
from any other AutoCAD objects. It supports the following properties.

Name Returns Description

Mask Enum Specifies the layer properties to be restored as a number representing the
layer properties to be restored. The following table represents acceptable
values for this property.

Constant Layer Property Numeric Value

AcLsAll All layer properties –65535

AcLsColor Color –32

AcLsFrozen Frozen or thawed –2

AcLsLineType Linetype –64

AcLsLineWeight Lineweight –128

AcLsLocked Locked or unlocked –4

AcLsNewViewport New viewport layers frozen or thawed –16

AcLsNone None –0

AcLsOn On or off –1

AcLsPlot Plotting on or off –8

AcLsPlotStyle Plot style –256

APPENDIX A ■ AUTOCAD OBJECT SUMMARY630

5793appA_final.qxd 8/22/05 1:35 AM Page 630

AutoCAD Constants Reference

This appendix lists all the enumerated types used in conjunction with the AutoCAD objects.
The methods and properties (presented in Appendix A) that use them have been noted.

Ac3DPolylineType
The following constants can be values for the Type property of the Acad3DPolyline object.

Constant Value Description

acSimple3Dpoly 0 A simple polyline

acQuadSpline3Dpoly 1 A quadratic B-spline polyline

acCubicSpline3Dpoly 2 A cubic B-spline polyline

AcActiveSpace
The following constants can be values for the ActiveSpace property of the AcadDocument
object.

Constant Value Description

acModelSpace 1 The active space is model space.

acPaperSpace 2 The active space is paper space.

ACAD_LWEIGHT
The following constants can be values for the GetGridLineWeight and SetGridLineWeight
properties of an AcadTable and AcadTableStyle object. Additionally, the following constants
can be values for the GetCell and SetCellGridLineWeight methods of an AcadTable object.

631

A P P E N D I X B

■ ■ ■

5793appB_final.qxd 8/22/05 1:38 AM Page 631

Constant Value Constant Value

acLnWt000 0 acLnWt070 70

acLnWt005 5 acLnWt080 80

acLnWt009 9 acLnWt090 90

acLnWt013 13 acLnWt100 100

acLnWt015 15 acLnWt106 106

acLnWt018 18 acLnWt120 120

acLnWt020 20 acLnWt140 140

acLnWt025 25 acLnWt158 158

acLnWt030 30 acLnWt200 200

acLnWt035 35 acLnWt211 211

acLnWt040 40 acLnWtByLayer –1

acLnWt050 50 acLnWtByBlock –2

acLnWt053 53 acLnWtByLwDefault –3

acLnWt060 60

AcAlignment
The following constants can be values for the Alignment property of the AcadAttribute,
AcadAttributeReference, and AcadText objects.

Constant Value Description

acAlignmentLeft 0 The attribute, attribute reference, or text is aligned with
the insertion point.

acAlignmentCenter 1 The attribute, attribute reference, or text is aligned at the
center.

AcAlignmentRight 2 The attribute, attribute reference, or text is aligned at the
right.

acAlignmentAligned 3 The attribute, attribute reference, or text is aligned
according to the points held in the InsertionPoint and
TextAlignmentPoint properties.

acAlignmentMiddle 4 The attribute, attribute reference, or text is aligned at the
middle, at a position slightly below middle center.

acAlignmentFit 5 The attribute, attribute reference, or text is aligned to fit to
the points held in the InsertionPoint and
TextAlignmentPoint properties.

acAlignmentTopLeft 6 The attribute, attribute reference, or text is aligned at the
top left.

acAlignmentTopCenter 7 The attribute, attribute reference, or text is aligned at the
top center.

acAlignmentTopRight 8 The attribute, attribute reference, or text is aligned at the
top right.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE632

5793appB_final.qxd 8/22/05 1:38 AM Page 632

Constant Value Description

acAlignmentMiddleLeft 9 The attribute, attribute reference, or text is aligned at the
middle left.

acAlignmentMiddleCenter 10 The attribute, attribute reference, or text is aligned at the
middle center.

acAlignmentMiddleRight 11 The attribute, attribute reference, or text is aligned at the
middle right.

acAlignmentBottomLeft 12 The attribute, attribute reference, or text is aligned at the
bottom left.

acAlignmentBottomCenter 13 The attribute, attribute reference, or text is aligned at the
bottom center.

acAlignmentBottomRight 14 The attribute, attribute reference, or text is aligned at the
bottom right.

AcAlignmentPointAcquisition
The following constants can be values for the AlignmentPointAcquisition property of the
AcadPreferencesDrafting object.

Constant Value Description

acAlignPntAcquisitionAutomatic 0 Autoalignment points are acquired
automatically.

acAlignPntAcquisitionShiftToAcquire 1 The user must use the Shift key to acquire
autoalignment points.

AcAngleUnits
The following constants can be values for the AngleFormat property of the AcadDim3PointAngular
object, and they can be supplied as the value for the second parameter of the AngleToReal and
AngleToString methods of the AcadUtility object.

Constant Value Description

acDegrees 0 Angle units are degrees.

acDegreeMinuteSeconds 1 Angle units are degrees, minutes, and seconds.

acGrads 2 Angle units are grads.

acRadians 3 Angle units are radians.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 633

5793appB_final.qxd 8/22/05 1:38 AM Page 633

AcARXDemandLoad
The following constants can be values for the DemandLoadARXApp property of the
AcadPreferencesOpenSave object.

Constant Value Description

acDemandLoadDisable 0 Turns off demand loading.

acDemandLoadOnObjectDetect 1 Demand-loads the source application when you open
a drawing that contains custom objects. This setting
doesn’t demand-load the application when you invoke
one of the application’s commands.

acDemandLoadCmdInvoke 2 Demand-loads the source application when you
invoke one of the application’s commands. This set-
ting doesn’t demand-load the application when you
open a drawing that contains custom objects.

AcAttachmentPoint
The following constants can be values for the AttachmentPoint property of the AcadMText
object.

Constant Value Description

acAttachmentPointTopLeft 1 Left-justified, spills down

acAttachmentPointTopCenter 2 Center-justified, spills down

acAttachmentPointTopRight 3 Right-justified, spills down

acAttachmentPointMiddleLeft 4 Left-justified, spills up and down

acAttachmentPointMiddleCenter 5 Center-justified, spills up and down

acAttachmentPointMiddleRight 6 Right-justified, spills up and down

acAttachmentPointBottomLeft 7 Left-justified, spills up

acAttachmentPointBottomCenter 8 Center-justified, spills up

acAttachmentPointBottomRight 9 Right-justified, spills up

AcAttributeMode
The following constants can be values for the Mode property of the AcadAttribute object, and
they can also be supplied as the value for the second parameter of the AddAttribute method
of the AcadBlock, AcadModelSpace, and AcadPaperSpace objects.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE634

5793appB_final.qxd 8/22/05 1:38 AM Page 634

Constant Value Description

acAttributeModeNormal 0 The default mode. In other words, it lacks any of the
other modes listed here.

acAttributeModeInvisible 1 When the block is inserted, the attribute’s values won’t
be visible. The system variable ATTDISP overrides this
mode setting.

acAttributeModeConstant 2 Attribute values will have a fixed value for each block
inserted. When set, prompting for the attribute is
disabled.

acAttributeModeVerify 4 When you insert the block, AutoCAD will ask you to
verify that the attribute value is correct.

acAttributeModePreset 8 The block is inserted using its default attribute values.
You can’t edit these values.

AcBlockScaling
The following constants can be values for the BlockScaling property of an AcadBlock object. To
access this property, use the IAcadBlock3 interface.

Constant Value Description

AcAny 0 The X, Y, Z scale values may be different.

acUniform 1 The X, Y, Z scale values are equal.

AcBooleanType
The following constants are values supplied as the value for the first parameter of the Boolean
methods of the Acad3DSolid and AcadRegion objects.

Constant Value Description

acUnion 0 Performs a union operation

acIntersection 1 Performs an intersection operation

acSubtraction 2 Performs a subtraction operation

AcCellAlignment
The following constants are possible return values for the GetAlignment and GetCellAlignment
methods. Also, they can be values for the CellAlignment parameter of the SetAlignment and
SetCellAlignment methods.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 635

5793appB_final.qxd 8/22/05 1:38 AM Page 635

Constant Value Description

acBottomCenter 8 Centers text at a point based on the bottom of the text

acBottomLeft 7 Left-justifies text at a point based on the bottom of the text

acBottomRight 9 Right-justifies text at a point based on the bottom of the text

acMiddleCenter 5 Centers text at a point based on the middle of the text

acMiddleLeft 4 Left-justifies text at a point based on the middle of the text

acMiddleRight 6 Right-justifies text at a point based on the middle of the text

acTopCenter 2 Centers text at a point based on the top of the text

acTopLeft 1 Left-justifies text at a point based on the top of the text

acTopRight 3 Right-justifies text at a point based on the top of the text

AcCellEdgeMask
The following constants can be values for the Edge parameter of the GetCellGridColor,
GetCellGridLineWeight, and GetCellGridVisibility methods of an AcadTable object.

Constant Value Description

acBottomMask 4 Bottom-edge index of the cell

acLeftMask 8 Left-edge index of the cell

acRightMask 2 Right-edge index of the cell

acTopMask 1 Top-edge index of the cell

AcCellType
The following constants are possible return values for the GetCellType method of an
AcadTable object. Also, they can be values for the CellType property or the SetCellType
method of an AcadTable object.

Constant Value

acBlockCell 2

acTextCell 1

acUnknownCell 0

AcColor (and the ColorIndex property
of the AcCmColor pbject)

The following constants can be values for these properties:

• The AutoSnapMarkerColor property of the AcadPreferencesDrafting object

• The Color property of the AcadEntity object (and all derived objects) and the AcadGroup
and AcadLayer objects

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE636

5793appB_final.qxd 8/22/05 1:38 AM Page 636

• The DimensionLineColor property of the dimension objects that support it (all except
AcadDimOrdinate) and the AcadLeader and AcadTolerance objects

• The ExtensionLineColor property of the dimension objects that support it (all except
AcadDimDiametric and AcadDimRadial)

• The GripColorSelected and GripColorUnselected properties of the
AcadPreferencesSelection object

• The TextColor property of the AcadDimension object (and all derived objects) and
the AcadTolerance object

Constant Value Description

acByBlock 0 Objects are drawn in the default color until they’re grouped into a
block. When the block is inserted into a drawing, the objects inherit
the value of the block’s Color property.

acRed 1 Red

acYellow 2 Yellow

acGreen 3 Green

acCyan 4 Cyan

acBlue 5 Blue

acMagenta 6 Magenta

acWhite 7 White

acByLayer 256 Object assumes color of layer on which it is drawn.

AcColor
The following constants can be values for these properties:

• AutoSnapMarkerColor property of the PreferencesDrafting object

• The Color property of all Drawing Objects, Group, Layer, and LabelTemplate objects

• The DimensionLineColor property of the Dim3PointAngular, DimAligned, DimAngular,
DimArcLength, DimDiametric, DimRadial, DimRadialLarge, DimRotated, Leader, and
Tolerance objects

• The ExtensionLineColor property of the Dim3PointAngular, DimAligned, DimAngular,
DimArcLength, DimOrdinate, and DimRotated objects

• The GripColorSelected and GripColorUnselected properties of the PreferencesSelection
object

• The TextColor property of the Dim3PointAngular, DimAligned, DimAngular, DimArcLength,
DimDiametric, DimOrdinate, DimRadial, DimRadialLarge, DimRotated, and Tolerance
objects

• The ColorIndex property of the AcCmColor object

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 637

5793appB_final.qxd 8/22/05 1:38 AM Page 637

Constant Value Description

acByBlock 0 ByBlock

acRed 1 Red

acYellow 2 Yellow

acGreen 3 Green

acCyan 4 Cyan

acBlue 5 Blue

acMagenta 6 Magenta

acWhite 7 White

acByLayer 8 ByLayer

AcColorMethod
The following constants can be supplied as values for the AcColorMethod object as it relates to
the TrueColor object. Only those constants marked with an asterisk (*), however, apply to the
GradientColor1 and GradientColor2 properties for Hatch objects.

Constant Value Description

acColorMethodByACI* 195 Use traditional color index value.

acColorMethodByBlock* 193

acColorMethodByLayer 192

acColorMethodByRGB 194 Use RGB index values to define color.

acColorMethodForeground 197

AcCoordinateSystem
You can supply the following constants as values for the second and third parameters of the
TranslateCoordinates method of the AcadUtility object.

Constant Value Description

acWorld 0 World Coordinate System (WCS)

acUCS 1 User Coordinate System (UCS)

acDisplayDCS 2 Display Coordinate System (DCS)

acPaperSpaceDCS 3 Paper Space Display Coordinate System (PSDCS)

acOCS 4 Object Coordinate System (OCS)

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE638

5793appB_final.qxd 8/22/05 1:38 AM Page 638

AcDimArcLengthSymbol
The following constants can be values for the SymbolPosition property of an AcadDimArcLength
object.

Constant Value

acSymAbove 1

acSymInFront 0

acSymNone 2

AcDimArrowheadType
The following constants can be values for these properties:

• The Arrowhead1Type and Arrowhead2Type properties of the dimension objects that sup-
port them (all except AcadDimOrdinate and AcadDimRadial)

• The Arrowhead1Type property of the AcadTolerance object

• The ArrowheadType property of the AcadDimRadial and AcadLeader objects

Constant Value Description

acArrowDefault 0 The arrowhead is the default determined by the dimension
style.

acArrowClosedBlank 1 The arrowhead is a closed empty triangle.

acArrowClosed 2 The arrowhead is a closed triangle with the dimension line
inside.

acArrowDot 3 The arrowhead is a large, filled circle.

acArrowArchTick 4 The arrowhead is a bold, oblique line.

acArrowOblique 5 The arrowhead is an oblique line.

acArrowOpen 6 The arrowhead is a narrow, open arrow.

acArrowOrigin 7 The arrowhead is a circle with the dimension line inside.

acArrowOrigin2 8 The arrowhead comprises two circles with the dimension line
inside.

acArrowOpen90 9 The arrowhead is an open arrow with an internal angle of
90 degrees.

acArrowOpen30 10 The arrowhead is an open arrow with an internal angle of
30 degrees.

acArrowDotSmall 11 The arrowhead is a small, filled circle.

acArrowDotBlank 12 The arrowhead is a large, empty circle.

acArrowSmall 13 The arrowhead is a small arrow.

acArrowBoxBlank 14 The arrowhead is an empty box.

acArrowBoxFilled 15 The arrowhead is a filled box.

Continued

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 639

5793appB_final.qxd 8/22/05 1:38 AM Page 639

Constant Value Description

acArrowDatumBlank 16 The arrowhead is a closed, empty, inward-pointing triangle.

acArrowDatumFilled 17 The arrowhead is a filled, inward-pointing triangle.

acArrowIntegral 18 The arrowhead is an integral sign.

acArrowNone 19 There is no arrowhead.

acArrowUserDefined 20 The arrowhead is defined by the user.

AcDimCenterType
The following constants can be values for the CenterType property of the AcadDimDiametric
and AcadDimRadial objects.

Constant Value Description

acCenterMark 0 Marks the center with a small cross (+)

acCenterLine 1 Marks the center as the intersection of two perpendicular axes

acCenterNone 2 No center mark

AcDimFit
The following constants can be values for the Fit property of the dimension objects that
support it (all except AcadDimOrdinate).

Constant Value Description

acTextAndArrows 0 Text and arrowheads are placed inside the extension lines.

acArrowsOnly 1 Arrowheads are placed inside the extension lines. The text is
placed outside the arrowheads.

acTextOnly 2 Text is placed inside the extension lines. The arrowheads are
placed outside the extension lines.

acBestFit 3 This option places the text and arrowheads in the best-fit loca-
tion given the space available.

AcDimFractionType
The following constants can be values for the FractionFormat property of the AcadDimension
object (and all derived objects) and the AcadTolerance object.

Constant Value Description

acHorizontal 0 Fraction displayed as “1_
2
” (with a horizontal divider)

acDiagonal 1 Fraction displayed as “1⁄2” (with a diagonal divider)

acNotStacked 2 Fraction displayed as “1/2”

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE640

5793appB_final.qxd 8/22/05 1:38 AM Page 640

AcDimHorizontalJustification
The following constants can be values for the HorizontalTextPosition property of the dimen-
sion objects that support it (all except AcadDimOrdinate).

Constant Value Description

acHorzCentered 0 The text is centered along the dimension line between
the extension lines.

acFirstExtensionLine 1 The text is next to the first extension line.

acSecondExtensionLine 2 The text is next to the second extension line.

acOverFirstExtension 3 The text is above and aligned with the first extension line.

acOverSecondExtension 4 The text is above and aligned with the second extension
line.

AcDimLUnits
The following constants can be values for the UnitsFormat property of the dimension objects
that support it (all except AcadDim3PointAngular and AcadDimAngular).

Constant Value Description

acDimLScientific 1 Displays measurements in scientific notation

acDimLDecimal 2 Displays measurements in decimal notation

acDimLEngineering 3 Displays measurements in feet and decimal inches

acDimLArchitectural 4 Displays measurements in feet, inches, and fractional
inches

acDimLFractional 5 Displays measurements in mixed-number (integer and
fractional)

acDimLWindowsDesktop 6 Displays measurements in Windows Desktop format

AcDimPrecision
The following constants can be values for these properties:

• The AltTolerancePrecision and AltUnitsPrecision properties of the dimension objects
that support them (all except AcadDim3PointAngular and AcadDimAngular)

• The PrimaryUnitsPrecision property of the dimension objects that support them (all
except AcadDim3PointAngular and AcadDimAngular) and the AcadTolerance object

• The TextPrecision property of the AcadDim3PointAngular and AcadDimAngular objects

• The TolerancePrecision property of the AcadDimension object (and all derived objects)

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 641

5793appB_final.qxd 8/22/05 1:38 AM Page 641

Constant Value Description

acDimPrecisionZero 0 Accurate to no decimal places (0.)

acDimPrecisionOne 1 Accurate to one decimal place (0.0)

acDimPrecisionTwo 2 Accurate to two decimal places (0.00)

acDimPrecisionThree 3 Accurate to three decimal places (0.000)

acDimPrecisionFour 4 Accurate to four decimal places (0.0000)

acDimPrecisionFive 5 Accurate to five decimal places (0.00000)

acDimPrecisionSix 6 Accurate to six decimal places (0.000000)

acDimPrecisionSeven 7 Accurate to seven decimal places (0.0000000)

acDimPrecisionEight 8 Accurate to eight decimal places (0.00000000)

AcDimTextMovement
The following constants can be values for the TextMovement property of the AcadDimension
object (and all derived objects).

Constant Value Description

acDimLineWithText 0 The dimension line follows the text.

acMoveTextAddLeader 1 The text moves independently of the dimension line, with
a leader drawn from the text to the dimension line.

acMoveTextNoLeader 2 The text moves independently of the dimension line, with
no leader drawn from the text to the dimension line.

AcDimToleranceJustify
The following constants can be values for the ToleranceJustification property of the
AcadDimension object (and all derived objects).

Constant Value Description

acTolBottom 0 Displays the bottom tolerance value at the same level as the
dimension text

acTolMiddle 1 Displays tolerance values half-size level with the dimension text

acTolTop 2 Displays the top tolerance value at the same level as the dimension
text

AcDimToleranceMethod
The following constants can be values for the ToleranceDisplay property of the AcadDimension
object (and all derived objects).

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE642

5793appB_final.qxd 8/22/05 1:38 AM Page 642

Constant Value Description

acTolNone 0 No tolerance values to be displayed with dimension text.

acTolSymmetrical 1 Use this constant to display tolerances when the positive and
negative values are the same (e.g., 5.0 ± 0.2).

acTolDeviation 2 Use this constant to display tolerances when the positive and
negative values are not the same. The positive value is displayed
over the negative value.

acTolLimits 3 This constant incorporates tolerance values into the dimension
value and displays the maximum dimension over the minimum.

acTolBasic 4 Basic draws a box around the dimension text, which is often
used to indicate theoretically exact dimensions.

AcDimUnits
The following constants can be values for the AltUnitsFormat property of the dimension
objects that support it (all except AcadDim3PointAngular and AcadDimAngular).

Constant Value Description

acDimScientific 1 Displays measurements in scientific notation

acDimDecimal 2 Displays measurements in decimal notation

acDimEngineering 3 Displays measurements in feet and decimal inches

acDimArchitecturalStacked 4 Displays measurements in feet, inches, and stacked
(e.g., 1⁄2) fractional inches

acDimFractionalStacked 5 Displays measurements in mixed-number notation,
integers, and stacked (e.g., 1⁄2) fractions

acDimArchitectural 6 Displays measurements in feet, inches, and fractional
inches

acDimFractional 7 Displays measurements in mixed-number (integer and
fractional) notation

acDimWindowsDesktop 8 Displays measurements in Windows Desktop format

AcDimVerticalJustification
The following constants can be values for the VerticalTextPosition property of the
AcadDimension object (and all derived objects) and the AcadLeader object.

Constant Value Description

acVertCentered 0 Centers the dimension text between the extension lines

acAbove 1 Places the dimension text above the dimension line except when
the dimension line isn’t horizontal and text inside the extension
lines is forced horizontal

acOutside 2 Places the dimension text on the side of the dimension line
farthest from the defining points

acJIS 3 Places the dimension text to conform to Japanese Industrial Stan-
dards (JIS)

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 643

5793appB_final.qxd 8/22/05 1:38 AM Page 643

AcDrawingAreaSCMCommand
The following constants can be values for the SCMCommandMode property of the
AcadPreferencesUser object.

Constant Value Description

acEnter 0 Disables the Command shortcut menu. As a result, right-
clicking in the drawing area when a command is in progress
issues Enter.

acEnableSCMOptions 1 Enables the Command shortcut menu only when options
are currently available from the command-line prompt.
In a command-line prompt, options are enclosed in square
brackets. If no options are available, right-clicking issues
Enter.

acEnableSCM 2 Enables the Command shortcut menu.

AcDrawingAreaSCMDefault
The following constants can be values for the SCMDefaultMode property of the
AcadPreferencesUser object.

Constant Value Description

acRepeatLastCommand 0 Disables the Default shortcut menu. As a result, right-
clicking in the drawing area when no objects are selected
and no commands are in progress issues Enter, which
repeats the last issued command.

acSCM 1 Enables the Default shortcut menu.

AcDrawingAreaSCMEdit
The following constants can be values for the SCMEditMode property of the
AcadPreferencesUser object.

Constant Value Description

acEdRepeatLastCommand 0 Disables the Edit shortcut menu. As a result, right-clicking
in the drawing area when one or more objects are selected
and no commands are in progress issues Enter, which
repeats the last issued command.

acEdSCM 1 Enables the Edit shortcut menu.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE644

5793appB_final.qxd 8/22/05 1:38 AM Page 644

AcDrawingDirection
The following constants can be values for the DrawingDirection property of the AcadMText
object.

Constant Value Description

acLeftToRight 1 Text written from left to right

acRightToLeft 2 Reserved for future use

acTopToBottom 3 Text written from top to bottom

acBottomToTop 4 Reserved for future use

acByStyle 5 Reserved for future use

AcDynamicBlockReferenceProperty
The following constants can be values for the UnitsType property of an
AcadDynamicBlockReferenceProperty object.

Constant Value

acAngular 1

acArea 3

acDistance 2

acNoUnits 0

AcEntityName
The following constants can be values for the EntityName property of the AcadEntity object.

Constant Value Description

ac3dFace 1 Acad3DFace object

ac3dPolyline 2 Acad3DPolyline object

ac3dSolid 3 Acad3DSolid object

acArc 4 AcadArc object

acAttribute 5 AcadAttribute object

acAttributeReference 6 AcadAttributeReference object

acBlockReference 7 AcadBlockReference object

acCircle 8 AcadCircle object

acDimAligned 9 AcadDimAligned object

acDimAngular 10 AcadDimAngular object

acDimDiametric 12 AcadDimDiametric object

Continued

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 645

5793appB_final.qxd 8/22/05 1:38 AM Page 645

Constant Value Description

acDimOrdinate 13 AcadDimOrdinate object

acDimRadial 14 AcadDimRadial object

acDimRotated 15 AcadDimRotated object

acEllipse 16 AcadEllipse object

acHatch 17 AcadHatch object

acLeader 18 AcadLeader object

acLine 19 AcadLine object

acMtext 21 AcadMText object

acPoint 22 AcadPoint object

acPolyline 23 AcadPolyline object

acPolylineLight 24 AcadLWPolyline object

acPolymesh 25 AcadPolygonMesh object

acRaster 26 AcadRasterImage object

acRay 27 AcadRay object

acRegion 28 AcadRegion object

acShape 29 AcadShape object

acSolid 30 AcadSolid object

acSpline 31 AcadSpline object

acText 32 AcadText object

acTolerance 33 AcadTolerance object

acTrace 34 AcadTrace object

acPViewport 35 AcadPViewport object

acXline 36 AcadXline object

acGroup 37 AcadGroup object

acMInsertBlock 38 AcadMInsertBlock object

acPolyfaceMesh 39 AcadPolyfaceMesh object

acMLine 40 AcadMLine object

acDim3PointAngular 41 AcadDim3PointAngular object

acExternalReference 42 AcadExternalReference object

acTable 43 AcadTable object

acDimArcLength 44 AcadDimArcLength object

acDimRadialLarge 45 AcadDimRadialLarge object

AcExtendOption
The following constants can be supplied as the value for the third parameter of the
IntersectWith method of the AcadEntity object and those derived objects that support it
(all except AcadPolygonMesh and AcadPViewport).

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE646

5793appB_final.qxd 8/22/05 1:38 AM Page 646

Constant Value Description

acExtendNone 0 Doesn’t extend either object

acExtendThisEntity 1 Extends the base object

acExtendOtherEntity 2 Extends the object passed as an argument

acExtendBoth 3 Extends both objects

AcGradientPatternType
The following constants can be values for the HatchObjectType property of the Hatch object.
They may also be used as the PatternType parameter value of an AddHatch method.

Constant Value

acPredefinedGradient 0

acUserDefinedGradient 1

AcGridLineType
The following can be values for the GridLineType parameter of the GetGridColor,
GetGridLineWeight, and GetGridVisibility methods of an AcadTable or AcadTableStyle
object. Also, they can be values for the GridLineTypes parameter of the SetGridColor,
SetGridLineWeight, and SetGridVisibility methods of an AcadTable or AcadTableStyle
object.

Constant Value Description

acHorzBottom 4 Top or bottom horizontal grid line, based on the flow direction

acHorzInside 2 All horizontal grid lines, excluding the top and bottom lines

acHorzTop 1 Top or bottom horizontal grid line, based on the flow direction

acInvalidGridLine 0 An invalid grid line

acVertInside 16 All the vertical grid lines, excluding the farthest-left and
farthest-right grid lines

acVertLeft 8 Farthest-left grid line

acVertRight 32 Farthest-right grid line

AcHatchObjectType
These constants specify the type of Hatch.

Constant Value Description

acHatchObject 0 Classic

acGradientObject 1 Gradient

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 647

5793appB_final.qxd 8/22/05 1:38 AM Page 647

AcHatchStyle
The following constants can be values for the HatchStyle property of the AcadHatch object.

Constant Value Description

acHatchStyleNormal 0 Specifies standard style or normal. This option hatches
inward from the outermost area boundary. If AutoCAD
encounters an internal boundary, it turns off hatching until
it encounters another boundary.

acHatchStyleOuter 1 Fills the outermost areas only. This style also hatches
inward from the area boundary, but it turns off hatching if
it encounters an internal boundary and doesn’t turn it back
on again.

acHatchStyleIgnore 2 Ignores internal structure. This option hatches through all
internal objects.

AcHorizontalAlignment
The following constants can be values for the HorizontalAlignment property of the
AcadAttribute, AcadAttributeReference, and AcadText objects.

Constant Value Description

acHorizontalAlignmentLeft 0 Aligns the attribute, attribute reference, or text at
the left, the bottom edge of the text being on the
baseline.

acHorizontalAlignmentCenter 1 Aligns the attribute, attribute reference, or text at
the center, the bottom edge of the text being on the
baseline.

acHorizontalAlignmentRight 2 Aligns the attribute, attribute reference, or text at
the right, the bottom edge of the text being on the
baseline.

acHorizontalAlignmentAligned 3 The attribute, attribute reference, or text is aligned
according to the points held in the InsertionPoint
and TextAlignmentPoint properties.

acHorizontalAlignmentMiddle 4 Aligns text at the middle. This isn’t the same as
acHorizontalAlignmentCenter, because the middle
is defined as the midpoint between the top and
bottom limits, the bottom referring to a position
below the baseline.

acHorizontalAlignmentFit 5 The attribute, attribute reference, or text is aligned
to fit to the points held in the InsertionPoint and
TextAlignmentPoint properties.

AcInsertUnits
The following constants can be values for the ADCInsertUnitsDefaultSource and
ADCInsertUnitsDefaultTarget properties of the AcadPreferencesUser object.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE648

5793appB_final.qxd 8/22/05 1:38 AM Page 648

Constant Value Description

acInsertUnitsUnitless 0 No units

acInsertUnitsInches 1 Inches

acInsertUnitsFeet 2 Feet

acInsertUnitsMiles 3 Miles

acInsertUnitsMillimeters 4 Millimeters

acInsertUnitsCentimeters 5 Centimeters

acInsertUnitsMeters 6 Meters

acInsertUnitsKilometers 7 Kilometers

acInsertUnitsMicroinches 8 Microinches

acInsertUnitsMils 9 Mils

acInsertUnitsYards 10 Yards

acInsertUnitsAngstroms 11 Angstrom units

acInsertUnitsNanometers 12 Nanometers

acInsertUnitsMicrons 13 Microns (micrometers)

acInsertUnitsDecimeters 14 Decimeters

acInsertUnitsDecameters 15 Decameters

acInsertUnitsHectometers 16 Hectometers

acInsertUnitsGigameters 17 Gigameters

acInsertUnitsAstronomicalUnits 18 Astronomical units

acInsertUnitsLightYears 19 Light years

acInsertUnitsParsecs 20 Parsecs

AcISOPenWidth
The following constants can be values for the ISOPenWidth property of the AcadHatch object.

Constant Value Description

acPenWidthUnk –1 Unknown or nonstandard pen width

acPenWidth013 13 13⁄100th of a millimeter

acPenWidth018 18 18⁄100th of a millimeter

acPenWidth025 25 25⁄100th of a millimeter

acPenWidth035 35 35⁄100th of a millimeter

acPenWidth050 50 50⁄100th of a millimeter

acPenWidth070 70 70⁄100th of a millimeter

acPenWidth100 100 1 millimeter

acPenWidth140 140 1.4 millimeters

acPenWidth200 200 2 millimeters

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 649

5793appB_final.qxd 8/22/05 1:38 AM Page 649

AcKeyboardAccelerator
The following constants can be values for the KeyboardAccelerator property of the
AcadPreferencesUser object.

Constant Value Description

acPreferenceClassic 0 Uses the AutoCAD classic keyboard

acPreferenceCustom 1 Uses the Windows standard keyboard

AcKeyboardPriority
The following constants can be values for the KeyboardPriority property of the
AcadPreferencesUser object.

Constant Value Description

acKeyboardRunningObjSnap 0 Object snaps are strictly adhered to when typing
in coordinates.

acKeyboardEntry 1 Keyboard entry values are strictly adhered to
when typing in coordinates.

acKeyboardEntryExceptScripts 2 Keyboard entry values are strictly adhered to
when typing in coordinates. However, when coor-
dinates are entered through a script, running
object snaps are adhered to.

AcLeaderType
The following constants can be values for the Type property of the AcadLeader object.

Constant Value Description

acLineNoArrow 0 A line with no arrow

acSplineNoArrow 1 A spline with no arrow

acLineWithArrow 2 A line with an arrow

acSplineWithArrow 3 A spline with an arrow

AcLineSpacingStyle
The following constants can be values for the LineSpacingStyle property of the AcadMText object.

Constant Value Description

acLineSpacingStyleAtLeast 1 Allows the spacing between different lines of text to
adjust automatically, based on the height of the
largest character in a line of text

acLineSpacingStyleExactly 2 Forces the line spacing to be the same size for all the
lines in the text regardless of formatting overrides

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE650

5793appB_final.qxd 8/22/05 1:38 AM Page 650

AcLineWeight
The following constants can be values for these properties:

• The Lineweight property of the AcadEntity object (and all derived objects), the Acad-
DatabasePreferences, AcadGroup, and AcadLayer objects

• The DimensionLineweight property of the dimension objects that support it (all except
AcadDimOrdinate) and the AcadLeader object

• The ExtensionLineweight property of the dimension objects that support it (all except
AcadDimDiametric, AcadDimOrdinate, and AcadDimRadial)

Constant Value Description

acLnWtByLwDefault –3 Draws lines in the default lineweight.

acLnWtByBlock –2 Draws lines in the lineweight specified for the block (initial
value).

acLnWtByLayer –1 Draws lines in the lineweight specified for the layer.

acLnWt000 0 Plots with the thinnest lineweight available for the specified
plotting device. In model space, this is set with a width of
1 pixel.

acLnWt005 5 5⁄100 millimeter.

acLnWt009 9 9⁄100 millimeter or 1⁄4 point.

acLnWt013 13 13⁄100 millimeter or 5⁄1000 inch.

acLnWt015 15 15⁄100 millimeter.

acLnWt018 18 18⁄100 millimeter, 1⁄2 point, or Pen Size 0000.

acLnWt020 20 2⁄10 millimeter or Pen Size 000.

acLnWt025 25 1⁄4 millimeter, 1⁄100 inch, or 3⁄4 point.

acLnWt030 30 3⁄10 millimeter or Pen Size 00.

acLnWt035 35 35⁄100 millimeter, 1 point, or Pen Size 0.

acLnWt040 40 4⁄10 millimeter.

acLnWt050 50 1⁄2 millimeter or Pen Size 1

acLnWt053 53 53⁄100 millimeter or 11⁄2 points.

acLnWt060 60 6⁄10 millimeter or Pen Size 2.

acLnWt070 70 7⁄10 millimeter, 21⁄4 point, or Pen Size 21⁄2.

acLnWt080 80 8⁄10 millimeter or Pen Size 3.

acLnWt090 90 9⁄10 millimeter.

acLnWt100 100 1 millimeter or Pen Size 31⁄2.

acLnWt106 106 3 point.

acLnWt120 120 1.2 millimeters or Pen Size 4.

acLnWt140 140 1.4 millimeters.

acLnWt158 158 41⁄4 point.

acLnWt200 200 2 millimeters.

acLnWt211 211 6 point.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 651

5793appB_final.qxd 8/22/05 1:38 AM Page 651

AcLoopType
The following constants can be supplied as the value for the second parameter of the
InsertLoopAt method of the AcadHatch object.

Constant Value Description

acHatchLoopTypeDefault 0 The loop type hasn’t been specified.

acHatchLoopTypeExternal 1 The loop consists of external entities.

acHatchLoopTypePolyline 2 The hatch loop consists of a polyline.

acHatchLoopTypeDerived 4 The loop was derived by AutoCAD’s boundary tracer
from a picked point.

acHatchLoopTypeTextbox 8 The loop consists of a box around an existing text object.

AcMenuFileType
The following constants can be supplied as the value for the parameter of the Save method
of the AcadMenuGroup object or the second parameter for the property of the SaveAs method of
the AcadDocument and AcadMenuGroup objects.

Constant Value Description

acMenuFileCompiled 0 A compiled menu file (.mnc file type)

acMenuFileSource 1 A source menu file (.mns file type)

AcMenuGroupType
The following constants can be values for the Type property of the AcadMenuGroup object.

Constant Value Description

acBaseMenuGroup 0 A base menu group

acPartialMenuGroup 1 A partial menu group

AcMenuItemType
The following constants can be values for the Type property of the AcadPopupMenuItem object.

Constant Value Description

acMenuItem 0 Specifies a pop-up menu item

acMenuSeparator 1 Specifies a separator in a pop-up menu

acMenuSubMenu 2 Specifies a pop-up submenu

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE652

5793appB_final.qxd 8/22/05 1:38 AM Page 652

AcMLineJustification
The following constants can be values for the Justification property of an AcadMLine object.
To access this property, use the IAcadMLine2 interface.

Constant Value

acBottom 2

acTop 0

acZero 1

AcOleQuality
The following constants can be values for the OleQuality property of the
AcadPreferencesOutput object.

Constant Value Description

acOQLineArt 0 Specifies line art quality (e.g., for an embedded spreadsheet)

acOQText 1 Specifies text quality (e.g., for an embedded Word document)

acOQGraphics 2 Specifies graphics quality (e.g., for an embedded pie chart)

acOQPhoto 3 Specifies photograph quality

acOQHighPhoto 4 High-quality photograph

AcPatternType
The following constants can be values for the PatternType property of the AcadHatch object,
and they can also be supplied as the value for the second parameter of the AddHatch method
of the AcadBlock, AcadModelSpace, and AcadPaperSpace objects and the SetPattern method of
the AcadHatch object.

Constant Value Description SetPattern method

acHatchPatternTypeUserDefined 0 Defines a pattern of lines using the current
linetype

acHatchPatternTypePreDefined 1 Selects the pattern name from those defined in
the acad.pat file

acHatchPatternTypeCustomDefined 2 Selects the pattern name from a .pat file other
than the acad.pat file

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 653

5793appB_final.qxd 8/22/05 1:38 AM Page 653

AcPlotPaperUnits
The following constants can be values for the PaperUnits property of the AcadLayout and
AcadPlotConfiguration objects.

Constant Value Description

acInches 0 Units specified in inches

acMillimeters 1 Units specified in millimeters

acPixels 2 Units specified in pixels

AcPlotPolicy
The following constants can be values for the PlotPolicy property of the AcadPreferencesOutput
object.

Constant Value Description

acPolicyNamed 0 No association is made between color and plot-style name. Plot-
style name for each object is set to the default defined in the
DefaultPlotStyleForObjects property.

acPolicyLegacy 1 An object’s plot-style name is associated with its color per the
naming convention ACIx, where x is the color number of the
object according to the AutoCAD color index.

AcPlotRotation
The following constants can be values for the PlotRotation property of the AcadLayout and
AcadPlotConfiguration objects.

Constant Value Description

ac0degrees 0 These values are read counterclockwise relative to the X-axis.

ac90degrees 1

ac180degrees 2

ac270degrees 3

AcPlotScale
The following constants can be values for the StandardScale property of the AcadLayout and
AcadPlotConfiguration objects.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE654

5793appB_final.qxd 8/22/05 1:38 AM Page 654

Constant Value Description

acScaleToFit 0 Scale to fit

ac1_128in_1ft 1 1/128′′ : 1′

ac1_64in_1ft 2 1/64′′ : 1′

ac1_32in_1ft 3 1/32′′ : 1′

ac1_16in_1ft 4 1/16′′ : 1′

ac3_32in_1ft 5 3/32′′ : 1′

ac1_8in_1ft 6 1/8′′ : 1′

ac3_16in_1ft 7 3/16′′ : 1′

ac1_4in_1ft 8 1/4′′ : 1′

ac3_8in_1ft 9 3/8′′ : 1′

ac1_2in_1ft 10 1/2′′ : 1′

ac3_4in_1ft 11 3/4′′ : 1′

ac1in_1ft 12 1′′ : 1′

ac3in_1ft 13 3′′ : 1′

ac6in_1ft 14 6′′ : 1′

ac1ft_1ft 15 1′ : 1′

ac1_1 16 1 : 1

ac1_2 17 1 : 2

ac1_4 18 1 : 4

ac1_8 19 1 : 8

ac1_10 20 1: 10

ac1_16 21 1: 16

ac1_20 22 1 : 20

ac1_30 23 1 : 30

ac1_40 24 1 : 40

ac1_50 25 1 : 50

ac1_100 26 1: 100

ac2_1 27 2 : 1

ac4_1 28 4 : 1

ac8_1 29 8 : 1

ac10_1 30 10 : 1

ac100_1 31 100 : 1

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 655

5793appB_final.qxd 8/22/05 1:38 AM Page 655

AcPlotType
The following constants can be values for the PlotType property of the AcadLayout and
AcadPlotConfiguration objects.

Constant Value Description

acDisplay 0 Prints everything that is in the current display.

acExtents 1 Prints everything that falls within the extents of the currently selected
space.

acLimits 2 Prints everything that is in the limits of the current space.

acView 3 Prints the view named by the ViewToPlot property.

acWindow 4 Prints everything in the window specified by the SetWindowToPlot
method.

acLayout 5 Prints everything that falls within the margins of the specified paper
size with the origin being calculated from the 0,0 coordinate location
in the Layout tab. This option isn’t available when printing from model
space.

AcPolylineType
The following constants can be values for the Type property of the AcadPolyline object.

Constant Value Description

acSimplePoly 0 Specifies a simple polyline

acFitCurvePoly 1 Specifies a fit curve polyline

acQuadSplinePoly 2 Specifies a quadratic B-spline polyline

acCubicSplinePoly 3 Specifies a cubic B-spline polyline

AcPolymeshType
The following constants can be values for the Type property of the AcadPolygonMesh object.

Constant Value Description

acSimpleMesh 0 Specifies a simple mesh with no surface fitting or smoothing

acQuadSurfaceMesh 5 Specifies a quadratic B-spline surface fit

acCubicSurfaceMesh 6 Specifies a cubic B-spline surface fit

acBezierSurfaceMesh 8 Specifies a Bezier surface fit

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE656

5793appB_final.qxd 8/22/05 1:38 AM Page 656

AcPreviewMode
The following constants can be values for the DisplayPlotPreview property of the AcadPlot object.

Constant Value Description

acPartialPreview 0 Shows an accurate representation of the effective plot area rela-
tive to the paper size. The final location of the affected area on
the paper depends on the plotter.

acFullPreview 1 Displays the drawing on the screen as it will appear when
plotted on paper. Because this requires a regeneration of the
drawing, it’s slower than a partial preview. It’s faster than the
normal plot regeneration because AutoCAD performs no vec-
tor sorting or optimization.

AcPrinterSpoolAlert
The following constants can be values for the PrinterSpoolAlert property of the
AcadPreferencesOutput object.

Constant Value Description

acPrinterAlwaysAlert 0 Always alert and log errors.

acPrinterAlertOnce 1 Alert only the first error, and log all errors.

acPrinterNeverAlertLogOnce 2 Never alert, but log all errors.

acPrinterNeverAlert 3 Never alert, and don’t log any errors.

AcProxyImage
The following constants can be values for the ProxyImage property of the
AcadPreferencesOpenSave object.

Constant Value Description

acProxyNotShow 0 Don’t show the proxy image.

acProxyShow 1 Show the proxy image.

acProxyBoundingBox 2 Show the proxy image in a bounding box.

AcRegenType
The following constants can be supplied as the value for the parameter of the Regen method of
the AcadDocument object.

Constant Value Description

acActiveViewport 0 Regenerates drawing in active viewport only

acAllViewports 1 Regenerates drawing in all viewports

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 657

5793appB_final.qxd 8/22/05 1:38 AM Page 657

AcRotationAngle
The following constants can be values for the TextRotation parameter of the SetTextRotation
property of an AcadTable object. Also, they can be return values of the GetTextRotation
method of an AcadTable object.

Constant Value

acDegrees000 –0

acDegrees090 –1

acDegrees180 –2

acDegrees270 –3

acDegreesUnknown –1

AcRowType
The following constants can be values according to the following list.

Method Parameter Object(s)

GetAlignment RowType AcadTable, AcadTableStyle

GetBackgroundColor RowType AcadTable, AcadTableStyle

GetBackgroundColorNone RowType AcadTable, AcadTableStyle

GetColor RowType AcadTableStyle

GetGridColor RowType AcadTable, AcadTableStyle

GetGridLineWeight RowType AcadTable, AcadTableStyle

GetGridVisibility RowType AcadTable, AcadTableStyle

GetTextHeight RowType AcadTable, AcadTableStyle

GetTextStyle RowType AcadTable, AcadTableStyle

GetContentColor RowType AcadTable

SetGridColor RowTypes AcadTable, AcadTableStyle

SetGridLineWeight RowTypes AcadTable, AcadTableStyle

SetGridVisibility RowTypes AcadTable, AcadTableStyle

Also, they can be return values of the GetRowType method of an AcadTable object.

Constant Value

AcUnknown 0

acDataRow 1

acTitleRow 2

acHeaderRow 4

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE658

5793appB_final.qxd 8/22/05 1:38 AM Page 658

AcSaveAsType
The following constants can be values for the SaveAsType property of the
AcadPreferencesOpenSave object.

Constant Value Description

acUnknown –1 This constant is read-only. The drawing type is unknown or
invalid.

acR12_dxf 1 AutoCAD Release12/LT2 DXF (*.dxf).

acR13_dwg 4 AutoCAD Release13/LT95 DWG (*.dwg).

acR13_dxf 5 AutoCAD Release13/LT95 DXF (*.dxf).

acR14_dwg 8 AutoCAD Release14/LT97 DWG (*.dwg).

acR14_dxf 9 AutoCAD Release14/LT97 DXF (*.dxf).

acR15_dwg 12 AutoCAD 2000 DWG (*.dwg).

ac2000_dwg 12 AutoCAD 2000 DWG (*.dwg).

acR15_dxf 13 AutoCAD 2000 DXF (*.dxf).

ac2000_dxf 13 AutoCAD 2000 DXF (*.dxf).

acR15_Template 14 AutoCAD 2000 Drawing Template File (*.dwt).

ac2000_Template 14 AutoCAD 2000 Drawing Template File (*.dwt).

acR18 24 AutoCAD 2004 DWG (*.dwg)

ac2004_dwg 24 AutoCAD 2004 DWG (*.dwg)

acNative 24 A synonym for the current drawing release format. If you want
your application to save the drawing in the format of whatever
version of AutoCAD the application is running on, then use the
acNative format.

acR18_dxf 25 AutoCAD 2004 DXF (*.dxf)

ac2004_dxf 25 AutoCAD 2004 DXF (*.dxf)

acR18_Template 26 AutoCAD 2004 Drawing Template File (*.dwt).

ac2004_Template 26 AutoCAD 2004 Drawing Template File (*.dwt).

■Note The acR13_dwg, acR13_dxf, acR14_dwg, and acR14_dxf options aren’t available in AutoCAD 2006.

AcSelect
The following constants can be supplied as the value for the first parameter in either of the
Select or SelectByPolygon methods of the AcadSelectionSet object.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 659

5793appB_final.qxd 8/22/05 1:38 AM Page 659

Constant Value Description

acSelectionSetWindow 0 Selects all entities completely inside a rec-
tangular area whose corners are defined by
Point1 and Point2 (Select method only).

acSelectionSetCrossing 1 Selects objects within and crossing a rectangular
area whose corners are defined by Point1 and
Point2 (Select method only).

acSelectionSetFence 2 Selects all entities crossing a selection fence. The
fence is defined by coordinates in PointList.
The fence mode is similar to CrossingPolygon
mode except that AutoCAD doesn’t close the last
vector of the fence, and a fence can cross itself.
The fence isn’t affected by the PICKADD system
variable (SelectByPolygon method only).

acSelectionSetPrevious 3 Selects the most recent selection set. This mode
is ignored if you switch between paper and model
space and attempt to use the selection set
(Select method only).

acSelectionSetLast 4 Selects the most recently created visible entity
(Select method only).

acSelectionSetAll 5 Selects all entities (Select method only).

acSelectionSetWindowPolygon 6 Selects objects within a polygon defined by
PointList (SelectByPolygon method only).

acSelectionSetCrossingPolygon 7 Selects objects within and crossing an area defined
by a polygon. Use PointList to define the coordi-
nates of the polygon. AutoCAD will close the last
vector of the polygon. A polygon definition can’t
cross itself (SelectByPolygon method only).

AcSelectType
The following constants can be values for the SelType parameter of the SelectSubRegion
method of an AcadTable object.

Constant Value Description

acTableSelectCrossing 2 Cross-selection type

acTableSelectWindow 1 Window-selection type

AcShadePlot
The following constants can be values for the ShadePlot property of an Pviewport object.

Constant Value Description

acShadePlotAsDisplayed 0 Model space view plots the same way it is displayed.

acShadePlotWireframe 1 Model space view plots as wireframe regardless of display.

acShadePlotHidden 2 Model space view plots with hidden lines removed,
regardless of display.

acShadePlotRendered 3 Model space view plots as rendered regardless of display.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE660

5793appB_final.qxd 8/22/05 1:38 AM Page 660

AcTableDirection
The following constants can be values for the FlowDirection property of an AcadTable and
AcadTableStyle object.

Constant Value Description

acTableBottomToTop 1 Table flow direction of bottom to top

acTableTopToBottom 0 Table flow direction of top to bottom

AcTableStyleOverrides
The following constants can be values for TableStyleOverrides property of an AcadTable object.

Constant Value Description

acTitleSuppressed 1 Indicates title-suppressed table style override for
table object

acHeaderSuppressed 2 Indicates header-suppressed table style override
for table object

acFlowDirection 3 Indicates flow direction table style override for
table object

acHorzCellMargin 4 Indicates horizontal cell margin table style
override for table object

acVertCellMargin 5 Indicates vertical cell margin table style override
for table object

acTitleRowColor 6 Indicates title row color table style override for
table object

acHeaderRowColor 7 Indicates header row color table style override for
table object

acDataRowColor 8 Indicates data row color table style override for
table object

acTitleRowFillNone 9 Indicates title row no fill table style override for
table object

acHeaderRowFillNone 10 Indicates header row no fill table style override for
table object

acDataRowFillNone 11 Indicates data row no fill table style override for
table object

acTitleRowFillColor 12 Indicates title row fill color table style override for
table object

acHeaderRowFillColor 13 Indicates header row fill color table style override
for table object

acDataRowFillColor 14 Indicates data row fill color table style override for
table object

acTitleRowAlignment 15 Indicates title row alignment table style override
for table object

acHeaderRowAlignment 16 Indicates header row alignment table style
override for table object

Continued

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 661

5793appB_final.qxd 8/22/05 1:38 AM Page 661

Constant Value Description

acDataRowAlignment 17 Indicates data row alignment table style override
for table object

acTitleRowTextStyle 18 Indicates title row text style table style override for
table object

acHeaderRowTextStyle 19 Indicates header row text style table style override
for table object

acDataRowTextStyle 20 Indicates data row text style table style override for
table object

acTitleRowTextHeight 21 Indicates title row text height table style override
for table object

acHeaderRowTextHeight 22 Indicates header row text height table style
override for table object

acDataRowTextHeight 23 Indicates data row text height table style override
for table object

acTitleHorzTopColor 40 Indicates title row horizontal top gridline color
table style override for table object

acTitleHorzInsideColor 41 Indicates title row horizontal inside gridline color
table style override for table object

acTitleHorzBottomColor 42 Indicates title row horizontal bottom gridline color
table style override for table object

acTitleVertLeftColor 43 Indicates title row vertical left gridline color table
style override for table object

acTitleVertInsideColor 44 Indicates title row vertical inside gridline color
table style override for table object

acTitleVertRightColor 45 Indicates title row vertical right gridline color table
style override for table object

acHeaderHorzTopColor 46 Indicates header row horizontal top gridline color
table style override for table object

acHeaderHorzInsideColor 47 Indicates header row horizontal inside gridline
color table style override for table object

acHeaderHorzBottomColor 48 Indicates header row horizontal bottom gridline
color table style override for table object

acHeaderVertLeftColor 49 Indicates header row vertical left gridline color
table style override for table object

acHeaderVertInsideColor 50 Indicates header row vertical inside gridline color
table style override for table object

acHeaderVertRightColor 51 Indicates header row vertical right gridline color
table style override for table object

acDataHorzTopColor 52 Indicates data row horizontal top gridline color
table style override for table object

acDataHorzInsideColor 53 Indicates data row horizontal inside gridline color
table style override for table object

acDataHorzBottomColor 54 Indicates data row horizontal bottom gridline
color table style override for table object

acDataVertLeftColor 55 Indicates data row vertical left gridline color table
style override for table object

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE662

5793appB_final.qxd 8/22/05 1:38 AM Page 662

Constant Value Description

acDataVertInsideColor 56 Indicates data row vertical inside gridline color
table style override for table object

acDataVertRightColor 57 Indicates data row vertical right gridline color
table style override for table object

acTitleHorzTopLineWeight 70 Indicates title row horizontal top gridline
lineweight table style override for table object

acTitleHorzInsideLineWeight 71 Indicates title row horizontal inside gridline
lineweight table style override for table object

acTitleHorzBottomLineWeight 72 Indicates title row horizontal bottom gridline
lineweight table style override for table object

acTitleVertLeftLineWeight 73 Indicates title row vertical left gridline lineweight
table style override for table object

acTitleVertInsideLineWeight 74 Indicates title row vertical inside gridline
lineweight table style override for table object

acTitleVertRightLineWeight 75 Indicates title row vertical right gridline lineweight
table style override for table object

acHeaderHorzTopLineWeight 76 Indicates header row horizontal top gridline
lineweight table style override for table object

acHeaderHorzInsideLineWeight 77 Indicates header row horizontal inside gridline
lineweight table style override for table object

acHeaderHorzBottomLineWeight 78 Indicates header row horizontal bottom gridline
lineweight table style override for table object

acHeaderVertLeftLineWeight 79 Indicates header row vertical left gridline
lineweight table style override for table object

acHeaderVertInsideLineWeight 80 Indicates header row vertical inside gridline
lineweight table style override for table object

acHeaderVertRightLineWeight 81 Indicates header row vertical right gridline
lineweight table style override for table object

acDataHorzTopLineWeight 82 Indicates data row horizontal top gridline
lineweight table style override for table object

acDataHorzInsideLineWeight 83 Indicates data row horizontal inside gridline
lineweight table style override for table object

acDataHorzBottomLineWeight 84 Indicates data row horizontal bottom gridline
lineweight table style override for table object

acDataVertLeftLineWeight 85 Indicates data row vertical left gridline lineweight
table style override for table object

acDataVertInsideLineWeight 86 Indicates data row vertical inside gridline
lineweight table style override for table object

acDataVertRightLineWeight 87 Indicates data row vertical right gridline lineweight
table style override for table object

acTitleHorzTopVisibility 100 Indicates title row horizontal top gridline visibility
table style override for table object

acTitleHorzInsideVisibility 101 Indicates title row horizontal inside gridline
visibility table style override for table object

Continued

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 663

5793appB_final.qxd 8/22/05 1:38 AM Page 663

Constant Value Description

acTitleHorzBottomVisibility 102 Indicates title row horizontal bottom gridline
visibility table style override for table object

acTitleVertLeftVisibility 103 Indicates title row vertical left gridline visibility
table style override for table object

acTitleVertInsideVisibility 104 Indicates title row vertical inside gridline visibility
table style override

acTitleVertRightVisibility 105 Indicates title row vertical right gridline visibility
table style override for table object

acHeaderHorzTopVisibility 106 Indicates header row horizontal top gridline
visibility table style override for table object

acHeaderHorzInsideVisibility 107 Indicates header row horizontal inside gridline
visibility table style override for table object

acHeaderHorzBottomVisibility 108 Indicates header row horizontal bottom gridline
visibility table style override for table object

acHeaderVertLeftVisibility 109 Indicates header row vertical left gridline visibility
table style override for table object

acHeaderVertInsideVisibility 110 Indicates header row vertical inside gridline
visibility table style override for table object

acHeaderVertRightVisibility 111 Indicates header row vertical right gridline
visibility table style override for table object

acDataHorzTopVisibility 112 Indicates data row horizontal top gridline visibility
table style override for table object

acDataHorzInsideVisibility 113 Indicates data row horizontal inside gridline
visibility table style override for table object

acDataHorzBottomVisibility 114 Indicates data row horizontal bottom gridline
visibility table style override for table object

acDataVertLeftVisibility 115 Indicates data row vertical left gridline visibility
table style override for table object

acDataVertInsideVisibility 116 Indicates data row vertical inside gridline visibility
table style override for table object

acDataVertRightVisibility 117 Indicates data row vertical right gridline visibility
table style override for table object

acCellAlignment 130 Indicates alignment table style override for table
cell

acCellBackgroundFillNone 131 Indicates background no fill table style override for
table cell

acCellBackgroundColor 132 Indicates background color table style override for
table cell

acCellContentColor 133 Indicates content color table style override for
table cell

acCellTextStyle 134 Indicates text style table style override for table cell

acCellTextHeight 135 Indicates text height table style override for table
cell

acCellTopGridColor 136 Indicates top-edge grid color table style override
for table cell

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE664

5793appB_final.qxd 8/22/05 1:38 AM Page 664

Constant Value Description

acCellRightGridColor 137 Indicates right-edge grid color table style override
for table cell

acCellBottomGridColor 138 Indicates bottom-edge grid color table style
override for table cell

acCellLeftGridColor 139 Indicates left-edge grid color table style override
for table cell

acCellTopGridLineWeight 140 Indicates top-edge grid lineweight table style
override for table cell

acCellRightGridLineWeight 141 Indicates right-edge grid lineweight table style
override for table cell

acCellBottomGridLineWeight 142 Indicates bottom-edge grid lineweight table style
override for table cell

acCellLeftGridLineWeight 143 Indicates left-edge grid lineweight table style
override for table cell

acCellTopVisibility 144 Indicates top-edge grid visibility table style
override for table cell

acCellRightVisibility 145 Indicates right-edge grid visibility table style
override for table cell

acCellBottomVisibility 146 Indicates bottom-edge grid visibility table style
override for table cell

acCellLeftVisibility 147 Indicates left-edge grid visibility table style over-
ride for table cell

AcTextFontStyle
The following constants and their combinations can be values for the TextFontStyle property
of the AcadPreferencesDisplay object.

Constant Value Description

acFontRegular 0 Specifies a normal font style

acFontItalic 1 Specifies italic style

acFontBold 2 Specifies bold style

acFontBoldItalic 3 Specifies both bold and italic styles

AcTextGenerationFlag
The following constants can be values for the TextGenerationFlag property of the AcadAttribute,
AcadAttributeReference, and AcadText objects.

Constant Value Description

acTextFlagBackward 2 Text to be displayed backward

acTextFlagUpsideDown 4 Text to be displayed upside-down

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 665

5793appB_final.qxd 8/22/05 1:38 AM Page 665

AcToolbarDockStatus
The following constants can be values for the DockStatus property of the AcadToolbar object,
or they can be supplied as the value for the parameter of the Dock method of the AcadToolbar
object.

Constant Value Description

acToolbarDockTop 0 Toolbar docked at the top of the window

acToolbarDockBottom 1 Toolbar docked at the bottom of the window

acToolbarDockLeft 2 Toolbar docked at the left of the window

acToolbarDockRight 3 Toolbar docked at the right of the window

acToolbarFloating 4 Toolbar not docked at all

AcToolbarItemType
The following constants can be values for the Type property of the AcadToolbarItem object.

Constant Value Description

acToolbarButton 0 Specifies a generic button

acToolbarSeparator 1 Specifies a toolbar separator

acToolbarControl 2 Specifies a control button

acToolbarFlyout 3 Specifies a flyout button

AcUnits
The following constants can be supplied as the value for the second parameter of the
DistanceToReal and RealToString methods of the AcadUtility object.

Constant Value Description

acDefaultUnits –1 Displays measurements in default units

acScientific 1 Displays measurements in scientific notation

acDecimal 2 Displays measurements in decimal notation

acEngineering 3 Displays measurements in feet and decimal inches

acArchitectural 4 Displays measurements in feet, inches, and fractional inches

acFractional 5 Displays measurements in mixed-number (integer and frac-
tional) notation

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE666

5793appB_final.qxd 8/22/05 1:38 AM Page 666

AcVerticalAlignment
The following constants can be values for the VerticalAlignment property of the AcadAttribute,
AcadAttributeReference, and AcadText objects.

Constant Value Description

acVerticalAlignmentBaseline 0 Align on the baseline. Note that the baseline isn’t
the same as the bottom. The baseline is defined at
a level partway between the bottom position and
the middle position.

acVerticalAlignmentBottom 1 Align at the bottom.

acVerticalAlignmentMiddle 2 Align at the middle. This is midway between the
bottom and the top positions.

acVerticalAlignmentTop 3 Align at the top.

AcViewportScale
The following constants can be values for the StandardScale property of the AcadPViewport
object.

While these constants are still accepted as parameters for the StandardScale property of
the AcadPViewport object (and are listed in AutoCAD’s VBA Help file), they are not the constants
shown in the VBA Object Browser. Also, they are not shown in the AutoListMembers tool. Those
constants are named acVp1 through acVp100, and their value is 1 greater than the numeral of
their name. For values 1 through 29, the description scale corresponds to the scale listed.

Constant Value Description

acVpScaleToFit 0 Scale to fit

acVpCustomScale 1 Custom scale

acVp1_1 2 1 : 1

acVp1_2 3 1 : 2

acVp1_4 4 1 : 4

acVp1_8 5 1 : 8

acVp1_10 6 1: 10

acVp1_16 7 1: 16

acVp1_20 8 1 : 20

acVp1_30 9 1 : 30

acVp1_40 10 1 : 40

acVp1_50 11 1 : 50

acVp1_100 12 1: 100

acVp2_1 13 2 : 1

acVp4_1 14 4 : 1

acVp8_1 15 8 : 1

Continued

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 667

5793appB_final.qxd 8/22/05 1:38 AM Page 667

Constant Value Description

acVp10_1 16 10 : 1

acVp100_1 17 100 : 1

acVp1_128in_1ft 18 1⁄128′′ : 1′
acVp1_64in_1ft 19 1⁄64′′ : 1′
acVp1_32in_1ft 20 1⁄32′′ : 1′
acVp1_16in_1ft 21 1⁄16′′ : 1′
acVp1_32in_1ft 22 3⁄32′′ : 1′
acVp1_8in_1ft 23 1⁄8′′ : 1′
acVp1_16in_1ft 24 3⁄16′′ : 1′
acVp1_4in_1ft 25 1⁄4′′ : 1′
acVp1_8in_1ft 26 3⁄8′′ : 1′
acVp1_2in_1ft 27 1⁄2′′ : 1′
acVp1_4in_1ft 28 3⁄4′′ : 1′
acVp1in_1ft 29 1′′ : 1′
acVp29 30 11⁄2′′ : 1′
acVp3in_1ft 30 3′′ : 1′
acVp6in_1ft 31 6′′ : 1′
acVp1ft_1ft 32 1′ : 1′

AcViewportSplitType
The following constants can be supplied as the value for the parameter of the Split method of
the AcadViewport object.

Constant Value Description

acViewport2Horizontal 0 Splits the viewport horizontally into two equal sections.

acViewport2Vertical 1 Splits the viewport vertically into two equal sections.

acViewport3Left 2 Splits the viewport into two vertical halves. The left half is
split horizontally into two equal sections.

acViewport3Right 3 Splits the viewport into two vertical halves. The right half
is split horizontally into two equal sections.

acViewport3Horizontal 4 Splits the viewport horizontally into three equal sections.

acViewport3Vertical 5 Splits the viewport vertically into three equal sections.

acViewport3Above 6 Splits the viewport into two horizontal halves. The top
half will be a single viewport. The bottom half is split
vertically into two equal sections.

acViewport3Below 7 Splits the viewport into two horizontal halves. The
bottom half will be a single viewport. The top half is split
vertically into two equal sections.

acViewport4 8 Splits the viewport horizontally and vertically into four
equal sections.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE668

5793appB_final.qxd 8/22/05 1:38 AM Page 668

AcWindowState
The following constants can be values for the WindowState property of the AcadApplication
and AcadDocument objects.

Constant Value Description

acNorm 1 Neither maximized nor minimized

acMin 2 Minimized window

acMax 3 Maximized window

AcXRefDemandLoad
The following constants can be values for the XrefDemandLoad property of the AcadPreference-
sOpenSave object.

Constant Value Description

acDemandLoadDisabled 0 Turns off demand loading. The entire drawing is
loaded.

acDemandLoadEnabled 1 Turns on demand loading and improves AutoCAD
performance. Other users can’t edit the file while it’s
being referenced.

acDemandLoadEnabledWithCopy 2 Turns on demand loading but uses a copy of the ref-
erenced drawing. Other users can edit the original
drawing.

AcZoomScaleType
The following constants can be supplied as the value for the second parameter of the
ZoomScale method of the AcadApplication object.

Constant Value Description

acZoomScaledAbsolute 0 The scale factor is applied relative to the drawing
limits.

acZoomScaledRelative 1 The scale factor is applied relative to the current
view.

acZoomScaledRelativePSpace 2 The scale factor is applied relative to paper space
units.

APPENDIX B ■ AUTOCAD CONSTANTS REFERENCE 669

5793appB_final.qxd 8/22/05 1:38 AM Page 669

5793appB_final.qxd 8/22/05 1:38 AM Page 670

System Variables

AutoCAD provides several system variables that let the user control interface elements such
as object snap mode, grids, and limits. This appendix explains all of AutoCAD’s system vari-
ables. It also demonstrates how to use the GetVariable and SetVariable methods to set and
check a system variable’s value. Each successive release of AutoCAD had introduced new sys-
tem variables, modified existing ones, and removed others. Therefore, before you use a system
variable, research it to determine whether your code needs to check the AutoCAD version to
use the right system variable.

You can also use certain properties of AutoCAD objects to access some of these variables.
This appendix lists those properties.

The GetVariable Method
Use the Document object’s GetVariable method to retrieve a system variable’s value. This method
has the following syntax:

CurrentValue = DocumentObject.GetVariable(VariableName)

This method returns the value of the system variable you specify in the VariableName param-
eter. This parameter is a String.

This example retrieves and displays the ANGDIR system variable’s current value.
This variable’s value determines whether AutoCAD measures angles counterclockwise or

clockwise with respect to the current OCS.

Public Sub GetANGDIR()

Dim varAngleDirection As Variant

varAngleDirection = ThisDrawing.GetVariable("ANGDIR")

If varAngleDirection = 0 Then

MsgBox "Angles are measured counterclockwise"

Else

MsgBox "Angles are measured clockwise"

End If

End Sub

671

A P P E N D I X C

■ ■ ■

5793appC_final.qxd 8/22/05 2:43 AM Page 671

The SetVariable Method
Use the Document object’s SetVariable method to set a system variable. It has the following
syntax:

DocumentObject.SetVariable VariableName, VariableValue

Table C-1 explains this method’s parameters.

Table C-1. The SetVariable Method’s Parameters

Name Data Type Description

VariableName String The name of the system variable

VariableValue Variant The system variable’s new value

This example lets the user set the ANGDIR system variable’s value:

Public Sub SetANGDIR()

Dim strResponse As String

On Error Resume Next

strResponse = InputBox("Please specify the direction that angles should " & _

"be measured (Clockwise or Counterclockwise)", , "Counterclockwise")

If UCase(strResponse) = "COUNTERCLOCKWISE" Then

ThisDrawing.SetVariable "ANGDIR", 0

ElseIf UCase(strResponse) = "CLOCKWISE" Then

ThisDrawing.SetVariable "ANGDIR", 1

ElseIf strResponse = "" Then

MsgBox "You cancelled, the system variable setting has not been changed"

Else

MsgBox "The value you typed has not been recognized - " & _

"the system variable setting has not been changed"

End If

End Sub

A
Table C-2 explains the system variables that start with A.

Table C-2. The A System Variables

Name Description

ACADLSPASDOC Controls whether the acad.lsp file is loaded into every open drawing or
just the first one in the session. This variable’s value is also stored in the
LoadAcadLspInAllDocuments property of the AcadPreferencesSelection object.

ACADPREFIX Stores the directory path specified by the ACAD environment variable, including
path separators where necessary.

APPENDIX C ■ SYSTEM VARIABLES672

5793appC_final.qxd 8/22/05 2:43 AM Page 672

Name Description

ACADVER Stores the AutoCAD version number. AutoCAD 2000 = 15.0, AutoCAD 2000i = 15.05,
AutoCAD 2002 = 15.06, AutoCAD 2004 = 16.0, AutoCAD 2005 = 16.1, and
AutoCAD 2006 = 16.2. This variable’s value is also stored in the Version property
of the AcadApplication object.

ACISOUTVER Controls the ACIS version of .sat files created using the ACISOUT command.

ADCSTATE Determines whether DesignCenter is active.

AFLAGS Sets attribute flags for ATTDEF bit code. This variable’s value is also stored in the
Mode property of the AcadAttribute object.

ANGBASE Sets the base angle 0 with respect to the current UCS.

ANGDIR Sets the positive angle direction from angle 0 with respect to the current UCS.

APBOX Turns the AutoSnap aperture box on or off. This variable’s value is also stored in
the AutoSnapAperture property of the AcadPreferencesDrafting object.

APERTURE Sets object snap target height in pixels. This variable’s value is also stored in the
AutoSnapApertureSize property of the AcadPreferencesDrafting object.

AREA Stores the last area computed by AREA, LIST, or DBLIST.

ASSISTSTATE Indicates whether the Info palette that displays Quick Help is active.

ATTDIA Controls whether -INSERT uses a dialog box when entering attribute values.

ATTMODE Controls the display of attributes.

ATTREQ Determines whether INSERT uses default attribute settings during the insertion
of blocks.

AUDITCTL Controls whether AUDIT creates an audit report (.adt) file.

AUNITS Sets angle units.

AUPREC Sets the number of decimal places for angular units.

AUTOSNAP Controls the AutoSnap marker, tooltip, and magnet. This variable’s value is also
stored in the AutoSnapMagnet, AutoSnapMarker, AutoSnapToolTip, and
AutoTrackTooltip properties of the AcadPreferencesDrafting object.

B
Table C-3 explains the system variables that start with B.

Table C-3. The B System Variables

Name Description

BACKGROUNDPLOT Controls whether background plotting is turned on or off for plotting
and publishing. By default, background plotting is turned off for plotting
and on for publishing.

BACKZ Stores the current viewport’s back clipping plane offset from the target
plane.

BACTIONCOLOR Sets the text color of actions in the Block Editor. Valid values include
BYLAYER, BYBLOCK, and an integer from 1 to 255. Valid values for True
Colors are a string of integers each from 1 to 255 separated by commas
and preceded by RGB.

Continued

APPENDIX C ■ SYSTEM VARIABLES 673

5793appC_final.qxd 8/22/05 2:43 AM Page 673

Table C-3. Continued

Name Description

BDEPENDENCYHIGHLIGHT Controls whether dependent objects are dependency highlighted when
a parameter, action, or grip is selected in the Block Editor.

BGRIPOBJCOLOR Sets the color of grips in the Block Editor. Valid values include BYLAYER,
BYBLOCK, and an integer from 1 to 255. Valid values for True Colors are a
string of integers each from 1 to 255 separated by commas and preceded
by RGB.

BGRIPOBJSIZE Sets the display size of custom grips in the Block Editor relative to the
screen display. Valid values include an integer from 1 to 255. Use the REGEN
command to update the display size of custom grips in the Block Editor.

BINDTYPE Controls how Xref names are handled when binding them or when
editing them in place.

BLIPMODE Controls whether marker blips are visible.

BLOCKEDITLOCK Disallows opening of the Block Editor and editing of dynamic block
definitions. When BLOCKEDITLOCK is set to 1, double-clicking a dynamic
block in a drawing opens the Reference Edit dialog box. If the block
contains attributes, double-clicking the block reference opens the
Enhanced Attribute Editor.

BLOCKEDITOR Indicates whether the Block Editor is open.

BPARAMETERCOLOR Sets the color of parameters in the Block Editor. Valid values include
BYLAYER, BYBLOCK, and an integer from 1 to 255. Valid values for True
Colors are a string of integers each from 1 to 255 separated by commas
and preceded by RGB.

BPARAMETERFONT Sets the font used for parameters and actions in the Block Editor. You
can specify either a TrueType font or an SHX font (for example, Verdana
or Verdana.ttf). You must add the .shx extension to specify an AutoCAD
SHX font. When specifying an Asian Big Font, use the following naming
convention: an SHX file followed by a comma (,), followed by the Big
Font file name (for example, Simplex.shx,Bigfont.shx).

BPARAMETERSIZE Sets the size of parameter text and features in the Block Editor relative to
the screen display. Valid values include an integer from 1 to 255.

BTMARKDISPLAY Controls whether value set markers are displayed for dynamic block
references.

BVMODE Controls how objects that are made invisible for the current visibility
state are displayed in the Block Editor.

C
Table C-4 explains the system variables that start with C.

Table C-4. The C System Variables

Name Description

CALCINPUT Controls whether mathematical expressions and global constants are
evaluated in text and numeric entry boxes of windows and dialog boxes.

CDATE Sets the calendar’s date and time.

CECOLOR Sets the color of new objects.

APPENDIX C ■ SYSTEM VARIABLES674

5793appC_final.qxd 8/22/05 2:43 AM Page 674

Name Description

CELTSCALE Sets the linetype scaling factor for the current object.

CELTYPE Sets the linetype of new objects.

CELWEIGHT Sets the lineweight of new objects.

CENTERMT Controls how grips stretch multiline text that is centered horizontally.
CENTERMT does not apply to stretching multiline text by using the ruler in
the In-Place Text Editor.

CHAMFERA Sets the first chamfer distance.

CHAMFERB Sets the second chamfer distance.

CHAMFERC Sets the chamfer length.

CHAMFERD Sets the chamfer angle.

CHAMMODE Sets the input method by which chamfers are created.

CIRCLERAD Sets the default radius for a circle.

CLAYER Sets the current layer.

CLEANSCREENSTATE Stores a value that indicates whether AutoCAD is in Clean Screen mode.

CLISTATE Stores a value that indicates whether the command window is hidden or
displayed.

CMDACTIVE Stores the bit code that indicates whether an ordinary command, a
transparent command, a script, or a dialog box is active.

CMDDIA Controls whether the command line or dialog boxes are used in certain
commands.

CMDECHO Controls whether prompts and input are echoed during the AutoLISP
Command function.

CMDINPUTHISTORYMAX Sets the maximum number of previous input values that are stored for a
prompt in a command. Display of the history of user input is controlled
by the INPUTHISTORYMODE system variable.

CMDNAMES Displays the names of active and transparent commands.

CMLJUST Sets the justification of a multiline.

CMLSCALE Sets the width of a multiline.

CMLSTYLE Sets the style of a multiline.

COMPASS Controls whether the 3-D compass is switched on or off for the current
viewport.

COORDS Controls when coordinates are updated on the status line.

CPLOTSTYLE Sets the current plot style for new objects.

CPROFILE Stores the current profile’s name.

CROSSINGAREACOLOR Controls the color of the selection area during crossing selection. The
valid range is 1 to 255. The SELECTIONAREA system variable must be on.

CTAB Returns the name of the current Model tab or Layout tab in the drawing.

CTABLESTYLE Sets the name of the current table style.

CURSORSIZE Determines the size of the crosshairs as a percentage of the screen size.
This variable’s value is also stored in the CursorSize property of the
AcadPreferencesDisplay object.

CVPORT Sets the current viewport’s identification number.

APPENDIX C ■ SYSTEM VARIABLES 675

5793appC_final.qxd 8/22/05 2:43 AM Page 675

D
Table C-5 explains the system variables that start with D.

Table C-5. The D System Variables

Name Description

DATE Stores the current date and time.

DBCSTATE Stores the state of the dbConnect Manager, active or not active.

DBMOD Indicates the status of drawing modifications using bit code.

DCTCUST Displays the current custom dictionary’s path and file name.

DCTMAIN Displays the current main dictionary’s file name.

DEFLPLSTYLE Specifies the default plot style for new layers. This variable’s value is also stored in
the DefaultPlotStyleForLayer property of the AcadPreferencesOutput object.

DEFPLSTYLE Specifies the default plot style for new objects. This variable’s value is also stored in
the DefaultPlotStyleForObjects property of the AcadPreferencesOutput object.

DELOBJ Controls whether any objects used to create other objects are retained or deleted
from the drawing database.

DEMANDLOAD Specifies the conditions that cause AutoCAD to demand load a third-party
application, if a drawing contains objects created in that application. This
variable’s value is also stored in the DemandLoadARXApp property of the
AcadPreferencesOpenSave object.

DIASTAT Stores the exit method of the most recently used dialog box.

DIMADEC Controls the number of places of precision displayed for angular dimensions.

DIMALT Controls the display of alternate units in dimensions.

DIMALTD Controls the number of decimal places in alternate units.

DIMALTF Controls the multiplier for alternate units.

DIMALTRND Determines the rounding of alternate units.

DIMALTTD Sets the number of decimal places for tolerance values in a dimension’s alternate
units.

DIMALTTZ Toggles suppression of zeros in tolerance values.

DIMALTU Sets the units format for alternate units of all dimension style family members
except angular.

DIMALTZ Controls the suppression of zeros for alternate unit dimension values.

DIMAPOST Specifies a text prefix and/or suffix to the alternate dimension measurement for all
types of dimensions except angular.

DIMASO Controls the associativity of dimension objects (replaced by DIMASSOC in AutoCAD
2002 and later versions).

DIMASSOC Controls the associativity of dimension objects.

DIMASZ Controls the size of dimension line and leader line arrowheads.

DIMATFIT Determines how dimension text and arrows are arranged when space is not
sufficient to place both within the extension lines.

DIMAUNIT Sets the units format for angular dimensions.

DIMAZIN Suppresses zeros for angular dimensions.

APPENDIX C ■ SYSTEM VARIABLES676

5793appC_final.qxd 8/22/05 2:43 AM Page 676

Name Description

DIMBLK Sets the arrowhead block displayed at the ends of dimension lines or leader lines.

DIMBLK1 Sets the arrowhead for the first end of the dimension line when DIMSAH is on.

DIMBLK2 Sets the arrowhead for the second end of the dimension line when DIMSAH is on.

DIMCEN Controls drawing of circle or arc center marks and centerlines by DIMCENTER,
DIMDIAMETER, and DIMRADIUS.

DIMCLRD Assigns colors to dimension lines, arrowheads, and dimension leader lines.

DIMCLRE Assigns colors to dimension extension lines.

DIMCLRT Assigns colors to dimension text.

DIMDEC Sets the number of decimal places displayed for a dimension’s primary units.

DIMDLE Sets the distance the dimension line extends beyond the extension line when
oblique strokes are drawn instead of arrowheads.

DIMDLI Controls the spacing of dimension lines in baseline dimensions.

DIMDSEP Specifies a single character decimal separator to use when creating dimensions
whose unit format is decimal.

DIMEXE Specifies how far to extend the extension line beyond the dimension line.

DIMEXO Specifies how far extension lines are offset from origin points.

DIMFIT Obsolete. Replaced by DIMATFIT and DIMTMOVE. Retained for backward
compatibility only.

DIMFRAC Sets the fraction format when DIMLUNIT is set to 4 or 5.

DIMGAP Sets the distance around dimension text when the dimension line breaks to
accommodate dimension text.

DIMJUST Controls the horizontal positioning of dimension text.

DIMLDRBLK Specifies the arrow type for leaders.

DIMLFAC Sets a scale factor for linear dimension measurements.

DIMLIM Generates dimension limits as the default text.

DIMLUNIT Sets units for all dimension types except angular.

DIMLWD Assigns lineweight to dimension lines.

DIMLWE Assigns lineweight to extension lines.

DIMPOST Specifies a text prefix and/or suffix to the dimension measurement.

DIMRND Rounds all dimensioning distances to the specified value.

DIMSAH Controls the display of dimension line arrowhead blocks.

DIMSCALE Sets the overall scale factor applied to dimensioning variables that specify sizes,
distances, or offsets.

DIMSD1 Controls suppression of the first dimension line.

DIMSD2 Controls suppression of the second dimension line.

DIMSE1 Suppresses display of the first extension line.

DIMSE2 Suppresses display of the second extension line.

DIMSHO Controls redefinition of dimension objects while dragging.

DIMSOXD Suppresses drawing of dimension lines outside the extension lines.

Continued

APPENDIX C ■ SYSTEM VARIABLES 677

5793appC_final.qxd 8/22/05 2:43 AM Page 677

Table C-5. Continued

Name Description

DIMSTYLE Shows the current dimension style.

DIMTAD Controls the vertical position of text in relation to the dimension line.

DIMTDEC Sets the number of decimal places to display in tolerance values for a dimension’s
primary units.

DIMTFAC Sets a scale factor used to calculate the height of text for dimension fractions and
tolerances.

DIMTIH Controls the position of dimension text inside the extension lines for all dimension
types except ordinate.

DIMTIX Draws text between extension lines.

DIMTM When DIMTOL or DIMLIM is on, sets the minimum tolerance limit for dimension text.

DIMTMOVE Sets dimension text movement rules.

DIMTOFL Controls whether a dimension line is drawn between the extension lines even if
text is placed outside.

DIMTOH Controls the position of dimension text outside the extension lines.

DIMTOL Appends tolerances to dimension text.

DIMTOLJ Sets the vertical justification for tolerance values relative to the nominal
dimension text.

DIMTP When DIMTOL or DIMLIM is on, sets the maximum tolerance limit for dimension text.

DIMTSZ Specifies the size of oblique strokes drawn instead of arrowheads for linear, radial,
and diameter dimensioning.

DIMTVP Controls the vertical position of dimension text above or below the dimension line.

DIMTXSTY Specifies the text style of the dimension.

DIMTXT Specifies the height of dimension text, unless the current text style has a fixed
height.

DIMTZIN Controls the suppression of zeros in tolerance values.

DIMUNIT Obsolete. Replaced by DIMLUNIT and DIMFRAC. Retained for backward compatibility
only.

DIMUPT Controls options for user-positioned text.

DIMZIN Controls the suppression of zeroes in the primary unit value.

DISPSILH Controls display of silhouette curves of solid objects in Wireframe mode. This
variable’s value is also stored in the DisplaySilhouette property of the
AcadDatabasePreferences object.

DISTANCE Stores the distance computed by DIST.

DONUTID Sets the default for the inside diameter of a torus (donut).

DONUTOD Sets the default for the outside diameter of a torus (donut).

DRAGMODE Controls the display of objects being dragged.

DRAGP1 Sets the sampling rate for regen-drag input.

DRAGP2 Sets the sampling rate for fast-drag input.

DRAWORDERCTL Controls the display order of overlapping objects. Use this setting to improve the
speed of editing operations in large drawings. The commands that are affected by
inheritance are BREAK, FILLET, HATCH, HATCHEDIT, EXPLODE, TRIM, JOIN, PEDIT, and
OFFSET.

APPENDIX C ■ SYSTEM VARIABLES678

5793appC_final.qxd 8/22/05 2:43 AM Page 678

Name Description

DRSTATE Determines whether the Drawing Recovery window is active.

DTEXTED Specifies the user interface for editing single-line text.

DWGCHECK Determines whether a drawing was last edited by a product other than AutoCAD.

DWGCODEPAGE Stores the same value as SYSCODEPAGE (retained for compatibility reasons).

DWGNAME Stores the drawing name as entered by the user.

DWGPREFIX Stores the drive or directory prefix for the drawing.

DWGTITLED Indicates whether the current drawing has been named.

DYNDIGRIP Controls which dynamic dimensions are displayed during grip stretch editing. The
DYNDIVIS system variable must be set to 2, which displays all dynamic dimensions.
The DYNMODE system variable turns Dynamic Input features on and off.

DYNDIVIS Controls how many dynamic dimensions are displayed during grip stretch editing.
DYNDIGRIP controls which dynamic dimensions are displayed during grip stretch
editing. The DYNMODE system variable turns Dynamic Input features on and off.

DYNMODE Turns Dynamic Input features on and off. When all features are on, the context
governs what is displayed. When DYNMODE is set to a negative value, the Dynamic
Input features are not visible, but the setting is stored. Click the Dyn button in the
status bar to set DYNMODE to the corresponding positive value. When DYNMODE is set
to anything but 0, you can turn off all features temporarily by holding down the
temporary override key, F12. Settings are on the Dynamic Input tab in the Drafting
Settings dialog box.

DYNPICOORDS Controls whether pointer input uses relative or absolute format for coordinates.
The DYNMODE system variable turns Dynamic Input features on and off.

DYNPIFORMAT Controls whether pointer input uses polar or Cartesian format for coordinates.
This setting applies only to a second or next point. The DYNMODE system variable
turns Dynamic Input features on and off.

DYNPIVIS Controls when pointer input is displayed. The DYNMODE system variable turns
Dynamic Input features on and off.

DYNPROMPT Controls display of prompts in Dynamic Input tooltips. The DYNMODE system
variable turns Dynamic Input features on and off.

DYNTOOLTIPS Controls which tooltips are affected by tooltip appearance settings.

E
Table C-6 explains the system variables that start with E.

Table C-6. The E System Variables

Name Description

EDGEMODE Controls how TRIM and EXTEND determine cutting and boundary edges.

ELEVATION Stores the current elevation relative to the current UCS for the current viewport.

ENTERPRISEMENU Stores the CUI file name (if defined), including the path for the file name.

EXPERT Controls whether certain prompts are issued.

EXPLMODE Controls whether EXPLODE supports nonuniformly scaled (NUS) blocks.

Continued

APPENDIX C ■ SYSTEM VARIABLES 679

5793appC_final.qxd 8/22/05 2:43 AM Page 679

Table C-6. Continued

Name Description

EXTMAX Stores the upper-right point of the drawing extents.

EXTMIN Stores the lower-left point of the drawing extents.

EXTNAMES Sets the parameters for named object names (such as linetypes and layers)
stored in symbol tables. This variable’s value is also stored in the
AllowLongSymbolNames property of the AcadDataBasePreferences object.

F
Table C-7 explains the system variables that start with F.

Table C-7. The F System Variables

Name Description

FACETRATIO Controls the aspect ratio of faceting for cylindrical and conic ACIS solids.

FACETRES Adjusts the smoothness of shaded and rendered objects and objects with hidden
lines removed. This variable’s value is also stored in the RenderSmoothness
property of the AcadDatabasePreferences object.

FIELDDISPLAY Controls whether fields are displayed with a gray background. The background is
not plotted.

FIELDEVAL Controls how fields are updated. The setting is stored as a bit code using the sum
of the values.

FILEDIA Suppresses display of file dialog boxes.

FILLETRAD Stores the current fillet radius.

FILLMODE Specifies whether multilines, traces, solids, hatches (including solid-fill hatches),
and wide polylines are filled in. This variable’s value is also stored in the
SolidFill property of the AcadDatabasePreferences object.

FONTALT Stores the alternate font that will be used when the specified font file can’t be
located.

FONTMAP Specifies the font mapping file that will be used.

FRONTZ Stores the front clipping plane offset from the target plane for the current
viewport.

FULLOPEN Indicates whether the current drawing is partially open or fully open.

FULLPLOTPATH Controls whether the full path of the drawing file is sent to the plot spooler.

APPENDIX C ■ SYSTEM VARIABLES680

5793appC_final.qxd 8/22/05 2:43 AM Page 680

G
Table C-8 explains the system variables that start with G.

Table C-8. The G System Variables

Name Description

GFANG Specifies the angle for a gradient fill.

GFCLR1 Specifies the color for a one-color gradient fill or the first color for a two-color
gradient fill.

GFCLR2 Specifies the second color for a two-color gradient fill.

GFCLRLUM Makes the color a tint (mixed with white) or a shade (mixed with black) in a one-
color gradient fill.

GFCLRSTATE Specifies whether a gradient fill uses one color or two colors.

GFNAME Specifies the pattern of a gradient fill.

GFSHIFT Specifies whether the pattern in a gradient fill is centered or is shifted up and to
the left.

GRIDMODE Specifies whether the grid is turned on or off. This variable’s value is also stored
in the GridOn property of the AcadPViewport and AcadViewport objects.

GRIDUNIT Specifies the grid spacing for the current viewport.

GRIPBLOCK Controls the assignment of grips in blocks. This variable’s value is also stored in
the DisplayGripsWithinBlocks property of the AcadPreferencesSelection object.

GRIPCOLOR Controls the color of nonselected grips, which are drawn as box outlines. This
variable’s value is also stored in the GripColorUnselected property of the
AcadPreferencesSelection object.

GRIPDYNCOLOR Controls the color of custom grips for dynamic blocks. The valid range is 1 to 255.

GRIPHOT Controls the color of selected grips, which are drawn as filled boxes. This variable’s
value is also stored in the GripColorSelected property of the
AcadPreferencesSelection object.

GRIPHOVER Controls the fill color of a grip when the cursor pauses over the grip.

GRIPOBJLIMIT Determines the maximum number of objects on which grips will be displayed.

GRIPS Controls the use of selection set grips for the Stretch, Move, Rotate, Scale, and
Mirror grip modes. This variable’s value is also stored in the DisplayGrips property
of the AcadPreferencesSelection object.

GRIPSIZE Sets the size of the grip box in pixels. This variable’s value is also stored in the
GripSize property of the AcadPreferencesSelection object.

GRIPTIPS Controls the display of grip tips when the cursor hovers over grips on custom
objects that support grip tips.

APPENDIX C ■ SYSTEM VARIABLES 681

5793appC_final.qxd 8/22/05 2:43 AM Page 681

H
Table C-9 explains the system variables that start with H.

Table C-9. The H System Variables

Name Description

HALOGAP Specifies the distance to shorten a haloed line.

HANDLES Reports whether applications can access object handles.

HIDEPRECISION Controls the accuracy of hides and shades.

HIDETEXT Specifies whether text objects created by the TEXT, DTEXT, or MTEXT command
are processed during a HIDE command.

HIGHLIGHT Controls object highlighting. This variable’s value does not affect objects
selected with grips.

HPANG Specifies the angle of the hatch pattern. This variable’s value is also stored
in the PatternAngle property of the AcadHatch object.

HPASSOC Controls whether hatch patterns and gradient fills are associative.

HPBOUND Controls the object type created by BHATCH and BOUNDARY.

HPDOUBLE Specifies hatch pattern doubling for user-defined patterns. This variable’s
value is also stored in the PatternDouble property of the AcadHatch object.

HPDRAWORDER Controls the draw order of hatches and fills. Stores the Draw Order setting
from the Hatch and Fill dialog box.

HPGAPTOL Treats a set of objects that almost enclose an area as a closed hatch boun-
dary. The default value, 0, specifies that the objects enclose the area, with
no gaps. Enter a value, in drawing units, from 0 to 5000 to set the maximum
size of gaps that can be ignored when the objects serve as a hatch boundary.

HPINHERIT Controls the hatch origin of the resulting hatch when using Inherit
Properties in HATCH and HATCHEDIT.

HPNAME Sets the default name for the hatch pattern. This variable’s value is also
stored in the PatternName property of the AcadHatch object.

HPOBJWARNING Sets the number of hatch boundary objects that can be selected before
displaying a warning message.

HPORIGIN Sets the hatch origin point for new hatch objects relative to the current user
coordinate system.

HPORIGINMODE Controls how HATCH determines the default hatch origin point.

HPSCALE HPINHERIT Specifies the scale factor for the hatch pattern. This variable’s value is also
stored in the PatternScale property of the AcadHatch object.

HPSEPARATE Controls whether HATCH creates a single hatch object or separate hatch
objects when operating on several closed boundaries.

HPSPACE Specifies the hatch pattern’s line spacing for user-defined simple patterns.
This variable’s value is also stored in the PatternSpace property of the
AcadHatch object.

HYPERLINKBASE Specifies the path used for all relative hyperlinks in the drawing.

APPENDIX C ■ SYSTEM VARIABLES682

5793appC_final.qxd 8/22/05 2:43 AM Page 682

I
Table C-10 explains the system variables that start with I.

Table C-10. The I System Variables

Name Description

IMAGEHLT Specifies whether the entire raster image or only the image frame is high-
lighted. This variable’s value is also stored in the ImageFrameHighlight
property of the AcadPreferencesDisplay object.

INDEXCTL Controls whether layer and spatial indexes are created and saved in
drawing files.

INETLOCATION Stores the Internet location used by BROWSER and the Browse the Web
dialog box. This variable’s value is also stored in the DefaultInternetURL
property of the AcadPreferencesFiles object.

INPUTHISTORYMODE Controls the content and location of the display of a history of user input.
The setting is stored as a bit code using the sum of the values.

INSBASE Stores the insertion base point set by BASE.

INSNAME Sets the default block name for INSERT.

INSUNITS Specifies a value for the drawing units, when a block is dragged from the
AutoCAD DesignCenter.

INSUNITSDEFSOURCE Sets the source content’s units value. This variable’s value is also stored
in the ADCInsertUnitsDefaultSource property of the AcadPreferencesUser
object.

INSUNITSDEFTARGET Sets the target drawing’s units value. This variable’s value is also stored
in the ADCInsertUnitsDefaultTarget property of the AcadPreferencesUser
object.

INTELLIGENTUPDATE Controls the graphics refresh rate. The default value is 20 frames per
second. If you encounter problems related to graphics generation or
timing, turn off the variable by setting it to 0. INTELLIGENTUPDATE works
by suppressing the graphics update until the timer expires. Subsequent
updates reset the timer. The performance improvement significantly
affects updates for scripts and AutoLISP graphics. Those using regular
AutoCAD commands will not see a noticeable difference in performance.

INTERSECTIONCOLOR Specifies the color of intersection polylines.

INTERSECTIONDISPLAY Specifies the display of intersection polylines.

ISAVEBAK Increases the speed of incremental saves for large drawings. This
variable’s value is also stored in the CreateBackup property of the
AcadPreferencesSaveOpen object.

ISAVEPERCENT Determines the amount of wasted space tolerated in a drawing file. This
variable’s value is also stored in the IncrementalSavePercent property of
the AcadPreferencesOpenSave object.

ISOLINES Specifies the number of isolines per surface on objects. This variable’s
value is also stored in the ContourLinesPerSurface property of the
AcadDatabasePreferences object.

APPENDIX C ■ SYSTEM VARIABLES 683

5793appC_final.qxd 8/22/05 2:43 AM Page 683

L
Table C-11 explains the system variables that start with L.

Table C-11. The L System Variables

Name Description

LASTANGLE Stores the end angle of the most recently drawn arc.

LASTPOINT Stores the last point drawn.

LASTPROMPT Stores the last string echoed to the command line.

LAYERFILTERALERT Deletes excessive layer filters to improve performance. When a drawing has
100 or more layer filters, and the number of layer filters exceeds the number
of layers, LAYERFILTERALERT provides a method for deleting layer filters to
improve performance.

LAYOUTREGENCTL Specifies how the display list is updated in the Model tab and Layout tabs.

LENSLENGTH Stores the length of the lens (in millimeters) used in perspective viewing for
the current viewport. This variable’s value is also stored in the LensLength
property of the AcadPViewport object.

LIMCHECK Controls the creation of objects outside the drawing limits.

LIMMAX Stores the upper-right drawing limits for the current space. This variable’s
value is also stored in the Limits property of the AcadDocument object.

LIMMIN Stores the lower-left drawing limits for the current space. This variable’s value
is also stored in the Limits property of the AcadDocument object.

LISPINIT In SDI mode, this specifies whether AutoLISP-defined functions and variables
are preserved when a new drawing is opened.

LOCALE Displays the ISO language code of the current AutoCAD version.

LOCALROOTPREFIX Stores the full path to the root folder where local customizable files were
installed.

LOCKUI Locks the position and size of toolbars and windows such as DesignCenter
and Properties palette. Locked toolbars and windows can still be opened and
closed and items can be added and deleted. To unlock them temporarily, hold
down Ctrl. A lock icon in the status bar tray indicates whether toolbars and
windows are locked. Right-click the icon to display locking options. The
setting is stored as a bit code using the sum of the values.

LOGFILEMODE Specifies whether the contents of the text window are written to a log file.
This variable’s value is also stored in the LogFileOn property of the
AcadPreferencesOpenSave object.

LOGFILENAME Specifies the path and name of the log file.

LOGFILEPATH Specifies the path for the log files for all drawings in a session. This variable’s
value is also stored in the LogFilePath property of the PreferencesFiles object.

LOGINNAME Displays the user’s login name when AutoCAD is loaded.

LTSCALE Sets the scale factor for the global linetype.

LUNITS Sets linear units.

LUPREC Sets the number of decimal places displayed for linear units.

LWDEFAULT Sets the lineweight’s default value.

LWDISPLAY Controls whether the lineweight is displayed in the Model or Layout tab.

APPENDIX C ■ SYSTEM VARIABLES684

5793appC_final.qxd 8/22/05 2:43 AM Page 684

Name Description

LWSCALE Controls whether the lineweight is scaled with the rest of the geometry when
a layout is printed. This variable’s value is also stored in the ScaleLineweights
property of the AcadLayout and AcadPlotConfiguration objects.

LWUNITS Controls whether lineweight units are displayed in inches or millimeters.

M
Table C-12 explains the system variables that start with M.

Table C-12. The M System Variables

Name Description

MAXACTVP Sets the maximum number of viewports that can be active at one time.
This variable’s value is also stored in the MaxActiveViewports property of
the AcadDatabasePreferences object.

MAXSORT Sets the maximum number of symbol names or block names that can be
sorted.

MBUTTONPAN Controls the behavior of the third button or wheel on the pointing device.

MEASUREINIT Sets the initial drawing units as English or metric.

MEASUREMENT Sets drawing units as English or metric for the current drawing only.

MENUCTL Controls the page switching of the screen menu.

MENUECHO Sets menu echo and prompt control bits.

MENUNAME Stores the menu file name, including the path.

MIRRTEXT Controls how MIRROR reflects text.

MODEMACRO Displays a text string on the status line.

MSOLESCALE Controls the size of an OLE object with text that is pasted into model space.
MSOLESCALE controls only the initial size. If the scale factor value is changed,
existing OLE objects in the drawing are not affected. Positive number scales
by value. Zero (0) scales by DIMSCALE value.

MTEXTED Sets the primary and secondary text editors to use for AcadMText objects.

MTEXTFIXED Controls the appearance of the Multiline Text Editor.

MTJIGSTRING Sets the content of the sample text displayed at the cursor location when
the MTEXT command is started.

MYDOCUMENTSPREFIX Stores the full path to the My Documents folder for the user currently
logged on.

APPENDIX C ■ SYSTEM VARIABLES 685

5793appC_final.qxd 8/22/05 2:43 AM Page 685

N
Table C-13 explains the system variables that start with N.

Table C-13. The N System Variables

Name Description

NOMUTT Controls whether message display (muttering) is suppressed in AutoCAD.

O
Table C-14 explains the system variables that start with O.

Table C-14. The O System Variables

Name Description

OBSCUREDCOLOR Specifies the color of obscured lines.

OBSCUREDLTYPE Specifies the linetype of obscured lines.

OFFSETDIST Sets the default offset distance.

OFFSETGAPTYPE Controls how to fill in gaps resulting from offsetting individual polyline
segments.

OLEFRAME Controls whether a frame is displayed and plotted on all OLE objects in the
drawing. The frame on an OLE object must be displayed in order for grips to
be visible.

OLEHIDE Controls the display of OLE objects in AutoCAD.

OLEQUALITY Controls the default quality level for embedded OLE objects. This variable’s
value is also stored in the OLEQuality property of the AcadPreferencesOutput
object.

OLESTARTUP Controls whether to load an embedded OLE object’s source application when
plotting. This variable’s value is also stored in the OLELaunch property of the
AcadDatabasePreferences object.

ORTHOMODE Constrains cursor movement to perpendicular axes.

OSMODE Sets running object snap modes using bit codes. Specifies whether the line-
weight is scaled with the rest of the geometry when a layout is printed.

OSNAPCOORD Controls whether coordinates entered on the command line override running
object snaps. This variable’s value is also stored in the KeyboardPriority prop-
erty of the AcadPreferencesUser object.

OSNAPHATCH Controls whether object snaps ignore hatch objects. The default setting 0
improves performance.

OSNAPZ Controls whether object snaps are automatically projected onto a plane paral-
lel to the XY plane of the current UCS at the current elevation.

APPENDIX C ■ SYSTEM VARIABLES686

5793appC_final.qxd 8/22/05 2:43 AM Page 686

P
Table C-15 explains the system variables that start with P.

Table C-15. The P System Variables

Name Description

_PKSER Stores the AutoCAD license serial number (for example, 400-12345678).

PALETTEOPAQUE Controls whether windows can be made transparent.

PAPERUPDATE Controls the display of a warning dialog when you try to print a layout with a
paper size other than that specified for the plotter configuration file.

PDMODE Controls how to display point objects. See Chapter 8 for more details.

PDSIZE Sets the display size for point objects. See Chapter 8 for more details.

PEDITACCEPT Suppresses display of the Object Selected Is Not a Polyline prompt in PEDIT.

PELLIPSE Controls the ellipse type created with ELLIPSE.

PERIMETER Stores the last perimeter value computed by AREA, LIST, or DBLIST.

PFACEVMAX Sets the maximum number of vertices per face.

PICKADD Controls whether subsequent selections replace the current selection set or
add to it. This variable’s value is also stored in the PickAdd property of the
AcadPreferencesSelection object.

PICKAUTO Controls automatic windowing at the Select Objects prompt. This variable’s
value is also stored in the PickAuto property of the AcadPreferencesSelection
object.

PICKBOX Sets object selection target height. This variable’s value is also stored in the
PickBoxSize property of the AcadPreferencesSelection object.

PICKDRAG Controls the method of drawing a selection window. This variable’s value is
also stored in the PickDrag property of the AcadPreferencesSelection object.

PICKFIRST Controls whether you select objects before or after you issue a command.
This variable’s value is also stored in the PickFirst property of the
AcadPreferencesSelection object.

PICKSTYLE Controls the use of group selection and associative hatch selection.

PLATFORM Indicates which platform (operating system) of AutoCAD is being used.

PLINEGEN Sets how linetype patterns generate around the vertices of a 2-D polyline.

PLINETYPE Specifies whether optimized 2-D polylines are used.

PLINEWID Stores the default width of the polyline.

PLOTID Obsolete in AutoCAD 2000 and later versions; retained for backward
compatibility.

PLOTLEGACY Controls whether legacy plot scripts can be run. This variable’s value is also
stored in the PlotLegacy property of the AcadPreferencesOutput object.

PLOTOFFSET Controls whether the plot offset is relative to the printable area or to the edge
of the paper.

PLOTROTMODE Controls the orientation of plots.

PLOTTER Obsolete in AutoCAD 2000 and later versions; retained for backward
compatibility.

Continued

APPENDIX C ■ SYSTEM VARIABLES 687

5793appC_final.qxd 8/22/05 2:43 AM Page 687

Table C-15. Continued

Name Description

PLQUIET Controls the display of optional dialog boxes and nonfatal errors for batch
plotting and scripts.

POLARADDANG Contains user-defined polar angles.

POLARANG Sets the polar angle increment.

POLARDIST Sets the snap increment when the SNAPSTYL system variable is set to 1 (polar
snap).

POLARMODE Controls the settings for polar and object snap tracking.

POLYSIDES Sets the default number of sides for POLYGON.

POPUPS Displays the status of the currently configured display driver.

PREVIEWEFFECT Specifies the visual effect used for previewing selection of objects.

PREVIEWFILTER Excludes specified object types from selection previewing. The setting is stored
as a bit code using the sum of the values.

PRODUCT Returns the product name (for example, AutoCAD).

PROGRAM Returns the program executable name (for example, acad).

PROJECTNAME Assigns a project name to the current drawing.

PROJMODE Sets the current projection mode for trimming or extending.

PROXYGRAPHICS Specifies whether to save images of proxy objects.

PROXYNOTICE Displays a dialog box when a drawing is opened that contains custom objects
created by an application that is not present on the system. This variable’s
value is also stored in the ShowProxyDialogBox property of the
AcadPreferencesOpenSave object.

PROXYSHOW Controls the display of proxy objects in a drawing.

PROXYWEBSEARCH Specifies how AutoCAD checks for Object Enablers.

PSLTSCALE Controls linetype scaling for the paper space.

PSPOOLALERT Specifies whether to alert the user when output needs to be spooled
through a system printer because of a conflict with an I/O port. Not used
in AutoCAD 2004 and later. This variable’s value is also stored in the
PrinterSpoolAlertproperty of the AcadPreferencesOutput object.

PSPROLOG Assigns a name for a prolog section to be read from the acad.psf file when you
are using PSOUT. This variable’s value is also stored in the PostScriptPrologFile
property of the PreferencesFiles object.

PSQUALITY Controls the rendering quality of PostScript images.

PSTYLEMODE Indicates whether the current drawing is in a Color Dependent or Named
Plot Style mode.

PSTYLEPOLICY Controls whether an object’s color property is associated with its plot
style. This variable’s value is also stored in the PlotPolicy property of
the AcadPreferencesOutput object.

PSVPSCALE Sets the view scale factor for all newly created viewports.

PUCSBASE Stores the name of the UCS that defines the origin and orientation of
orthographic UCS settings in paper space.

APPENDIX C ■ SYSTEM VARIABLES688

5793appC_final.qxd 8/22/05 2:43 AM Page 688

Q
Table C-16 explains the system variables that start with Q.

Table C-16. The Q System Variables

Name Description

QAFLAGS An undocumented, but useful variable. Bit coded: 1 causes ^C in menu macros
to cancel grips, 2 causes screen listings to scroll past without pausing, 4 prevents
alert dialogs from appearing.

QCSTATE Determines whether the QuickCalc calculator is active.

QTEXTMODE Controls how text is displayed. This variable’s value is also stored in the
TextFrameDisplay property of the DatabasePreferences object.

R
Table C-17 explains the system variables that start with R.

Table C-17. The R System Variables

Name Description

RASTERDPI Controls paper size and plot scaling when changing from dimensional
to dimensionless output devices, or vice versa. Converts millimeters or
inches to pixels, or vice versa. Accepts an integer from 100 to 32,767 as
a valid value.

RASTERPREVIEW Controls whether to save .bmp preview images. This variable’s value is also
stored in the SavePreviewThumbnail property of the
AcadPreferencesOpenSave object.

RECOVERYMODE Controls whether drawing recovery information is recorded after a system
failure.

REFEDITNAME Indicates whether a drawing is in a reference-editing state and stores the
reference file’s name.

REGENMODE Controls automatic drawing regeneration.

RE-INIT Reinitializes the digitizer, digitizer port, and acad.pgp file.

REMEMBERFOLDERS Controls the default path for the Look In or Save In option in standard file
selection dialog boxes.

REPORTERROR Controls whether an error report can be sent to Autodesk if AutoCAD closes
unexpectedly.

ROAMABLEROOTPREFIX Stores the full path to the root folder where roamable customizable files
were installed.

RTDISPLAY Controls the display of raster images during real-time ZOOM or PAN. This
variable’s value is also stored in the ShowRasterImage property of the
AcadPreferencesDisplay object.

APPENDIX C ■ SYSTEM VARIABLES 689

5793appC_final.qxd 8/22/05 2:43 AM Page 689

S
Table C-18 explains the system variables that start with S.

Table C-18. The S System Variables

Name Description

SAVEFILE Stores the current autosave file name.

SAVEFILEPATH Specifies the directory path for all automatic save files for the session.
This variable’s value is also stored in the AutoSavePath property of the
AcadPreferencesFiles object.

SAVENAME Stores the file name and directory path of a drawing after it is saved.

SAVETIME Sets the automatic save interval in minutes. This variable’s value is also
stored in the AutoSaveInterval property of the AcadPreferencesOpenSave
object.

SCREENBOXES Stores the number of boxes in the drawing window’s screen menu area.

SCREENMODE Stores a bit code indicating the display’s graphics and text state.

SCREENSIZE Stores current viewport size in pixels.

SDI Controls whether AutoCAD runs in single document interface (SDI)
mode or in multiple-document interface (MDI) mode. This variable’s
value is also stored in the SingleDocumentMode property of the
AcadPreferencesSelection object.

SELECTIONAREA Controls the display of effects for selection areas. Selection areas are created
by the Window, Crossing, WPolygon, and CPolygon options of SELECT.

SELECTIONAREAOPACITY Controls the transparency of the selection area during window and
crossing selection. The valid range is 0 to 100. The lower the setting, the
more transparent the area. A value of 100 makes the area opaque. The
SELECTIONAREA system variable must be on.

SELECTIONPREVIEW Controls the display of selection previewing. Objects are highlighted
when the pickbox cursor rolls over them. This selection previewing
indicates that the object would be selected if you clicked. The setting
is stored as a bit code using the sum of the values.

SHADEDGE Controls the shading of edges in rendering.

SHADEDIF Sets the ratio of diffuse reflective light to ambient light.

SHORTCUTMENU Controls whether Default, Edit, and Command mode shortcut menus are
available in the drawing area. This variable’s value is also stored in the
SCMCommandMode, SCMDefaultMode, SCMEditMode, and ShortCutMenuDisplay
properties of the AcadPreferencesUser object.

SHOWLAYERUSAGE Displays icons in the Layer Properties Manager to indicate whether layers
are in use. Setting this system variable to Off improves performance in the
Layer Properties Manager.

SHPNAME Sets a default shape name.

SIGWARN Controls whether a warning is presented when a file with an attached
digital signature is opened.

SKETCHINC Sets the record increment for SKETCH.

SKPOLY Determines whether SKETCH generates lines or polylines.

SNAPANG Sets snap and grid rotation angle for the current viewport. This variable’s
value is also stored in the SnapRotationAngle property of the
AcadPViewport and AcadViewport objects.

APPENDIX C ■ SYSTEM VARIABLES690

5793appC_final.qxd 8/22/05 2:43 AM Page 690

Name Description

SNAPBASE Sets the snap and grid origin point for the current viewport relative to
the current UCS. This variable’s value is also stored in the SnapBasePoint
property of the AcadPViewport and VAcadiewport objects.

SNAPISOPAIR Controls the isometric plane for the current viewport.

SNAPMODE Turns snap mode on and off. This variable’s value is also stored in the
SnapOn property of the AcadPViewport and AcadViewport objects.

SNAPSTYL Sets the current viewport’s snap style.

SNAPTYPE Sets the current viewport’s snap style.

SNAPUNIT Sets the current viewport’s snap spacing.

SOLIDCHECK Turns solid validation on and off for the current session.

SORTENTS Controls the OPTIONS command object sort order operations. This variable’s
value is also stored in the ObjectSortByPlotting, ObjectSortByRedraws,
ObjectSortByPSOutput, ObjectSortByRegens, ObjectSortBySelection, and
ObjectSortBySnap properties of the AcadDatabasePreferences object.

SPLFRAME Controls the display of splines and spline-fit polylines.

SPLINESEGS Sets the number of line segments to be generated for each spline-fit
polyline. This variable’s value is also stored in the SegmentPerPolyline
property of the AcadDatabasePreferences object.

SPLINETYPE Sets the type of curve generated by the Spline option of the PEDIT
command.

SSFOUND Displays the sheet set path and file name if a search for a sheet set is
successful.

SSLOCATE Locates and opens the sheet set associated with a drawing when the
drawing is opened. SSMAUTOOPEN and SSLOCATE must both be set to 1 to
open a sheet set automatically in the Sheet Set Manager.

SSMAUTOOPEN Displays the Sheet Set Manager when a drawing associated with a sheet
is opened. SSMAUTOOPEN and SSLOCATE must both be set to 1 to open a
sheet set automatically in the Sheet Set Manager.

SSMPOLLTIME Controls the time interval between automatic refreshes of the status data
in a sheet set. The SSMPOLLTIME timer sets the time in seconds between
automatic refreshes of the status data of sheets in a sheet set. Valid values
are from 20 to 600. The SSMSHEETSTATUS system variable must be set to 2
for the timer to operate.

SSMSHEETSTATUS Controls how the status data in a sheet set is refreshed. The status data
for sheets in the current sheet set includes whether a sheet is locked and
whether a sheet is missing (or found in an unexpected location). This
status data can be updated automatically for all sheets. To refresh the
sheet set manually, use the Refresh Sheet Status button on the Sheet List
tab of the Sheet Set Manager.

SSMSTATE Determines whether the Sheet Set Manager window is active.

STANDARDSVIOLATION Specifies whether a user is notified of standards violations that exist in
the current drawing.

STARTUP Controls whether the Create New Drawing dialog box is displayed when
starting a new drawing with the NEW and QNEW commands.

SURFTAB1 Sets the number of tabulations to be generated for RULESURF and TABSURF.

Continued

APPENDIX C ■ SYSTEM VARIABLES 691

5793appC_final.qxd 8/22/05 2:43 AM Page 691

Table C-18. Continued

Name Description

SURFTAB2 Sets the mesh density in the N direction for REVSURF and EDGESURF.

SURFTYPE Controls the type of surface fitting to be performed by the Smooth option
of the PEDIT command.

SURFU Sets the surface density for PEDIT command’s Smooth option in the
M direction.

SURFV Sets the surface density for PEDIT command’s Smooth option in the
N direction.

SYSCODEPAGE Indicates the system code page specified in acad.xmf.

T
Table C-19 explains the system variables that start with T.

Table C-19. The T System Variables

Name Description

TABLEINDICATOR Controls the display of row numbers and column letters when the In-Place Text
Editor is open for editing a table cell.

TABMODE Controls the use of the tablet.

TARGET Stores the location of the target point for the current viewport.

TBCUSTOMIZE Controls whether toolbars can be customized.

TDCREATE Stores the local time and date the drawing was created.

TDINDWG Stores the total editing time.

TDUCREATE Stores the universal time and date the drawing was created.

TDUPDATE Stores the local time and date of the last update/save.

TDUSRTIMER Stores the user-elapsed timer.

TDUUPDATE Stores the universal time and date of the last update/save.

TEMPOVERRIDES Turns temporary override keys on and off. A temporary override key is a key
that you can hold down to temporarily turn on or turn off one of the drawing
aids that are set in the Drafting Settings dialog box; for example, Ortho mode,
object snaps, or Polar mode.

TEMPPREFIX Contains the directory name for temporary files.

TEXTEVAL Controls the method of evaluation for text strings.

TEXTFILL Controls the filling of TrueType fonts while plotting, exporting with the PSOUT
command and rendering.

TEXTQLTY Sets the resolution of text outlines for TrueType fonts while plotting, exporting
with the PSOUT command, and rendering.

TEXTSIZE Sets the default height for new text objects drawn with the current text style.

TEXTSTYLE Sets the name of the current text style.

THICKNESS Sets the current 3-D solid thickness.

APPENDIX C ■ SYSTEM VARIABLES692

5793appC_final.qxd 8/22/05 2:43 AM Page 692

Name Description

TILEMODE Makes the Model tab or the Last Layout tab current. This variable’s value is also
stored in the ActiveSpace property of the AcadDocument object.

TOOLTIPMERGE Combines drafting tooltips into a single tooltip. The appearance of the merged
tooltip is controlled by the settings in the Tooltip Appearance dialog box.

TOOLTIPS Controls the display of tooltips.

TRACEWID Sets the default trace width.

TRACKPATH Controls the display of polar and object snap tracking alignment paths. This
variable’s value is also stored in the FullScreenTrackingVector and
PolarTrackingVector properties of the AcadPreferencesDrafting object.

TRAYICONS Controls whether a tray is displayed on the status bar.

TRAYNOTIFY Controls whether service notifications are displayed in the status bar tray.

TRAYTIMEOUT Controls the length of time (in seconds) that service notifications are displayed.

TREEDEPTH Specifies the number of times the tree-structured spatial index can divide into
branches.

TREEMAX Limits memory consumption during drawing regeneration by limiting the
number of nodes in the spatial index (oct-tree).

TRIMMODE Controls whether AutoCAD trims selected edges for chamfers and fillets.

TSPACEFAC Controls the multiline text line spacing distance, measured as a factor of text
height.

TSPACETYPE Controls the type of line spacing used in multiline text.

TSTACKALIGN Controls the vertical alignment of stacked text.

TSTACKSIZE Controls the height of stacked text fraction, as a percentage relative to the
height of the selected text.

U
Table C-20 explains the system variables that start with U.

Table C-20. The U System Variables

Name Description

UCSAXISANG Stores the default angle when rotating the UCS around one of its axes using
the X, Y, or Z options of the UCS command.

UCSBASE Stores the name of the UCS that defines the origin and orientation of
orthographic UCS settings.

UCSFOLLOW Generates a plan view whenever you change from one UCS to another.

UCSICON Displays the UCS icon for the current viewport.

UCSNAME Stores the name of the current coordinate system for the current viewport in
the current space.

UCSORG Stores the origin point of the coordinate system for the current viewport in the
current space. This variable’s value is also stored in the UCSIconAtOrigin
property of the PViewport and Viewport objects.

Continued

APPENDIX C ■ SYSTEM VARIABLES 693

5793appC_final.qxd 8/22/05 2:43 AM Page 693

Table C-20. Continued

Name Description

UCSORTHO Determines whether the related orthographic UCS setting is restored auto-
matically when an orthographic view is restored.

UCSVIEW Determines whether the current UCS is saved with a named view.

UCSVP Determines whether the UCS in active viewports remains fixed or changes
to reflect the currently active viewport.

UCSXDIR Stores the X direction of the current UCS for the current viewport in the
current space. This variable’s value is also stored in the XVector property of
the AcadUCS object.

UCSYDIR Stores the Y direction of the current UCS for the current viewport in the
current space. This variable’s value is also stored in the YVector property of
the AcadUCS object.

UNDOCTL Stores a bit code indicating the state of the Auto and Control options of the
UNDO command.

UNDOMARKS Stores the number of marks that have been placed in the UNDO control stream
by the Mark option.

UNITMODE Controls the display format for units.

UPDATETHUMBNAIL Controls updating of the thumbnail previews in the Sheet Set Manager. The
setting is stored as a bit code using the sum of the values.

USERI1–5 Stores and retrieves integer values. There are five variables of this type: USERI1,
USERI2, ..., USERI5.

USERR1–5 Stores and retrieves real numbers. There are five variables of this type: USERR1,
USERR2, ..., USERR5.

USERS1–5 Stores and retrieves strings. There are five variables of this type: USERS1,
USERS2, ..., USERS5.

V
Table C-21 explains the system variables that start with V.

Table C-21. The V System Variables

Name Description

_VERNUM Stores the internal build number of AutoCAD (such as V.0.86).

VIEWCTR Stores the center of view in the current viewport.

VIEWDIR Stores the viewing direction in the current viewport.

VIEWMODE Controls the current viewport’s view mode using a bit code.

VIEWSIZE Stores the view’s height in the current viewport.

VIEWTWIST Stores the view’s twist angle for the current viewport.

VISRETAIN Controls the visibility, color, linetype, lineweight, and plot styles (if
PSTYLEPOLICY is set to 0) of Xref-dependent layers and specifies whether
nested Xref path changes are saved. This variable’s value is also stored in
the XrefLayerVisibility property of the AcadDatabasePreferences object.

APPENDIX C ■ SYSTEM VARIABLES694

5793appC_final.qxd 8/22/05 2:43 AM Page 694

Name Description

VPMAXIMIZEDSTATE Stores a value that indicates whether the viewport is maximized. The
maximized viewport state is canceled if you start the PLOT command.

VSMAX Stores the upper-right corner of the current viewport’s virtual screen.

VSMIN Stores the lower-left corner of the current viewport’s virtual screen.

VTDURATION Sets the duration of a smooth view transition, in milliseconds. The valid
range is 0 to 5000.

VTENABLE Controls when smooth view transitions are used. Smooth view transitions
can be on or off for panning and zooming, for changes of view angle, or for
scripts. The valid range is 0 to 7.

VTFPS Sets the minimum speed of a smooth view transition, in frames per second.
When a smooth view transition cannot maintain this speed, an instant tran-
sition is used. The valid range is 1.0 to 30.0.

W
Table C-22 explains the system variables that start with W.

Table C-22. The W System Variables

Name Description

WHIPARC Controls whether the display of circles and arcs is smooth.

WHIPTHREAD Controls whether to use an additional processor (known as multithreaded
processing) to improve the speed of operations such as ZOOM and PAN that
redraw or regenerate the drawing.

WINDOWAREACOLOR Controls the color of the transparent selection area during window selection.
The valid range is 1 to 255. SELECTIONAREA must be on.

WMFBKGND Controls the background of the output Windows metafile resulting from the
WMFOUT command, and also the metafile format of objects placed on the
clipboard or dragged and dropped into other applications.

WMFFOREGND Controls the assignment of the foreground color of AutoCAD objects in other
applications.

WORLDUCS Indicates whether the UCS is the same as the WCS.

WORLDVIEW Determines whether input to the 3DORBIT, DVIEW, and VPOINT commands is
relative to the WCS (default), the current UCS, or the UCS specified by the
UCSBASE system variable.

WRITESTAT Indicates whether a drawing file is read-only, for developers who need to
determine write status through AutoLISP.

WSCURRENT Returns the current work space name in the command line interface and sets
a work space to current.

APPENDIX C ■ SYSTEM VARIABLES 695

5793appC_final.qxd 8/22/05 2:43 AM Page 695

X
Table C-23 explains the system variables that start with X.

Table C-23. The X System Variables

Name Description

XCLIPFRAME Controls the visibility of Xref clipping boundaries.

XEDIT Specifies whether the current drawing can be edited in place when another
drawing references it. This variable’s value is also stored in the XRefEdit property
of the AcadDatabasePreferences object.

XFADECTL Controls the fading intensity for references being edited in place. This variable’s
value is also stored in the XrefFadeIntensity property of the
AcadPreferencesDisplay object.

XLOADCTL Turns Xref demand loading on and off and controls whether it opens the
original drawing or a copy of the drawing. This variable’s value is also stored in
the XrefDemandLoad property of the AcadPreferencesOpenSave object.

XLOADPATH Creates a path for storing temporary copies of demand-loaded Xref files.

XREFCTL Controls whether AutoCAD writes external reference log (.xlg) files.

XREFNOTIFY Controls the notification for changed or missing Xrefs.

XREFTYPE Controls the default reference type when attaching or overlaying an external
reference.

Z
Table C-24 explains the system variables that start with Z.

Table C-24. The Z System Variables

Name Description

ZOOMFACTOR Controls the incremental change in zoom with each IntelliMouse wheel action,
whether forward or backward.

APPENDIX C ■ SYSTEM VARIABLES696

5793appC_final.qxd 8/22/05 2:43 AM Page 696

■A
A system variables, 672–73
ACAD_LAYERSTATE dictionary, 629
Acad3DFace object, 457–58
Acad3DPolyline object, 459, 631
Acad3DSolid object, 460–61, 635
AcadApplication object, 461–65, 669
AcadArc object, 465–66
AcadAttribute object, 466–68, 632, 634, 648, 665,

667
AcadAttributeReference object, 468, 632, 648,

665, 667
AcadBlock object, 469–72, 474–76, 634–35, 653
AcadBlockReference object, 476–77
AcadBlocks collection, 477–78
AcadCircle object, 478
AcadDatabase object, 479–80
AcadDatabasePreferences object, 480–82, 567,

651
AcadDictionaries collection, 482
AcadDictionary object, 483–84
AcadDim3PointAngular object, 484, 486, 633,

641
AcadDimAligned object, 486–88, 490–91
AcadDimAngular object, 491–92, 641
AcadDimArcLength object, 492–94, 496–97, 639
AcadDimDiametric object, 497–98, 500–501,

640
AcadDimension object, 637, 640–43
AcadDimOrdinate object, 501–4
AcadDimRadial object, 504–6, 508, 639–40
AcadDimRadialLarge object, 508–12
AcadDimRotated object, 513, 515–17
AcadDimStyle object, 517–18
AcadDimStyles collection, 518
Acaddoc.lsp, 16–17
AcadDocument object, 519–25, 631, 652, 657,

669
AcadDocuments collection, 525–26
Acad.dvb, 4, 15–16
AcadDynamicBlockReferenceProperty object,

526, 645
AcadEllipse object, 527
AcadEntity object, 636, 645–46, 651
AcadExternalReference object, 528
AcadFileDependencies object, 529
AcadFileDependency object, 529
AcadGroup object, 530, 636, 651
AcadGroups collection, 531
AcadHatch object, 531–34, 648–49, 652–53
AcadHyperlink object, 534–35

AcadHyperlinks collection, 535
AcadIDPair object, 535–36
AcadLayer object, 536–37, 636, 651
AcadLayers collection, 537
AcadLayout object, 538–41, 654, 656
AcadLeader object, 542–44, 637, 639, 643,

650–51
AcadLine object, 45, 544–45
AcadLineType object, 545–46
AcadLineTypes collection, 546
ACADLSPASDOC system variable, 672
AcadLWPolyline object, 547–48
AcadMenuBar collection, 548–49
AcadMenuGroup object, 549–50, 652
AcadMenuGroups collection, 550–51
AcadMInsertBlock object, 551–52
AcadMLine object, 552, 653
AcadModelSpace collection, 477, 553
AcadModelSpace object, 634, 653
AcadMText object, 553–54, 634, 645, 650
AcadPaperSpace collection, 477, 555
AcadPaperSpace object, 634, 653
AcadPlot object, 555–57, 657
AcadPlotConfiguration object, 538–41, 557, 654,

656
AcadPlotConfigurations collection, 557
AcadPoint object, 557–58
AcadPolyfaceMesh object, 558–59
AcadPolygonMesh object, 559–61, 656
AcadPolyline object, 156, 561–63, 656
AcadPopupMenu object, 563–65
AcadPopupMenuItem object, 565–66, 652
AcadPopupMenus collection, 566–67
AcadPreferences object, 75, 567–68
AcadPreferences objects, 84
AcadPreferencesDisplay object, 568, 570, 665
AcadPreferencesDrafting object, 570–71, 633,

636
AcadPreferencesFiles object, 572–73
AcadPreferencesOpenSave object, 574–75, 634,

657, 659, 669
AcadPreferencesOutput object, 575–76, 653–54,

657
AcadPreferencesProfiles object, 576–77
AcadPreferences.Selection object, 85
AcadPreferencesSelection object, 577–78, 637
AcadPreferencesSystem object, 578–79
AcadPreferencesUser object, 579–80, 644, 648,

650
ACADPREFIX system variable, 672
AcadPViewport object, 580–83, 667

Index

697

5793idx_final.qxd 8/24/05 12:04 AM Page 697

AcadRasterImage object, 583–85
AcadRay object, 585
AcadRegion object, 586–87, 635
AcadRegisteredApplication object, 587
AcadRegisteredApplications collection, 587–88
ACADSECURITYPARAMS_ADD_TIMESTAMP

constant, Action property, 384–85
ACADSECURITYPARAMS_ENCRYPT_DATA

constant, Action property, 384–85
ACADSECURITYPARAMS_ENCRYPT_PROPS

constant, Action property, 384
ACADSECURITYPARAMS_SIGN_DATA

constant, Action property, 384–85
AcadSelectionSet object, 588–89, 659
AcadSelectionSets collection, 590
AcadShape object, 590–91
AcadSolid object, 591–92
AcadSortEntsTable object, 592–93
AcadSpline object, 593–95
AcadState object, 595
AcadSummaryInfo object, 596
AcadTable object, 597–99, 601–3, 631, 636–37,

647, 658, 660–61
AcadTableStyle object, 604–5, 631, 647, 661
AcadText object, 606–7, 632, 648, 665, 667
AcadTextStyle object, 607–8
AcadTextStyles collection, 609
AcadTolerance object, 609–11, 637, 639–41
AcadToolbar object, 611–13, 666
AcadToolbarItem object, 613–14, 666
AcadToolbars collection, 614–15
AcadTrace object, 615–16
AcadUCS object, 616–17
AcadUCSs collection, 617–18
AcadUtility object, 618–19, 621, 633, 638, 666
ACADVER system variable, 673
AcadView object, 621–22
AcadViewport object, 622–24, 668
AcadViewports collection, 624–25
AcadViews collection, 625
AcadXline object, 626
AcadXRecord object, 626–27
acAttributeModeConstant value, Mode

parameter, 311
acAttributeModeInvisible value, Mode

parameter, 311
acAttributeModeNormal value, Mode

parameter, 311
acAttributeModePreset value, Mode parameter,

311
acAttributeModeVerify value, Mode parameter,

311
AcBaseMenuGroup constant,

AcMenuGroupType, 358
acBlue constant, 224
acByBlock constant, 224
acByLayer constant, 224
accelerator keys, MenuGroup object, 362
Access database. See Microsoft Access database
AcCmColor object, 226, 628–29, 637

AcColorMethod object, 637–38
acCyan constant, 224
AcDimArrowheadType property,

AcadDimDiametric object, 499
acDisplay constant, 344
acExtents constant, 344
acFullPreview constant, 338
acGreen constant, 224
AcHatchPatternTypeCustomDefined constant,

163
AcHatchPatternTypePredefined constant, 163
AcHatchPatternTypeUserDefined constant, 163
ACIS solid modeling kernel, 173
ACISOUTVER system variable, 673
acLayout constant, 344
AcLeaderType constants, 257
acLimits constant, 344
AcLsAll constant, Mask property, 630
AcLsColor constant, Mask property, 630
AcLsFrozen constant, Mask property, 630
AcLsLineType constant, Mask property, 630
AcLsLineWeight constant, Mask property, 630
AcLsLocked constant, Mask property, 630
AcLsNewViewport constant, Mask property, 630
AcLsNone constant, Mask property, 630
AcLsOn constant, Mask property, 630
AcLsPlot constant, Mask property, 630
AcLsPlotStyle constant, Mask property, 630
acMagenta constant, 224
acMenuFileCompiled constant,

AcMenuFileType, 361
acMenuFileSource constant, AcMenuFileType,

361
AcMenuFileType constants, 361
AcMenuGroupType constant, 358
acModelSpace constant, 144
acNative enumeration, 81
acPaperSpace constant, 144
AcPartialMenuGroup constant,

AcMenuGroupType, 358
acPartialPreview constant, 338
AcPlotRotation constants, 353
AcPlotScale constants, 350
AcPlotType constants, 344
AcPreviewMode constants, 338
acR12_dxf enumeration, 80
acRed constant, 224
acSaveAs enumeration, 80
acScaleToFit constant, 350
acSelectionSetAll constant, Select method, 262
acSelectionSetCrossing constant, Select

method, 262
acSelectionSetCrossingPolygon constant,

SelectByPolygon method, 270
acSelectionSetFence constant, SelectByPolygon

method, 270
acSelectionSetLast constant, Select method, 262
acSelectionSetPrevious constant, Select

method, 262

■INDEX698

5793idx_final.qxd 8/24/05 12:04 AM Page 698

acSelectionSetWindow constant, Select
method, 262

acSelectionSetWindowPolygon constant,
SelectByPolygon method, 270

acTextFlagBackward constant, TextGeneration,
254

acTextFlagUpsideDown constant,
TextGeneration, 254

acTextGeneration constants,
TextGenerationFlag property, 253

Action property, Digital Signatures feature,
384–85

Action property, SecurityParams object, 627
Activate event, 73, 524
Activate method, 57, 519
Active Directory Service Interfaces (ADSI)

object, 412
Active property, 521
ActiveDimStyle property

AcadDocument object, 521
Document object, 233, 517

ActiveDocument property, AcadApplication
object, 463

ActiveLayer property
AcadDocument object, 521
Document object, 92

ActiveLayout property
AcadDocument object, 521
Document object, 340

ActiveLinetype property
AcadDocument object, 521
Document object, 105

ActiveProfile property, 84, 577
ActivePViewport property, AcadDocument

object, 521
ActiveSelectionSet property, AcadDocument

object, 522
ActiveSpace property

AcadDocument object, 519, 522, 631
ActiveX Automation, 581

ActiveStyle property, Document object, 254
ActiveTextStyle property, 255–56, 522
ActiveUCS property, AcadDocument object, 522
ActiveViewport property, AcadDocument

object, 522
ActiveViewport property, Viewport coordinates,

330
ActiveX controls, 58

adding, 13–14
CheckBox, 62–63
ComboBox, 61–62
CommandButton, 64
Frame, 64
Image, 65
Label, 60
ListBox, 62
MultiPage, 65
OptionButton, 63
overview, 60
ScrollBar, 65

SpinButton, 65
TabStrip, 64
TextBox, 61
ToggleButton, 63

ActiveX Toolbox, 58
acToolbarDockBottom constant,

AcToolbarDockStatus, 382
acToolbarDockLeft constant,

AcToolbarDockStatus, 382
acToolbarDockRight constant,

AcToolbarDockStatus, 382
AcToolbarDockStatus constants, 382
acToolbarDockTop constant,

AcToolbarDockStatus, 382
acView constant, 344
acViewport2Horizontal constant, 327
acViewport2Vertical constant, 327
acViewport3Above constant, 327
acViewport3Below constant, 327
acViewport3Horizontal constant, 327
acViewport3Left constant, 327
acViewport3Right constant, 327
acViewport3Vertical constant, 327
acViewport4 constant, 327
AcViewportSplitType constants, 327–28
acWhite constant, 224
acWindow constant, 344
acYellow constant, 224
ADCInsertUnits-DefaultSource property,

AcadPreferencesUser object, 579
ADCInsertUnitsDefaultSource property,

AcadPreferencesUser object, 648
ADCInsertUnits-DefaultTarget property,

AcadPreferencesUser object, 579
ADCInsertUnitsDefaultTarget property,

AcadPreferencesUser object, 648
ADCSTATE system variable, 673
Add method

AcadBlocks collection, 477
AcadDictionaries collection, 482
AcadDimStyles collection, 518, 525
AcadGroups collection, 531
AcadHyperlinks collection, 535
AcadLayers collection, 537
AcadLayouts and AcadPlotConfigurations

collections, 542
AcadLineTypes collection, 546
AcadPopupMenus collection, 567
AcadRegisteredApplications collection, 588
AcadSelectionSets collection, 590
AcadTextStyles collection, 609
AcadToolbars collection, 615
AcadUCSs collection, 617
AcadViewports collection, 625
for creating Blocks, 289–90
DimStyles collection, 231
SelectionSets collection, 259
Viewports collection, 327
Views collection, 322

■INDEX 699

5793idx_final.qxd 8/24/05 12:04 AM Page 699

Add3DFace method
AcadBlock object, 457, 469
AcadModelSpace object, 457
AcadPaperSpace object, 457

Add3DMesh method, AcadBlock object, 469
Add3DPoly method

Acad3DPolyline object, 459
AcadBlock object, 469

AddArc method
AcadBlock object, 465, 469
AcadModelSpace object, 465
AcadPaperSpace object, 465
Arc object, 145

AddAttribute method, 311–13
AcadBlock object, 466, 469, 634
AcadModelSpace object, 466, 634
AcadPaperSpace object, 466, 634

AddBox method
AcadBlock object, 469
parameters, 175

AddCircle method
AcadBlock object, 470, 478, 513
AcadModelSpace object, 478, 513
AcadPaperSpace object, 478, 513
Circle object, 147

AddCone method, 3DSolid object, 176, 470
AddCustomInfo method

AcadSummaryInfo object, 596
SummaryInfo object, 430–31

AddCustomObject method, AcadBlock object,
470

AddCylinder method, 177–78, 470
AddDim3PointAngular method, 235, 470, 484
AddDimAligned method, 236–37, 470, 486
AddDimAngular method, 238, 470, 491
AddDimDiametric method, 239–40, 470, 497
AddDimOrdinate method, 241, 470, 501
AddDimRadial method, 242–43, 470, 504
AddDimRotated method, 244, 471
AddDimXXX methods, Dimension object, 235
AddEllipse method

AcadBlock object, 471, 527
AcadModelSpace object, 527
AcadPaperSpace object, 527
Ellipse object, 148

AddEllipticalCone method, 183, 471
AddEllipticalCylinder method, 185, 471
AddExtrudedSolid method, 187, 471
AddExtrudedSolidAlongPath method, 189, 471
AddFitPoint method, AcadSpline object, 593
AddHatch method

AcadBlock object, 471, 531, 653
AcadModelSpace object, 531, 653
AcadPaperSpace object, 531, 653
Hatch object, 162
PatternType parameter, 647

adding files, 12
AddItem method, 273, 588
Additional Controls dialog box, 13
AddLeader method, 255, 257, 472, 542

AddLightWeightPolyline method, 152, 472
AddLine method

AcadBlock object, 472, 544
AcadModelSpace object, 544
AcadPaperSpace object, 544
Line object, 150

AddLWPolyline method
AcadBlock object, 547
AcadModelSpace object, 547
AcadPaperSpace object, 547

AddMenuItem method, 370–71, 564–65
AddMInsertBlock method, 301–2, 472, 551
AddMLine method

AcadBlock object, 472, 552
AcadModelSpace object, 552
AcadPaperSpace object, 552
MLine object, 154

AddMText method
AcadBlock object, 472, 553
AcadModelSpace object, 553
AcadPaperSpace object, 553
MText object, 165

AddObject property, AcadDictionary object, 483
AddPoint method

AcadBlock object, 472, 557
AcadModelSpace object, 557
AcadPaperSpace object, 557
Point object, 166–67

AddPolyfaceMesh method
of the AcadBlock, AcadModelSpace, or

AcadPaperSpace object, 558
AcadBlock object, 472
AcadModelSpace object, 558
AcadPaperSpace object, 558

AddPolygonMesh method
of the AcadBlock, AcadModelSpace, or

AcadPaperSpace object, 559
AcadModelSpace object, 559
AcadPaperSpace object, 559

AddPolyline method
AcadBlock object, 473, 561
AcadModelSpace object, 561
AcadPaperSpace object, 561

AddPViewport method, AcadPaperSpace
collection, 555

AddRaster method
AcadBlock object, 473, 583
AcadModelSpace object, 583
AcadPaperSpace object, 583

AddRay method, 158–59, 473, 585
AddRegion method

AcadBlock object, 473, 586
AcadModelSpace object, 586
AcadPaperSpace object, 586
Region object, 168–69

AddRevolvedSolid method, 191–92, 473
AddSeparator method

AcadPopupMenu object, 564–65
AcadToolbar object, 612
parameters, 372, 380

■INDEX700

5793idx_final.qxd 8/24/05 12:04 AM Page 700

AddShape method
of the AcadBlock, AcadModelSpace, or

AcadPaperSpace object, 590
AcadBlock object, 473
AcadModelSpace object, 590
AcadPaperSpace object, 590

AddSolid method
AcadBlock object, 473, 591
AcadModelSpace object, 591
AcadPaperSpace object, 591
Solid object, 170

AddSphere method, 179, 474
AddSpline method

AcadBlock object, 474, 593
AcadModelSpace object, 593
AcadPaperSpace object, 593

AddSubMenu method, 372–73, 564–65
AddText method

AcadBlock object, 474, 606
AcadModelSpace object, 606
AcadPaperSpace object, 606
Text object, 171

AddTolerance method
AcadBlock object, 474, 609
AcadPaperSpace object, 609

AddToolbarButton method, 377–78, 612
AddTorus method, 180, 474
AddTrace method

AcadBlock object, 474, 615
AcadModelSpace object, 615
AcadPaperSpace object, 615

AddVertex method
AcadLWPolyline object, 547
LWPolyline object, 153

AddWedge method, 181–82, 474
AddXline method

AcadBlock object, 474, 626
AcadModelSpace object, 626
AcadPaperSpace object, 626

AddXRecord property, AcadDictionary object,
483

AddXXX methods, 145, 290
Advanced Options dialog box, 388
Advapi32.dll library, Windows API, 394
AffectsGraphics property, AcadFileDependency

object, 529
Affirmations block, 319–20
AFLAGS system variable, 673
Algorithm Long parameter, Algorithm property,

385
Algorithm property, 385, 628
Alias clause, Declare statement, 394
Alignment property

AcadAttribute object, 467, 632
AcadAttributeReference object, 632
AcadText object, 606, 632

AlignmentPointAcquisition property,
AcadPreferencesDrafting object, 571,
633

Allow Break on Errors option, 20

AllowedValuesVariant property,
AcadDynamicBlockReferenceProperty
object, 526

AllowLongSymbolNames property,
AcadDatabasePreferences object, 481

AltFontFile property, AcadPreferencesFiles
object, 572

AltRoundDistance property
AcadDimAligned object, 487
AcadDimArcLength object, 492
AcadDimDiametric object, 497
AcadDimOrdinate object, 502
AcadDimRadial object, 505, 513
AcadDimRadialLarge object, 509

AltSuppressLeadingZeros property
AcadDimAligned object, 487
AcadDimArcLength object, 492
AcadDimDiametric object, 497
AcadDimOrdinate object, 502
AcadDimRadial object, 505, 513
AcadDimRadialLarge object, 509

AltSuppressTrailingZeros property
AcadDimAligned object, 487
AcadDimArcLength object, 492
AcadDimDiametric object, 497
AcadDimOrdinate object, 502
AcadDimRadial object, 505, 513
AcadDimRadialLarge object, 509

AltSuppressZeroFeet property, AcadDimAligned
object, 487, 492

AltSuppressZeroInches property,
AcadDimAligned object, 488, 492

AltTabletMenuFile property,
AcadPreferencesFiles object, 572

AltTextPrefixAltTextSuffix property
AcadDimAligned object, 487
AcadDimArcLength object, 492
AcadDimDiametric object, 498
AcadDimOrdinate object, 502
AcadDimRadial object, 505, 513

AltTolerancePrecision property
AcadDimAligned object, 487
AcadDimArcLength object, 493
AcadDimDiametric object, 498
AcadDimOrdinate object, 502
AcadDimRadial object, 505, 513
AcadDimRadialLarge object, 509

AltToleranceSuppressLeadingZeros property
AcadDimAligned object, 487–88
AcadDimArcLength object, 493
AcadDimDiametric object, 498
AcadDimOrdinate object, 502
AcadDimRadial object, 505, 514
AcadDimRadialLarge object, 509

AltToleranceSuppressTrailingZeros property
AcadDimAligned object, 487
AcadDimArcLength object, 493
AcadDimDiametric object, 498
AcadDimOrdinate object, 502

■INDEX 701

5793idx_final.qxd 8/24/05 12:04 AM Page 701

AltToleranceSuppressTrailingZeros property
(continued)

AcadDimRadial object, 505, 514
AcadDimRadialLarge object, 509

AltToleranceSuppressZeroFeet property
AcadDimArcLength object, 493
AcadDimDiametric object, 498
AcadDimOrdinate object, 502
AcadDimRadial object, 505, 514
AcadDimRadialLarge object, 509

AltToleranceSuppressZeroInches property
AcadDimArcLength object, 493
AcadDimDiametric object, 498
AcadDimOrdinate object, 502
AcadDimRadial object, 505, 514
AcadDimRadialLarge object, 509

AltUnits property
AcadDimAligned object, 488
AcadDimArcLength object, 493
AcadDimDiametric object, 498
AcadDimOrdinate object, 503
AcadDimRadial object, 506, 514
AcadDimRadialLarge object, 509

AltUnitsFormat property
AcadDimAligned object, 488
AcadDimArcLength object, 493
AcadDimDiametric object, 498
AcadDimOrdinate object, 503
AcadDimRadial object, 506, 514
AcadDimRadialLarge object, 509
dimension object, 643

AltUnitsPrecision property
AcadDimAligned object, 488
AcadDimArcLength object, 493
AcadDimDiametric object, 498
AcadDimOrdinate object, 503
AcadDimRadial object, 506, 514
AcadDimRadialLarge object, 510
dimension object, 641

AltUnitsScale property
AcadDimAligned object, 488
AcadDimArcLength object, 493
AcadDimDiametric object, 499
AcadDimOrdinate object, 503
AcadDimRadial object, 506, 514
AcadDimRadialLarge object, 510

ANGBASE system variable, 120–21, 673
ANGDIR system variable, 671, 673
Angle parameter

AddRevolvedSolid method, 192
AngleToReal method, 129
AngleToString method, 130
PolarPoint method, 133

Angle property, AcadLine object, 545
AngleFormat property, AcadDim3PointAngular

object, 484, 633
AngleFromXAxis method, Utility object, 132–33
AngleFromXAxis property, AcadUtility object,

618

AngleToFill parameter, ArrayRectangular
method, 219

AngleToReal method
AcadUtility object, 633
Utility object, 121, 129

AngleToReal property, AcadUtility object, 618
AngleToString method

AcadUtility object, 633
Utility object, 130

AngleToString property, AcadUtility object, 618
AngleVertex property, AcadDim3PointAngular

object, 484
Annotation property, AcadLeader object, 543
annotations

adding, 256–58
overview, 248
TextStyle object

creating, 248–49
overview, 248
retrieving and setting text styles, 249–50,

252–54
using, 254–56

AnnotationType parameter, AddLeader
method, 257

APBOX system variable, 673
APERTURE system variable, 673
API Viewer dialog box, 391
AppActivate event, AcadApplication object, 464
AppDeactivate event, AcadApplication object,

464
AppendInnerLoop method, 163, 532
AppendItem method, 280, 530
AppendOuterLoop method, 163, 532
AppendVertex method

Acad3DPolyline object, 459
AcadPolygonMesh object, 559
AcadPolyline object, 561

application elements
ActiveX controls

CheckBox, 62–63
ComboBox, 61–62
CommandButton, 64
Frame, 64
Image, 65
Label, 60
ListBox, 62
MultiPage, 65
OptionButton, 63
overview, 60
ScrollBar, 65
SpinButton, 65
TabStrip, 64
TextBox, 61
ToggleButton, 63

adding controls to forms, 58–60
designing UserForm

adding UserForm toapplication, 55–56
overview, 55
setting UserForm properties, 56–57

overview, 55

■INDEX702

5793idx_final.qxd 8/24/05 12:04 AM Page 702

Application object, 67–68
Application property

Acad3DFace object, 458
Acad3DPolyline object, 459
Acad3DSolid object, 461
AcadApplication object, 463
AcadDimension object, 455
AcadObject object, 450

application writing techniques, 44
application-level events, 67–69
arc bulge factor, 157
Arc object, 145–46
ArcEndParam property, AcadDimArcLength

object, 493
ArcLength property, AcadArc object, 466
ArcPoint property, AcadDimArcLength object,

493
ArcSmoothness property

AcadPViewport object, 581
AcadViewport object, 623

ArcStartParam property, AcadDimArcLength
object, 493

Area property
AcadArc object, 466
AcadCircle object, 478
AcadEllipse object, 527
AcadLWPolyline object, 548
AcadPolyline object, 562
AcadRegion object, 586
AcadSpline object, 594

AREA system variable, 673
.arg files, 83
arguments, passing by value or by reference,

395
ArrayCenter parameter, ArrayRectangular

method, 219
ArrayPolar method, 219, 452
ArrayRectangular method, 219, 221–22, 452
arrays

detecting bounds of, 30
dynamic, 30–31
fixed-length, 30
overview, 29–30, 219
polar, 219–21
rectangular, 221–23

Arrowhead1Block/Arrowhead2Block property,
AcadDimDiametric object, 488, 492,
499

Arrowhead1Type property
AcadTolerance object, 610, 639
dimension object, 639

Arrowhead2Type property, dimension object,
639

ArrowheadBlock property
AcadDimRadial object, 506, 514
AcadDimRadialLarge object, 510
AcadLeader object, 543

ArrowheadSize property
AcadDim3PointAngular object, 485
AcadDimAligned object, 488

AcadDimArcLength object, 494
AcadDimDiametric object, 499
AcadDimOrdinate object, 503
AcadDimRadial object, 506, 514
AcadDimRadialLarge object, 510
AcadLeader object, 543

ArrowheadType property
AcadDimRadial object, 506, 514, 639
AcadDimRadialLarge object, 510
AcadLeader object, 543, 639

ArrowType parameter, AddLeader method, 257
ARXLoaded event, AcadApplication object, 464
ARXUnloaded event, AcadApplication object,

464
ASSISTSTATE system variable, 673
AssociativeHatch property, 162, 532
Associativity parameter, AddHatch method, 162
ATOM data type declaration, 392
AttachExternalReference method, 305

AcadBlock object, 475, 528
AcadModelSpace object, 528
AcadPaperSpace object, 528

attaching external references, 305–7
AttachmentPoint property, AcadMText object,

554, 634
AttachToolbarToFlyout method,

AcadToolbarItem object, 613
ATTDIA system variable, 673
ATTMODE system variable, 673
ATTREQ system variable, 673
Attribute object, 248, 285–86
AttributeReference object, 248
attributes

creating, 310–13
manipulating

inserting blocks with attributes, 319–20
iterating attribute definitions, 317–19
using GetAttributes method, 315–16
using GetConstantAttributes method, 316

overview, 310
AUDITCTL system variable, 673
AuditInfo method, AcadDocument object, 519
AUNITS system variable, 673
AUPREC system variable, 673
Author parameter, 429
Author property

AcadSummaryInfo object, 596
SummaryInfo object, 428–29

Auto List members, 20
Auto Quick Info, 21
Auto Syntax Check option, 8
AutoCAD 2000 VBA, UserForms in, 56
AutoCAD 2004, user preferences changes in,

84–85
AutoCAD collections

AcadDimension object, 454–57
AcadEntity object, 451–54
AcadObject object, 448–51
Application property, 448
common collection methods, 448

■INDEX 703

5793idx_final.qxd 8/24/05 12:04 AM Page 703

AutoCAD collections (continued)
Count property, 448
overview, 447

AutoCAD layer data, 441–42
Autodesk i-drop technology, 141
AutoEdit property, AcadPreferencesOpenSave

object, 574
Autofit column text, 445
AutoFit method, 445
AutoLISP, 17
AutoListMembers tool, 667
AutoSaveInterval property, 78, 574
AutoSavePath property, AcadPreferencesFiles

object, 572
AUTOSNAP system variable, 673
AutoSnapAperture property,

AcadPreferencesDrafting object, 571
AutoSnapApertureSize property,

AcadPreferencesDrafting object, 571
AutoSnapMagnet property,

AcadPreferencesDrafting object, 571
AutoSnapMarker property,

AcadPreferencesDrafting object, 571
AutoSnapMarkerColor property

AcadPreferencesDrafting object, 571, 636
PreferencesDrafting object, 637

AutoSnapMarkerSize property,
AcadPreferencesDrafting object, 571

AutoSnapToolTip property,
AcadPreferencesDrafting object, 571

AutoTrackingVecColor property,
AcadPreferencesDisplay object, 568

Available References dialog, 438
AxisDirection parameter, AddRevolvedSolid

method, 192
AxisPoint parameter, AddRevolvedSolid

method, 192
AxisPoint1 parameter, Rotate3D method, 216
AxisPoint2 parameter, Rotate3D method, 216

■B
B system variables, 673–74
BACKGROUNDPLOT system variable, 673
Backward property

AcadAttribute object, 467
AcadText object, 606

BACKZ system variable, 673
BACTIONCOLOR system variable, 673
BaseMenu parameter, 357–58
BasePoint parameter

GetAngle method, 121
GetCorner method, 119
GetDistance method, 120
GetOrientation method, 121
GetPoint method, 118
Rotate method, 215
ScaleEntity method, 218

BasePoint property
AcadRay object, 585
AcadXline object, 626

BaseRadius parameter, AddCone method, 176
batch-mode plotting, 337
BatchPlotProgress property, AcadPlot object,

557
BDEPENDENCYHIGHLIGHT system variable,

674
BeepOnError property, AcadPreferencesSystem

object, 578
BeginClose event, 72, 524
BeginCommand event, 71–72

AcadApplication object, 464
AcadDocument object, 524

BeginDocClose event, 72
BeginDoubleClick event, AcadDocument

object, 524
BeginFileDrop event, AcadApplication object,

464
BeginLISP event

AcadApplication object, 464
AcadDocument object, 524

BeginModal event, AcadApplication object, 464
BeginOpen event, AcadApplication object, 465
BeginOpenevent, 72
BeginPlot event

AcadApplication object, 465
AcadDocument object, 524

BeginQuit event, AcadApplication object, 465
BeginRightClick event, AcadDocument object,

524
BeginSave event

AcadApplication object, 465
AcadDocument object, 524

BeginShortcutMenuCommand event,
AcadDocument object, 524

BeginShortcutMenuDefault event,
AcadDocument object, 524

BeginShortcutMenuEdit event, AcadDocument
object, 524

BeginShortcutMenuGrip event, AcadDocument
object, 524

BeginShortcutMenuOSnap event,
AcadDocument object, 524

behavior of objects, 46
BGRIPOBJCOLOR system variable, 674
BGRIPOBJSIZE system variable, 674
BigFontFile property, 252

AcadTextStyle object, 608
TextStyle object, 249

Bind method
AcadBlock object, 475
Block object, 309

binding external references, 309
BINDTYPE system variable, 674
BitFlags property, AcadTableStyle object, 605
BLIPMODE system variable, 674
Block Insertions, 207
Block object, 339–40

deleting, 293–94
renaming, 292–93

■INDEX704

5793idx_final.qxd 8/24/05 12:04 AM Page 704

Block property
AcadLayout object, 539
AcadPlotConfiguration object, 539
AcadSortEntsTable object, 592

BLOCKEDITLOCK system variable, 674
BLOCKEDITOR system variable, 674
BlockName parameter

Add method, 289
AddMInsertBlock method, 301
AttachExternalReference method, 306
Bind method, 309
InsertBlock method, 295

BlockReference object, 285–86, 293
Blocks and Block references

accessing Block objects, 288–89
creating Blocks, 289

AddXXX methods, 290
CopyObject method, 290–92
deleting Block object, 293–94
renaming Block object, 292–93
using Add method, 289–90
using InsertBlock method, 294

defining and manipulating blocks, 294
deleting a block reference, 298
using Explode method, 298–99
using InsertBlock method, 295–98
using Item method, 295
using WBlock method, 299–301

external references, 310
attaching, 305–7
binding, 309–10
detaching, 307
reloading, 308–9
unloading, 307

overview, 286
using MInsertBlock objects, 301–5

Blocks collection, iterating, 289
Blocks property

AcadDatabase object, 479
AcadDocument object, 522

BlockScaling property, AcadBlock object, 635
Blue property, AcCmColor object, 629
Bold parameter

GetFont method, 251
SetFont method, 249

BookName property, AcCmColor object, 629
Boolean data type, 28
Boolean method

Acad3DSolid object, 460, 635
AcadRegion object, 586, 635
parameters, 194

Boolean operations, 194–95
box, 174–76
BoxCenter parameter, AddBox method, 175
BPARAMETERCOLOR system variable, 674
BPARAMETERFONT system variable, 674
BPARAMETERSIZE system variable, 674
break mode, 48
breakpoints, 48–49

Brightness property, AcadRasterImage object,
584

BTMARKDISPLAY system variable, 674
Button data type, 25
ButtonName parameter, AddToolbarButton

method, 377
ButtonName text, 379
buttons, on toolbars

adding, 377–79
deleting, 382

BVMODE system variable, 674
ByBlock function, 442
ByBlock option, 105
ByLayer function, 442
ByLayer option, 105
ByRef keyword, Declare statement, 395
ByRef variable, 392
Byte data type, 28
BYTE data type declaration, 392
ByVal keyword, 34, 395
ByVal variable, 392–93

■C
C system variables, 674–75
CALCINPUT system variable, 674
Call Stack window, 48
Cancel button, control commonly used for, 64
CancelledCommand event, 69
CanonicalMediaName property, 348, 539
Caps Lock keys, 400–401
Caption property

AcadApplication object, 463
AcadPopupMenuItem object, 566
UserForm, 56

Case statements, 37
CBool function, 29
CByte function, 29
CCur function, 29
CDate function, 29
CDATE system variable, 674
CDbl function, 29
CECOLOR system variable, 674
CellAlignment parameter

SetAlignment method, 635
SetCellAlignment method, 635

cells, Excel, writing and reading, 406
CellType property, SetCellType method, 637
CELTSCALE system variable, 675
CELTYPE system variable, 675
CELWEIGHT system variable, 675
Center property

AcadArc object, 466
AcadCircle object, 478
AcadDimRadialLarge object, 510
AcadEllipse object, 527
AcadPViewport object, 581
AcadView object, 622
AcadViewport object, 623
Add method, 323

■INDEX 705

5793idx_final.qxd 8/24/05 12:04 AM Page 705

CenterMarkSize property
AcadDimDiametric object, 499
AcadDimRadial object, 506
AcadDimRadialLarge object, 510

CENTERMT system variable, 675
CenterPlot property, AcadLayout and

AcadPlotConfiguration objects, 539
CenterPoint parameter

AddArc method, 145
AddCircle method, 147
AddDimRadial method, 243
AddEllipse method, 148
AddPViewport method, 331

CenterPoint property, AcadDimArcLength
object, 494

CenterType property
AcadDimDiametric object, 499, 640
AcadDimRadial object, 506, 640
AcadDimRadialLarge object, 510

Centroid property
Acad3DSolid object, 461
AcadRegion object, 586

CHAMFERA system variable, 675
CHAMFERB system variable, 675
CHAMFERC system variable, 675
CHAMFERD system variable, 675
CHAMMODE system variable, 675
Change event, 3
CHAR data type declaration, 392
CharacterSet parameter

GetFont method, 251
SetFont method, 250

Check property, AcadPopupMenuItem object,
566

CheckBox control, 62–63
CheckBox data type, 25
CheckInterference method, 196, 460
ChordPoint parameter, AddDimRadial method,

243
ChordPoint property, AcadDimRadialLarge

object, 510
ChordPoint1 parameter, AddDimDiametric

method, 240
ChordPoint2 parameter, AddDimDiametric

method, 240
CInt function, 29
Circle object, 147–48
CIRCLERAD system variable, 675
circular objects

Arc object, 145–46
Circle object, 147–48
Ellipse object, 148, 150
overview, 145

Circumference property, 478
Class (.cls) modules, 23
Class controls, 59
Class module, 10, 32
classes, 44, 392
CLAYER system variable, 675
CLEANSCREENSTATE system variable, 675

Clear method, 276, 588
Clear property, Err object, 52–53
ClearSubSelection method, AcadTable object,

597
ClearTableStyleOverrides method, AcadTable

object, 597
ClipBoundary method, AcadRasterImage

object, 583
Clipped property, AcadPViewport object, 581
ClippingEnabled property, AcadRasterImage

object, 584
CLISTATE system variable, 675
CLng function, 29
Close method

AcadDocument object, 519, 525
Workbook object, 406

Closed property
Acad3DPolyline object, 459
AcadLWPolyline object, 548
AcadPolyline object, 562
AcadSpline object, 594

clsObjectEvent class module, 74
CMDACTIVE system variable, 675
CMDDIA system variable, 675
CMDECHO system variable, 675
cmdGetReal command button, 112
CMDINPUTHISTORYMAX system variable, 675
CMDNAMES system variable, 675
CMLJUST system variable, 675
CMLSCALE system variable, 675
CMLSTYLE system variable, 675
code blocks, 44
code components, 14
Code window, VBAIDE, 5
colon (:), 43
Color property

AcadEntity object, 454, 636
AcadGroup object, 636
AcadLayer object, 536, 636
AcadObject object, 530
Drawing Objects object, 637
Group object, 637
LabelTemplate object, 637
Layer object, 637
of layers, 98

ColorIndex property, AcCmColor object, 629,
637

ColorMethod property, AcCmColor object, 629
ColorName property, AcCmColor object, 629
COLORREF data type declaration, 392
colors

layers, 98–99
objects, 223–24, 226

column headings, creating, 440–41
Column parameter

GetText method, 416
SetText method, 417

Columns parameter
AddMInsertBlock method, 302
InsertColumns method, 422

■INDEX706

5793idx_final.qxd 8/24/05 12:04 AM Page 706

Columns property
AcadMInsertBlock object, 551
AcadTable object, 603

ColumnSpacing parameter, AddMInsertBlock
method, 302

ColumnSpacing property, AcadMInsertBlock
object, 551

ColumnWidth parameter
AddTable method, 415
InsertColumns method, 422

ColumnWidth property, AcadTable object, 603
ComboBox control, 61–62
ComboBox data type, 25
comdlg32.dll library, 394, 398–99
CommandButton control, 2, 59, 64–65
CommandCancelled event, 69
comment character, 44
Comment property, SecurityParams object, 628
commenting functions, 44
Comments property, AcadSummaryInfo object,

596
CommonDialog control, 296, 298
COMPASS system variable, 675
Complete Word button, 20
Component class module, 423
Component object, 424
Components collection, 423
<condition>, 35
cone, 176–77
cone, elliptical, 183, 185
ConeCenter parameter

AddCone method, 176
AddEllipticalCone method, 183

ConfigFile property, AcadPreferencesFiles
object, 572

ConfigName property, AcadLayout and
AcadPlotConfiguration objects, 539

configured plotter (PC3) file, 555
Connection object, 409
Constant property, AcadAttribute object, 467
constants, 27
ConstantWidth property

AcadLWPolyline object, 548
AcadPolyline object, 562

Content Range object, 407
Context parameter, 126
ContourLinesPerSurface property

AcadDatabasePreferences object, 481
Preferences object, 174

Contrast property, AcadRasterImage object, 584
control structures

decision structures
If.Then, 35
If.Then.Else, 35
overview, 34
Select Case structure, 36–37

overview, 34
ControlPoints property, AcadSpline object, 594
controls, adding to forms, 58–60
ConvertColorToString function, 443

ConvertLineweight function, 443
Convertpoly command, 156
ConvertToWord function, 444
Coordinate property

Acad3DFace object, 458
Acad3DPolyline object, 459
AcadLeader object, 543
AcadLWPolyline object, 548
AcadPolyfaceMesh object, 558
AcadPolygonMesh object, 560
AcadSolid object, 591
AcadTrace object, 616

Coordinates property
Acad3DFace object, 458
Acad3DPolyline object, 459
AcadLeader object, 543
AcadLWPolyline object, 548
AcadMLine object, 552
AcadPoint object, 558
AcadPolyfaceMesh object, 559
AcadPolygonMesh object, 560
AcadPolyline object, 563
AcadSolid object, 592
AcadTrace object, 616

COORDS system variable, 675
Copy method, 206
CopyFrom method

AcadDimStyle object, 517
AcadLayout and AcadPlotConfiguration

objects, 538
copying objects, 206
CopyObject method

AcadEntity object, 453
for creating Blocks, 290–92

CopyObjects method
AcadDatabase object, 479
AcadDocument object, 519

CopyProfile method, AcadPreferencesProfiles
object, 576

Count property
AcadBlock object, 476
AcadDictionary object, 484
AcadObject object, 530
AcadSelectionSet object, 589
AutoCAD object, 448
SelectionSets collection, 261

CPLOTSTYLE system variable, 675
CPROFILE system variable, 675
Create button, Macros dialog box, 19
Create Layer Report button, 439
CreateBackup property,

AcadPreferencesOpenSave object, 574
CreateEntry method, AcadFileDependencies

object, 529
CreateInterferenceSolid parameter,

CheckInterference method, 196
CreateTypedArray property, AcadUtility object,

618
creating projects, 10, 12
CROSSINGAREACOLOR system variable, 675

■INDEX 707

5793idx_final.qxd 8/24/05 12:04 AM Page 707

cryptography providers, 627
CSng function, 29
CStr function, 29
CTAB system variable, 675
CTABLESTYLE system variable, 675
CUILOAD command, 357
Currency data type, 28
cursor size, 78
CursorSize property

AcadPreferencesDisplay object, 568
PreferencesDisplay object, 78

CURSORSIZE system variable, 675
CustomDictionary property,

AcadPreferencesFiles object, 572
CustomScale property, AcadPViewport object,

581
CVar function, 29
CVErr function, 29
CVPORT system variable, 675
cylinder, 177, 179
cylinder, elliptical, 185–86
CylinderCenter parameter

AddCylinder method, 178
AddEllipticalCylinder method, 185

■D
D system variables, 676–79
data types

converting data types, 29
exchanging numbers and strings, 28–29
overview, 27

Database property, AcadDocument object,
522

DatabasePreferences object, 75
Date data type, 28
DATE system variable, 676
DBCSTATE system variable, 676
DBMOD system variable, 676
DCTCUST system variable, 676
DCTMAIN system variable, 676
Deactivate event, 73, 524
Debug window, 46
debugging basics

adding a watch, 47
breakpoints, 48–49
Call Stack window, 48
Err object

Clear property, 52–53
Description property, 51
Number property, 52
overview, 51

On Error statements, 50–51
Immediate window, 46–47
Locals window, 48
overview, 46
stepping through your code, 49

DecimalSeparator property
AcadDimension object, 455
AcadTolerance object, 610

decision structures
If.Then, 35
If.Then.Else, 35
overview, 34
Select Case structure, 36–37

declarations, Windows API, 391
default search path, 16
DefaultInternetURL property,

AcadPreferencesFiles object, 572
DefaultOutputDevice property,

AcadPreferencesOutput object, 575
DefaultPlotStyleForLayer property,

AcadPreferencesOutput object, 575
DefaultPlotStyleForObjects property,

AcadPreferencesOutput object, 575
DefinitionPoint parameter, AddDimOrdinate

method, 241
DEFLPLSTYLE system variable, 676
DEFPLSTYLE system variable, 676
defun, 17
defun-q, 17
Degree property, AcadSpline object, 595
Delete button, Macros dialog box, 19
Delete method

AcadHyperlink object, 534
AcadObject object, 450
AcadPopupMenuItem object, 565
AcadSelectionSet object, 589
AcadToolbar object, 612
AcadToolbarItem object, 613
LayerStateManager object, 630
Views collection, 324–25

DeleteCellContent method, AcadTable object,
597

DeleteColumns method, AcadTable object,
597

DeleteConfiguration method, AcadViewports
collection, 625

DeleteFitPoint method, AcadSpline object,
593

DeleteProfile method, AcadPreferencesProfiles
object, 576

DeleteRows method, AcadTable object,
597

deleting
Block object, 293–94
layers, 97
linetypes, 107
objects, 206–7
toolbars, 382
views, 324–25

DELOBJ system variable, 676
Delta property, AcadLine object, 545
DEMANDLOAD system variable, 676
DemandLoadARXApp property,

AcadPreferencesOpenSave object,
574, 634

Denominator parameter
GetCustomScale method, 351
SetCustomScale method, 352

■INDEX708

5793idx_final.qxd 8/24/05 12:04 AM Page 708

Description component, 423
Description property

AcadDynamicBlockReferenceProperty
object, 526

AcadLineType object, 546
AcadTableStyle object, 605
Err object, 51
Linetype object, 108

Detach method
AcadBlock object, 475
Block object, 307

detaching external references, 307
DialogTitle parameter, LaunchBrowserDialog

method, 137
Diameter property, AcadCircle object, 478
diametric-style dimension, 240
DIASTAT system variable, 676
Dictionaries property

AcadDatabase object, 479
AcadDocument object, 522

Digital Signatures feature
Action property, 384–85
Algorithm property, 385
Issuer property, 385–86
ProviderName property, 386
SerialNumber property, 386
Subject property, 386–87
TimeServer property, 387

Dim keyword, 26
Dim3PointAngular object, 235–36

DimensionLineColor property, 637
ExtensionLineColor property, 637
TextColor property, 637

DIMADEC system variable, 676
DimAligned object, 236, 238

DimensionLineColor property, 637
ExtensionLineColor property, 637
TextColor property, 637

DimAligned objects, 235
DIMALT system variable, 676
DIMALTD system variable, 676
DIMALTF system variable, 676
DIMALTRND system variable, 676
DIMALTTD system variable, 676
DIMALTTZ system variable, 676
DIMALTU system variable, 676
DIMALTZ system variable, 676
DimAngular object, 238–39

DimensionLineColor property, 637
ExtensionLineColor property, 637
TextColor property, 637

DIMAPOST system variable, 676
DimArcLength object, 637
DIMASO system variable, 676
DIMASSOC system variable, 676
DIMASZ system variable, 676
DIMATFIT system variable, 676
DIMAUNIT system variable, 121, 676

DIMAZIN system variable, 676
DIMBLK system variable, 677
DIMBLK1 system variable, 677
DIMBLK2 system variable, 677
DIMCEN system variable, 677
DIMCLRD system variable, 247, 677
DIMCLRE system variable, 677
DIMCLRT system variable, 247, 677
DIMDEC system variable, 677
DimDiametric object, 239, 241, 637
DIMDLE system variable, 677
DIMDLI system variable, 677
DIMDSEP system variable, 677
dimension object

AltTolerancePrecision property, 641
AltUnitsFormat property, 643
AltUnitsPrecision propert, 641
Arrowhead1Type property, 639
Arrowhead2Type property, 639
ExtensionLineColor property, 637
ExtensionLineweight property, 651
Fit property, 640
HorizontalTextPosition property, 641
UnitsFormat property, 641

Dimension parameter, CopyFrom method,
232

DimensionLineColor property
AcadDim3PointAngular object, 485
AcadDimAligned object, 488
AcadDimArcLength object, 494
AcadDimDiametric object, 499
AcadDimRadial object, 506, 515
AcadDimRadialLarge object, 510
AcadLeader object, 543, 637
AcadTolerance object, 610, 637
Dim3PointAngular object, 637
DimAligned object, 637
DimAngular object, 637
DimArcLength object, 637
DimDiametric object, 637
DimRadial object, 637
DimRadialLarge object, 637
DimRotated object, 637
Leader object, 637
Tolerance object, 637

DimensionLineExtend property
AcadDimAligned object, 489
AcadDimArcLength object, 494
AcadDimRadial object, 515

DimensionLineWeight property
AcadDim3PointAngular object, 485
AcadDimAligned object, 489
AcadDimArcLength object, 494
AcadDimDiametric object, 499
AcadDimRadial object, 506, 515
AcadDimRadialLarge object, 510
AcadLeader object, 543, 651

■INDEX 709

5793idx_final.qxd 8/24/05 12:04 AM Page 709

dimensions
CopyFrom method, 232
creating

Dim3PointAngular object, 235–36
DimAligned object, 236, 238
DimAngular object, 238–39
DimDiametric object, 239, 241
DimOrdinate object, 241–42
DimRadial object, 242, 244
DimRotated object, 244–45
overview, 235

DimStyle object, 231–32
overview, 231
setting dimension styles, 232
Tolerance object, 245–47
using dimension styles

ActiveDimStyle property, 234
overview, 233
StyleName property, 233–34

DIMEXE system variable, 677
DIMEXO system variable, 677
DIMFIT system variable, 677
DIMFRAC system variable, 677
DIMGAP system variable, 247, 677
DIMJUST system variable, 677
DIMLDRBLK system variable, 677
DIMLFAC system variable, 677
DIMLIM system variable, 677
DimLine1Suppress property,

AcadDim3PointAngular object, 485
DimLine1Suppress property, AcadDimAligned

object, 489
DimLineInside property

AcadDim3PointAngular object, 485
AcadDimAligned object, 489
AcadDimArcLength object, 494
AcadDimRadial object, 515

DimLineSuppress property
AcadDimRadial object, 506, 515
AcadDimRadialLarge object, 510

DimLocationPoint parameter, AddDimRotated
method, 244

DIMLUNIT system variable, 677
DIMLWD system variable, 677
DIMLWE system variable, 677
DimOrdinate object, 241–42

ExtensionLineColor property, 637
TextColor property, 637

DIMPOST system variable, 677
DimRadial object, 242, 244, 637
DimRadialLarge object, 637
DIMRND system variable, 677
DimRotated object, 244–45

DimensionLineColor property, 637
ExtensionLineColor property, 637
TextColor property, 637

DIMSAH system variable, 677
DIMSCALE system variable, 677
DIMSD1 system variable, 677

DIMSD2 system variable, 677
DIMSE1 system variable, 677
DIMSE2 system variable, 677
DIMSHO system variable, 677
DIMSOXD system variable, 677
DimStyle object, 231–32
DimStyle parameter, CopyFrom method, 232
DIMSTYLE system variable, 678
DimStyleName parameter

Add method, 231
StyleName property, 233

DimStyleObject parameter, ActiveDimStyle
property, 234

DimStyles collection, 231
DimStyles property, 518

AcadDatabase object, 479
AcadDocument object, 522

DIMTAD system variable, 678
DIMTDEC system variable, 678
DIMTFAC system variable, 678
DIMTIH system variable, 678
DIMTIX system variable, 678
DIMTM system variable, 678
DIMTMOVE system variable, 678
DIMTOFL system variable, 678
DIMTOH system variable, 678
DIMTOL system variable, 678
DIMTOLJ system variable, 678
DIMTP system variable, 678
DIMTSZ system variable, 678
DIMTVP system variable, 678
DIMTXSTY system variable, 678
DIMTXT system variable, 247, 678
DIMTXTSTY system variable, 247
DIMTZIN system variable, 678
DIMUNIT system variable, 678
DIMUPT system variable, 678
DIMZIN system variable, 678
Direction property

AcadPViewport object, 582
AcadTable object, 603
AcadView object, 622
AcadViewport object, 623
Add method, 323
Viewport coordinates, 329–30
ViewPort object, 174

DirectionVector property
AcadRay object, 585
AcadTolerance object, 610
AcadXline object, 626

Displacement parameter, TranslateCoordinates
method, 135

Display method, 335–36, 519, 581
display properties, of Image control, 65
Display property, AcadPreferences object, 568
DisplayGrips property,

AcadPreferencesSelection object, 577
DisplayGripsWithinBlocks property,

AcadPreferencesSelection object, 577

■INDEX710

5793idx_final.qxd 8/24/05 12:04 AM Page 710

DisplayLayoutTabs property,
AcadPreferencesDisplay object, 568

DisplayLocked property, AcadPViewport object,
582

DisplayOLEScale property,
AcadPreferencesSystem object, 578

DisplayPlotPreview method, 338–39, 556
DisplayPlotPreview property, AcadPlot object,

657
DisplayScreenMenu property,

AcadPreferencesDisplay object, 569
DisplayScrollBars property,

AcadPreferencesDisplay object, 569
DisplaySilhouette property,

AcadDatabasePreferences object, 481
DISPSILH system variable, 678
Distance parameter

DistanceToReal method, 131
PolarPoint method, 133
RealToString method, 132

DISTANCE system variable, 678
DistanceToReal method

AcadUtility object, 666
parameters, 131

DistanceToReal method, Utility object, 130–31
DistanceToReal property, AcadUtility object,

618
DistBetweenColumns parameter,

ArrayRectangular method, 222
DistBetweenLevels parameter,

ArrayRectangular method, 222
DistBetweenRows parameter, ArrayRectangular

method, 222
DLL function, 394
Do Until.Loop and Do Loop.Until, 38–39
Do While.Loop, 37–38
Dock method

AcadToolbar object, 612, 666
parameters, 381

DockedVisibleLines property,
AcadPreferencesDisplay object, 569

docking toolbars, 381–82
DockStatus parameter, Dock method, 381
DockStatus property, AcadToolbar object, 613,

666
Document object, 80, 88, 126, 254, 337, 340, 343,

408
Document parameter, CopyFrom method, 232
Document property, AcadObject object, 450
document-level events

Activate and Deactivate events, 73
BeginClose and BeginDocClose event, 72
BeginCommand and EndCommand events,

71–72
BeginOpen and EndOpen events, 72
BeginSave and EndSave events, 73
overview, 70–71

Documents property, AcadApplication object,
463

Do.Loop While, 38
DONUTID system variable, 678
DONUTOD system variable, 678
Double data type, 25, 28
Drafting property, AcadPreferences object, 568
DRAGMODE system variable, 678
DRAGP1 system variable, 678
DRAGP2 system variable, 678
Drawing Objects, 451
drawing objects

circular objects
Arc object, 145–46
Circle object, 147–48
Ellipse object, 148, 150
overview, 145

Hatch object, 162–64
line objects

Line object, 150–51
LWPolyline object, 151–52, 154
MLine object, 154–55
overview, 150
Polyline object, 155–58
Ray object, 158–59
Spline object, 160–61
XLine object, 161–62

ModelSpace and PaperSpace collections,
144–45

MText object, 165–66
overview, 143–44
Point object, 166–68
Region object, 168–70
Solid object, 170–71
Text object, 171–72

Drawing Objects object, Color property, 637
drawing security

Digital Signatures feature, 383–84
Action property, 384–85
Algorithm property, 385
Issuer property, 385–86
ProviderName property, 386
SerialNumber property, 386
Subject property, 386–87
TimeServer property, 387

overview, 383
Password Protection feature, 387–89

drawing template file path, 79
DrawingDirection property, AcadMText object,

554, 645
DRAWORDERCTL system variable, 678
Drive object, FSO, 412
DriversPath property, AcadPreferencesFiles

object, 572
DropDown Combo style, 62
DropDown List style, 61
drop-down toolbar button, 56
DRSTATE system variable, 679
DTEXTED system variable, 679
DWGCHECK system variable, 679
DWGCODEPAGE system variable, 679

■INDEX 711

5793idx_final.qxd 8/24/05 12:04 AM Page 711

DWGNAME system variable, 679
DWGPREFIX system variable, 679
DWGPROPS dialog box, 428
DWGTITLED system variable, 679
DWORD data type declaration, 392
dynamic arrays, 30–31
dynamic blocks, 304–5
DYNDIGRIP system variable, 679
DYNDIVIS system variable, 679
DYNMODE system variable, 679
DYNPICOORDS system variable, 679
DYNPIFORMAT system variable, 679
DYNPIVIS system variable, 679
DYNPROMPT system variable, 679
DYNTOOLTIPS system variable, 679

■E
E system variables, 680
early-bound objects, 21
Edge parameter

GetCellGridColor method, 635
GetCellGridLineWeight method, 636
GetCellGridVisibility method, 636

EDGEMODE system variable, 679
Edit button, Macros dialog box, 19
editing objects

with methods
copying objects, 206
deleting objects, 206–7
exploding objects, 207–8
highlighting entities, 208–9
mirroring objects, 209–12
moving objects, 212–13
object arrays, 219–23
offsetting objects, 213–14
overview, 205
rotating objects, 215–17
scaling objects, 218–19

overview, 205
with properties

changing object’s layer, 226
changing object’s layer, 227
changing object’s visibility, 228
color, 223–24, 226
Linetype, 227–28
overview, 223
TrueColor property, 225–26
Update method, 229

editing solids
Boolean operations, 194–95
interference operation, 196–97
overview, 194
sectioning solids, 199, 201
slicing solids, 198–99

editor, VBA, commands, 22
ElevateOrder method, AcadSpline object,

593

Elevation property
AcadHatch object, 532
AcadLWPolyline object, 548
AcadPolyline object, 563

ELEVATION system variable, 679
ElevationModelSpace property

AcadDatabase object, 479
AcadDocument object, 522

ElevationPaperSpace property
AcadDatabase object, 480
AcadDocument object, 522

Ellipse object, 148, 150, 214
elliptical 3-D objects

elliptical cone, 183, 185
elliptical cylinder, 185–86
overview, 183

embedded projects, 17
Enable Auto Embedding option, 20
Enable Macro Virus Protection option, 20
Enable property, AcadPopupMenuItem object,

566
Enabled property, of Frame control, 64
EnableStartupDialog property

AcadPreferencesSystem object, 578
PreferencesSystem object, 82

End If keywords, 35
end of file (EOF) marker, 38
EndAngle parameter, AddArc method, 145
EndAngle property

AcadArc object, 466
AcadEllipse object, 527

EndCommand event, 71–72
AcadApplication object, 465
AcadDocument object, 524

EndLISP event
AcadApplication object, 465
AcadDocument object, 524

EndModal event, AcadApplication object, 465
EndOpen event, 72, 465
EndParameter property, AcadEllipse object, 527
EndPlot event

AcadApplication object, 465
AcadDocument object, 524

EndPoint parameter
AddLine method, 150
AngleFromXAxis method, 132

EndPoint property
AcadArc object, 466
AcadEllipse object, 527
AcadLine object, 545

EndSave event
AcadApplication object, 465
AcadDocument object, 524

EndShortcutMenu event, AcadDocument
object, 524

EndSubMenuLevel property,
AcadPopupMenuItem object, 566

EndTangent parameter, AddSpline method, 160
EndTangent property, AcadSpline object, 595

■INDEX712

5793idx_final.qxd 8/24/05 12:04 AM Page 712

EndUndoMark method, AcadDocument object,
519

ENTERPRISEMENU system variable, 679
Entities parameter, AddItem and RemoveItem

method, 274, 280
EntityColor property, AcCmColor object, 629
EntityName property, AcadEntity object, 454,

645
EntityType property, AcadEntity object, 454
EntryName parameter, Bind method, 309
Erase method, 207, 276–77, 589
Err object

Clear property, 52–53
Description property, 51
Number property, 50, 52
overview, 51

error handlers, 128
Eval method, AcadApplication object, 462
Evaluate method

AcadHatch object, 532
AcadLeader object, 542
Hatch object, 164

Event procedure, 33
event procedures, 2
event-driven vs. procedural programming, 2–3
events, 1–2, 46

application-level, 67–69
document-level

Activate and Deactivate events, 73
BeginClose and BeginDocClose event, 72
BeginCommand and EndCommand

events, 71–72
BeginOpen and EndOpen events, 72
BeginSave and EndSave events, 73
overview, 70–71

object-level, 73–74
overview, 67

Excel. See Microsoft Excel
Excel.WorkSheet object data type, 405
exceptions, 90, 128
Exit Function statement, 51
Exit Property statement, 51
Exit Sub statement, 51
exiting

control structures, 41
Sub or Function procedure, 42

EXPERT system variable, 679
explicit declaration, of variables, 24
EXPLMODE system variable, 679
Explode method, 166, 170, 207

Acad3DPolyline object, 459
AcadBlockReference object, 476
AcadLWPolyline object, 547
AcadMInsertBlock object, 551
AcadPolygonMesh object, 559
AcadPolyline object, 561
AcadRegion object, 586
for manipulating and defining blocks,

298–99

exploding objects, 207–8
Export File option, 12
Export method

AcadDocument object, 520
LayerStateManager object, 630

ExportProfile method, AcadPreferencesProfiles
object, 576

extended data (XData), 587
ExtensionLineColor property

AcadDim3PointAngular object, 485
AcadDimAligned object, 489
AcadDimArcLength object, 494
AcadDimOrdinate object, 503
AcadDimRadial object, 515
Dim3PointAngular object, 637
DimAligned object, 637
DimAngular object, 637
DimArcLength object, 637
dimension objects, 637
DimOrdinate object, 637
DimRotated object, 637

ExtensionLineExtend property
AcadDim3PointAngular object, 485
AcadDimAligned object, 489
AcadDimArcLength object, 494
AcadDimRadial object, 515

ExtensionLineOffset property
AcadDim3PointAngular object, 485
AcadDimAligned object, 489
AcadDimArcLength object, 495
AcadDimOrdinate object, 503
AcadDimRadial object, 515

ExtensionLineWeight property
AcadDim3PointAngular object, 485
AcadDimAligned object, 489
AcadDimArcLength object, 495
AcadDimOrdinate object, 503
AcadDimRadial object, 515

external applications, connecting to
making the connection, 403–5
Microsoft Access database

advanced database issues, 411
closing the connection, 410
connecting database files, 408–9
connectivity automation objects, 411
overview, 408
retrieving set of records, 409
working with other databases, 410–11
working with services and other APIs,

411, 413
writing values to database file, 410

Microsoft Excel
accessing worksheets, 406
creating workbooks, 405
creating worksheets, 405
overview, 405
saving and exiting, 406
writing and reading cells, 406

■INDEX 713

5793idx_final.qxd 8/24/05 12:04 AM Page 713

external applications, connecting to
(continued)

Microsoft Word
adding text to documenst, 407
creating documents, 407
overview, 407
saving and exiting, 408
setting document header and footer, 408
setting margins, 407
setting page orientation, 407

overview, 403
external modeling kernel, 173
external references (Xrefs), 293, 303, 305

attaching, 306–7
binding, 309–10
detaching, 307
reloading, 308–9
unloading, 307

externally referenced block, 286
ExtLine1Point property,

AcadDim3PointAngular object, 485
ExtLine1PointExtLine2Point property,

AcadDimAligned object, 489
ExtLine1PointExtLine2Point property,

AcadDimArcLength object, 495
ExtLine1StartPoint property, AcadDimAngular

object, 492
ExtLine1Suppress property,

AcadDim3PointAngular object, 485
ExtLine1Suppress property, AcadDimAligned

object, 489
ExtLine2StartPoint property, AcadDimAngular

object, 492
EXTMAX system variable, 680
EXTMIN system variable, 680
EXTNAMES system variable, 680
extruded solid objects, 187, 189–91

■F
F system variables, 680
FaceCenter4 parameter, AddWedge method,

182
FACETRATIO system variable, 680
FACETRES system variable, 680
Fade property, AcadRasterImage object, 584
False (zero), 35
False Boolean A parameter, 198
False Boolean parameter,

RegenerateTableSuppressed property,
416

Feature property, AcadFileDependency object,
529

fences, 270
FIELDDISPLAY system variable, 680
FIELDEVAL system variable, 680
FieldLength property, AcadAttribute object, 467
File Dependency List, 529
FILEDIA system variable, 680

FileName parameter
AttachExternalReference method, 306
SaveAs method, 361
WBlock method, 300

FileName property, AcadFileDependency
object, 529

files, adding, removing and saving, 12
Files property, AcadPreferences object, 568
FileSize property, AcadFileDependency object,

529
FileSystemObject (FSO), 412
FILLETRAD system variable, 680
FILLMODE system variable, 171, 680
filter operators, 265
Filter parameter, OpenFile dialog box, 397
FilterCodes parameter

Select method, 262
SelectAtPoint method, 269
SelectOnScreen method, 267

FilterData parameter, SelectByPolygon method,
270

FilterType parameter, SelectByPolygon method,
270

FilterValues parameter
Select method, 262
SelectAtPoint method, 269
SelectOnScreen method, 267

FingerprintGUID property,
AcadFileDependency object, 529

FirstPoint parameter, AddXline method, 161
Fit property

AcadDim3PointAngular object, 486
AcadDimAligned object, 489
AcadDimArcLength object, 495
AcadDimDiametric object, 500
AcadDimRadial object, 507, 515
AcadDimRadialLarge object, 511
dimension object, 640

FitPoints parameter, AddSpline method, 160
FitPoints property, AcadSpline object, 595
FitTolerance property, AcadSpline object, 595
fixed-length arrays, 30
Float method, 381
floating toolbars, 381–82
FloatingRows property, AcadToolbar object, 613
FlowDirection property, AcadTable and

AcadTableStyle object objects, 603, 605,
661

Flyout property, AcadToolbarItem object, 614
FlyoutButton parameter, AddToolbarButton

method, 377
FONTALT system variable, 680
FontFile property, 252

AcadTextStyle object, 608
TextStyle object, 249

FontFileMap property, AcadPreferencesFiles
object, 572

FontFileName parameter, FontFile property,
252

■INDEX714

5793idx_final.qxd 8/24/05 12:04 AM Page 714

FONTMAP system variable, 680
ForceLineInside property

AcadDim3PointAngular object, 486
AcadDimAligned object, 489
AcadDimDiametric object, 500
AcadDimRadial object, 507, 515
AcadDimRadialLarge object, 511

forms, adding controls to, 58–60
For.Next, 39
FoundPath property, AcadFileDependency

object, 529
FractionFormat property

AcadDim3PointAngular object, 486
AcadDimAligned object, 490
AcadDimArcLength object, 495
AcadDimDiametric object, 500
AcadDimension object, 640
AcadDimOrdinate object, 503
AcadDimRadial object, 507, 516
AcadDimRadialLarge object, 511
AcadTolerance object, 610, 640

Frame control, 63–64
Frame data type, 25
Freeze property, AcadLayer object, 536
From parameter, TranslateCoordinates method,

135
Front viewport, 335
FRONTZ system variable, 680
FullCRCValidation property,

AcadPreferencesOpenSave object, 574
FullFileName property, AcadFileDependency

object, 529
FullName property

AcadApplication object, 463
AcadDocument object, 522

FULLOPEN system variable, 680
FULLPLOTPATH system variable, 680
FullScreenTrackingVector property,

AcadPreferencesDrafting object, 571
Function procedure, 32–34, 42
FunctionName, 33

■G
G system variables, 681
Gdi32.dll library, Windows API, 394
General tab, of Tools/Options dialog, 58
GenerateLayout method, AcadTable object, 597
GetAcadState method, AcadApplication object,

462
GetAlignment method, 635

AcadTable object, 597
AcadTableStyle object, 604

GetAllProfileNames method,
AcadPreferencesProfiles object, 576

GetAngle method, Utility object, 120–21
GetAngle property, AcadUtility object, 618
GetAttachmentPoint method, AcadTable object,

597

GetAttributes method, 315–16
AcadBlockReference object, 468, 476
AcadMInsertBlock object, 551

GetAutoScale method, AcadTable object, 597
GetBackgroundColor method

AcadTable object, 597
AcadTableStyle object, 604

GetBackgroundColorNone method
AcadTable object, 598
AcadTableStyle object, 604

GetBitmaps method, 379, 614
GetBlockAttributeValue method, AcadTable

object, 598
GetBlockRotation method, AcadTable object,

598
GetBlockScale method, AcadTable object, 598
GetBlockTableRecordId method, AcadTable

object, 598
GetBoundingBox method, AcadEntity object,

453
GetBulge method

AcadLWPolyline object, 547
AcadPolyline object, 562

GetCanonicalMediaNames method, 348, 538
GetCell method, AcadTable object, 631
GetCellAlignment method, 598, 635
GetCellBackgroundColor method, AcadTable

object, 598
GetCellBackgroundColorNone method,

AcadTable object, 598
GetCellContentColor method, AcadTable

object, 598
GetCellExtents method, AcadTable object, 598
GetCellGridColor method

AcadTable object, 598
Edge parameter, 635

GetCellGridLineWeight method, 598, 636
GetCellGridVisibility method, 598, 636
GetCellStyleOverrides method, AcadTable

object, 598
GetCellTextHeight method, AcadTable object,

599
GetCellTextStyle method, AcadTable object, 599
GetCellType method, AcadTable object, 599, 636
GetColor method, AcadTableStyle object, 604
GetColumnWidth method, AcadTable object,

599
GetConstantAttributes method

AcadBlockReference object, 476
AcadExternalReference object, 528
AcadMInsertBlock object, 551

GetContentColor method, AcadTable object,
599

GetControlPoint method, AcadSpline object,
594

GetCorner method, 119, 122
GetCorner property, AcadUtility object, 619
GetCustomByIndex method, 433

AcadSummaryInfo object, 596
SummaryInfo object, 432

■INDEX 715

5793idx_final.qxd 8/24/05 12:04 AM Page 715

GetCustomByKey method
AcadSummaryInfo object, 596
SummaryInfo object, 431–32

GetCustomScale method, 351–52, 538
GetDistance method, 114, 119–20, 122
GetDistance property, AcadUtility object, 619
GetEntity method, Utility object, 124–25
GetEntity property, AcadUtility object, 619
GetExtensionDictionary method, AcadObject

object, 450
GetFieldId method, AcadTable object, 599
GetFitPoint method, AcadSpline object, 594
GetFont method, 248–52, 608
GetFullDrawOrder property, AcadSortEntsTable

object, 592
GetGridColor method

AcadTable object, 599
GridLineType parameter, 647

GetGridLineWeight method
AcadTable object, 599
AcadTableStyle object, 604
GridLineType parameter, 647

GetGridLineWeight property, AcadTableStyle
object, 631

GetGridSpacing method
AcadPViewport object, 581
AcadViewport object, 623

GetGridVisibility method
AcadTable object, 599
AcadTableStyle object, 604
GridLineType parameter, 647

GetInput method, Utility object, 122–24
GetInput property, AcadUtility object, 619
GetInteger method, 117, 122
GetInteger property, AcadUtility object, 619
GetInterfaceObject method, AcadApplication

object, 462
GetInvisibleEdge method, Acad3DFace object,

458
GetKeyword method, Utility object, 115–16
GetKeyword property, AcadUtility object, 619
GetLocaleMediaName method, AcadLayout

and AcadPlotConfiguration objects,
538

GetLoopAt method, AcadHatch object, 532
GetMinimumColumnWidth method, AcadTable

object, 599
GetMinimumRowHeight method, AcadTable

object, 599
GetName property, AcadDictionary object, 483
GetObject property, AcadDictionary object, 483
GetOrientation method, 121–22
GetOrientation property, AcadUtility object, 619
GetPaperMargins method

AcadLayout object, 538
AcadPlotConfiguration object, 538
Layout object, 334

GetPaperSize method, 334, 348–50, 538
GetPlotDeviceNames method, AcadLayout and

AcadPlotConfiguration objects, 538

GetPlotStyleTableNames method, AcadLayout
and AcadPlotConfiguration objects,
538

GetPoint method, 122
GetPoint method, Utility object, 118
GetPoint property, AcadUtility object, 619
GetProjectFilePath method,

AcadPreferencesFiles object, 572
GetReal method, 112, 117–19, 122
GetReal property, AcadUtility object, 619
GetRelativeDrawOrder property,

AcadSortEntsTable object, 592
GetRemoteFile method, Utility object, 139
GetRemoteFile property, AcadUtility object, 619
GetRowHeight method, AcadTable object, 599
GetRowType method, AcadTable object, 658
GetSnapSpacing method

AcadPViewport object, 581
AcadViewport object, 623

GetString method, Utility object, 116–17
GetString property, AcadUtility object, 619
GetSubEntity method, Utility object, 125–26,

128
GetSubEntity property, AcadUtility object, 620
GetSubSelection method, AcadTable object, 599
GetText method, 416–17, 599
GetTextHeight method, 418–19, 599, 604
GetTextRotation method, AcadTable object,

600, 658
GetTextStyle method

AcadTable object, 600
AcadTableStyle object, 604

GetUCSMatrix method, AcadUCS object, 616
GetVariable method, 520, 671
GetWeight method, AcadSpline object, 594
GetWidth method

AcadLWPolyline object, 547
AcadPolyline object, 562

GetWindowToPlot method, AcadLayout and
AcadPlotConfiguration objects, 539

GetXData method, AcadObject object, 450
GetXRecordData method, AcadXRecord object,

627
GetXXX method, 122
GFANG system variable, 681
GFCLR1 system variable, 681
GFCLR2 system variable, 681
GFCLRLUM system variable, 681
GFCLRSTATE system variable, 681
GFNAME system variable, 681
GFSHIFT system variable, 681
global linetype scale (LTSCALE), 109
global variables, 26–27
Gradient1 property, AcadHatch object, 532
Gradient2 property, AcadHatch object, 532
GradientCentered property, AcadHatch object,

533
GradientColor1 property, Hatch object, 638
GradientColor2 property, Hatch object, 638
GradientName property, AcadHatch object, 533

■INDEX716

5793idx_final.qxd 8/24/05 12:04 AM Page 716

GraphicsWinLayout-BackgrndColor property,
AcadPreferencesDisplay object, 569

GraphicsWinModel-BackgrndColor property,
AcadPreferencesDisplay object, 569

Green property, AcCmColor object, 629
grid density, 58
GridLineType parameter

GetGridColor method, 647
GetGridLineWeight method, 647
GetGridVisibility method, 647

GridLineTypes parameter
SetGridColor method, 647
SetGridLineWeight method, 647
SetGridVisibility method, 647

GRIDMODE system variable, 681
GridOn property

AcadPViewport object, 582
AcadViewport object, 623

GRIDUNIT system variable, 681
GRIPBLOCK system variable, 681
GRIPCOLOR system variable, 681
GripColorSelected property

AcadPreferencesSelection object, 637
PreferencesSelection object, 637

GripColorSelected property,
AcadPreferencesSelection object, 577

GripColorUnselected property
AcadPreferencesSelection object, 637
PreferencesSelection object, 637

GripColorUnselected property,
AcadPreferencesSelection object, 577

GRIPDYNCOLOR system variable, 681
GRIPHOT system variable, 681
GRIPHOVER system variable, 84–85, 681
GRIPOBJLIMIT system variable, 681
GRIPS system variable, 681
GripSize property, AcadPreferencesSelection

object, 578
GRIPSIZE system variable, 681
GRIPTIPS system variable, 681
Group object, 223, 226

adding, 279
Color property, 637

groups
accessing and iterating, 279–80
adding and removing items, 280, 282
adding Group object, 279
Delete method, 282–83
overview, 278

Groups property
AcadDatabase object, 480
AcadDocument object, 522

■H
H system variables, 682
HALOGAP system variable, 682
Handle property

AcadObject object, 450
of Linetype object, 108

handles, 2

HANDLES system variable, 682
HandleToObject method

AcadDatabase object, 479
AcadDocument object, 520

HasAttributes property
AcadBlockReference object, 477
AcadExternalReference object, 528
AcadMInsertBlock object, 551

HasExtensionDictionary property, AcadObject
object, 450

HasLeader property, AcadDimArcLength object,
495

HasSpaces parameter, of GetString method, 116
HasSubSelection property, AcadTable object,

603
Hatch object, 162–64, 647

GradientColor1 property, 638
GradientColor2 property, 638
HatchObjectType property, 647

HatchObjectType property
AcadHatch object, 533
Hatch object, 647

HatchStyle property, AcadHatch object, 533, 648
HDC data type declaration, 392
HeaderSuppressed property

AcadTable object, 603
AcadTableStyle object, 605

Height parameter
AddAttribute method, 311
AddBox method, 175
AddCone method, 176
AddCylinder method, 178
AddEllipticalCone method, 183
AddEllipticalCylinder method, 185
AddExtrudedSolid method, 187
AddPViewport method, 331
AddText method, 171
AddWedge method, 182
RefreshPlotDeviceInfo method, 349

Height property
AcadApplication object, 463
AcadAttribute object, 467
AcadMText object, 554
AcadPViewport object, 582
AcadRasterImage object, 584
AcadShape object, 590
AcadTable object, 603
AcadText object, 606
AcadTextStyle object, 608
AcadToolbar object, 613
AcadView object, 622
AcadViewport object, 623
Add method, 323
TextStyle properties, 253
UserForm, 57

helper functions
ConvertColorToString function, 443
ConvertLineweight function, 443
ConvertToWord function, 444
overview, 442

■INDEX 717

5793idx_final.qxd 8/24/05 12:04 AM Page 717

HelpFilePath property, AcadPreferencesFiles
object, 572

HelpString parameter, AddToolbarButton
method, 377

HelpString property
AcadPopupMenuItem object, 566
AcadToolbar object, 613
AcadToolbarItem object, 614
PopupMenuIem object, 372

HelpString text, 379
HIDEPRECISION system variable, 682
HIDETEXT system variable, 682
Highlight method, 208

AcadEntity object, 453
AcadObject object, 530
AcadSelectionSet object, 589

HIGHLIGHT system variable, 682
Highlighted parameter, Highlight method, 208
highlighting entities, 208–9
HistoryLines property, AcadPreferencesDisplay

object, 569
HitTest method, AcadTable object, 600
HMENU data type declaration, 392
HorizontalAlignment property

AcadAttribute object, 467, 648
AcadAttributeReference object, 648
AcadText object, 606, 648

HorizontalTextPosition property
AcadDimAligned object, 490
AcadDimArcLength object, 495
AcadDimDiametric object, 500
AcadDimRadial object, 507, 516
AcadDimRadialLarge object, 511
dimension object, 641

HorzCellMargin property
AcadTable object, 603
AcadTableStyle object, 605

HPANG system variable, 682
HPASSOC system variable, 682
HPBOUND system variable, 682
HPDOUBLE system variable, 682
HPDRAWORDER system variable, 682
HPGAPTOL system variable, 682
HPINHERIT system variable, 682
HPOBJWARNING system variable, 682
HPORIGIN system variable, 682
HPORIGINMODE system variable, 682
HPSCALE HPINHERIT system variable, 682
HPSPACE system variable, 682
hWnd, 2
HWND data type declaration, 392
HyperlinkBase property, AcadSummaryInfo

object, 596
HYPERLINKBASE system variable, 682
HyperlinkDisplayCursor property,

AcadPreferencesUser object, 579
HyperlinkDisplayTooltip property,

AcadPreferencesUser object, 580
Hyperlinks property, AcadEntity object, 454

■I
I system variables, 683
IAcadBlock3 interface, 635
IAcadMLine2 interface, 653
IdMap parameter, CopyObject method, 290–91
IDPair object, 291
i-drop technology, 141
If.Then statement, 35
If.Then.Else statement, 35
IgnoreCache parameter, GetRemoteFile

method, 139
Image control, 65
ImageFile property, AcadRasterImage object,

584
ImageFrameHighlight property,

AcadPreferencesDisplay object, 569
ImageHeight property, AcadRasterImage object,

584
IMAGEHLT system variable, 683
ImageVisibility property, AcadRasterImage

object, 584
ImageWidth property, AcadRasterImage object,

584
Immediate window, 7–8, 46–47
implicit declaration, of variables, 24
Import File dialog box, 12
Import method

AcadDocument object, 520
LayerStateManager object, 630

ImportProfile method, 83–84, 577
IncrementalSavePercent property, 79, 574
Index parameter

AddMenuItem method, 371
AddSeparator method, 372, 380
AddSubMenu method, 373
AddToolbarButton method, 377
GetCustomByIndex method, 433
InsertColumns method, 422
InsertInMenuBar method, 363
InsertMenuInMenuBar method, 366
InsertRows method, 420
Item method, 295
RemoveCustomByIndex method, 433
RemoveMenuFromMenuBar method, 368
SetCustomByIndex method, 434

Index property, 377
AcadPopupMenuItem object, 566
AcadToolbarItem object, 614

INDEXCTL system variable, 683
IndexOf method, AcadFileDependencies object,

529
individual linetype scale (CELTSCALE), 109
INETLOCATION system variable, 683
InitialDir parameter, OpenFile dialog box, 397,

399–400
InitializeUserInput method, Utility object,

113–15, 120, 122–23
InitializeUserInput property, AcadUtility object,

620

■INDEX718

5793idx_final.qxd 8/24/05 12:04 AM Page 718

inline error handling, 128
InputBox function, 111
INPUTHISTORYMODE system variable, 683
InputURL parameter

GetRemoteFile method, 139
IsURL method, 136

INSBASE system variable, 683
InsertBlock method, 286, 294–98, 468, 475
InsertColumns method, 421–22, 600
InsertInMenuBar method, 363, 564
InsertionPoint parameter

Add method, 289
AddAttribute method, 311
AddMInsertBlock method, 301
AddMText method, 165
AddTable method, 415
AddText method, 171
AddTolerance method, 245
AttachExternalReference method, 306
InsertBlock method, 295

InsertionPoint property
AcadAttribute object, 467
AcadBlockReference object, 477
AcadExternalReference object, 528
AcadMInsertBlock object, 551
AcadMText object, 554
AcadShape object, 590
AcadTable object, 603
AcadText object, 606
AcadTolerance object, 610

InsertLoopAt method, AcadHatch object, 532,
652

InsertMenuInMenuBar method, 366, 567
InsertRows method, 420–21, 600
INSNAME system variable, 683
INSUNITS system variable, 683
INSUNITSDEFSOURCE system variable, 683
INSUNITSDEFTARGET system variable, 683
INT data type declaration, 392
Integer data type, 25, 28
INTELLIGENTUPDATE system variable, 683
interference operation, 196–97
INTERSECTIONCOLOR system variable, 683
INTERSECTIONDISPLAY system variable, 683
IntersectWith method, AcadEntity object, 453,

646
intrinsic controls, 13
Invalid option keyword error message, 116
Invisible property, AcadAttribute object, 467
ISAVEBAK system variable, 683
ISAVEPERCENT system variable, 683
IsCloned property, AcadIDPair object, 536
IsLayerActive function, 93
IsLayout property, AcadBlock object, 476
IsMergedCells method, AcadTable object, 600
IsModified property, AcadFileDependency

object, 529
ISOLINES system variable, 683
ISOPenWidth property, AcadHatch object, 533,

649

IsOwnerXlated property, AcadIDPair object,
536

IsPartial property, AcadDimArcLength object,
495

IsPeriodic property, AcadSpline object, 595
IsPlanar property, AcadSpline object, 595
IsPrimary property, AcadIDPair object, 536
IsQuiescent property, AcadState object, 595
IsRational property, AcadSpline object, 595
IsRemoteFile method, Utility object, 140
IsRemoteFile property, AcadUtility object,

620
Issuer parameter, Issuer property, 385
Issuer property

Digital Signatures feature, 385–86
SecurityParams object, 628

IsURL method, Utility object, 136
IsURL property, AcadUtility object, 620
IsXref property, AcadBlock object, 476
Italic parameter

GetFont method, 251
SetFont method, 249

Item method
AcadBlock object, 475
AcadBlocks collection, 477
AcadDictionaries collection, 482
AcadDimStyles collection, 518
AcadDocuments collection, 525
AcadGroups collection, 531
AcadHyperlinks collection, 535
AcadLayers collection, 537, 617
AcadLayouts collection, 542
AcadLineTypes collection, 546
AcadMenuBar collection, 549
AcadMenuGroups object, 550
AcadObject object, 530
AcadPlotConfigurations collection, 542
AcadPopupMenu object, 564
AcadPopupMenus collection, 567
AcadRegisteredApplications collection,

588
AcadSelectionSet object, 589
AcadSelectionSets collection, 590
AcadTextStyles collection, 609
AcadToolbar object, 612
AcadToolbars collection, 615
AcadViewports collection, 625
AutoCAD object, 448
DimStyles collection, 231
Layers collection, 88
of Linetypes collection, 101
SelectionSets collection, 260

Item property, AcadDictionary object, 483
ItemNo property, 428
iterating

attribute definitions, 317–19
Blocks collection, 289
layers, 88–89

iteration, 88

■INDEX 719

5793idx_final.qxd 8/24/05 12:04 AM Page 719

■J
JogAngle ACAD_ANGLE property,

AcadDimRadialLarge object, 511
jogged radius dimension, 508
JogLocation property, AcadDimRadialLarge

object, 511
Justification property, AcadMLine object, 653

■K
Kernel32.dll library, Windows API, 394
Key parameter

AddCustomInfo method, 430
GetCustomByIndex method, 433
GetCustomByKey method, 431
RemoveCustomByKey method, 433
SetCustomByIndex method, 434
SetCustomByKey method, 434

Key property, AcadIDPair object, 536
Key0 property, 430
KeyboardAccelerator property,

AcadPreferencesUser object, 580, 650
KeyboardPriority property,

AcadPreferencesUser object, 580, 650
KeyDown event, 61
KeyLength property, SecurityParams object, 628
KeyPress event, 61
KeyUp event, 61
KeywordList parameter, InitializeUserInput

method, 113–14
Keywords property, AcadSummaryInfo object,

596
Knots property, AcadSpline object, 595

■L
L system variables, 685
Label control, 59–60
Label data type, 25
Label parameter

AddMenuItem method, 371
AddSubMenu method, 373

Label property, AcadPopupMenuItem object,
566

LabelTemplate object, Color property, 637
LargeButtons property, AcadToolbar object,

613, 615
LargeIconName parameter

GetBitmaps method, 379
SetBitmaps method, 379

LASTANGLE system variable, 684
LastHeight property, AcadTextStyle object, 608
LASTPOINT system variable, 684
LASTPROMPT system variable, 684
LastSavedBy property, AcadSummaryInfo

object, 596
late-bound objects, 21
LaunchBrowserDialog method, Utility object,

137–38
LaunchBrowserDialog property, AcadUtility

object, 620

layer data, 441–42
Layer object, 223
Layer object, Color property, 637
Layer Properties Manager dialog box, 91
Layer property

AcadEntity object, 454
AcadObject object, 530

Layer.Delete method, 97
LAYERFILTERALERT system variable, 684
LayerOn property, 94, 536
layers

accessing, 88
checking for existing layers, 89–90
colors, 98–99
creating, 91–92
deleting, 97
getting handle of, 98
iterating, 88–89
linetypes, 99–100
lineweights, 100
locking/unlocking, 95
making active, 92–94
making plottable, 96
of objects, changing, 226–27
overview, 87
renaming, 96
setting to be frozen or thawed, 95
turning on/off, 94–95

Layers collection object, 410, 441
Layers property

AcadDatabase object, 480
AcadDocument object, 522

Layers table, 409
LayerStateManager object, 629–30
layout and plot configurations, Plot object, 337

controlling plot parameters, 347–50
plot configurations, 343–47
plot scale, 350–54
plotting drawing, 338–43

layout block, 286
Layout object, 334, 337, 339–40, 344
Layout property, AcadBlock object, 476
LayoutCreateViewport property,

AcadPreferencesDisplay object, 569
LayoutCrosshairColor property,

AcadPreferencesDisplay object, 569
LayoutDisplayMargins property,

AcadPreferencesDisplay object, 569
LayoutDisplayPaper property,

AcadPreferencesDisplay object, 569
LayoutDisplayPaperShadow property,

AcadPreferencesDisplay object, 569
LAYOUTREGENCTL system variable, 684
Layouts property

AcadDatabase object, 480
AcadDocument object, 522
Document object, 541

LayoutShowPlotSetup property,
AcadPreferencesDisplay object, 569

■INDEX720

5793idx_final.qxd 8/24/05 12:04 AM Page 720

LayoutSwitched event, AcadDocument object,
524

LBound function, 30
Leader object, 256–58, 637
Leader parameter, CopyFrom method, 232
Leader1Point property, AcadDimArcLength

object, 495
Leader2Point property, AcadDimArcLength

object, 496
LeaderEndPoint parameter, AddDimOrdinate

method, 241
LeaderLength parameter

AddDimDiametric method, 240
AddDimRadial method, 243

LeaderLength property
AcadDimDiametric object, 500
AcadDimRadial object, 507

Left parameter, Float method, 381
Left property

AcadToolbar object, 613
UserForm, 57–58

Length parameter
AddBox method, 175
AddWedge method, 182

Length property, AcadLine object, 545
LensLength property, AcadPViewport object,

582
LENSLENGTH system variable, 684
Lib clause, Declare statement, 393
libraries, Windows API, 393
LicenseServer property, AcadPreferencesFiles

object, 573
lifetime, 26
lightweight polylines, 151
LIMCHECK, 114, 684
Limits property

AcadDatabase object, 480
AcadDocument object, 522

LIMMAX system variable, 684
LIMMIN system variable, 684
LINE command, 71
line continuation character, 43
line objects

Line object, 73, 150–51
LWPolyline object, 151–52, 154
MLine object, 154–55
overview, 150
Polyline object, 155–58
Ray object, 158–59
Spline object, 160–61
XLine object, 161–62

LinearScaleFactor property
AcadDimAligned object, 490
AcadDimArcLength object, 496
AcadDimDiametric object, 500
AcadDimOrdinate object, 503
AcadDimRadial object, 507, 516
AcadDimRadialLarge object, 511

LineSpacingFactor property, AcadMText object,
554

LineSpacingStyle property, AcadMText object,
554, 650

Linetype, 227–28
Linetype dialog box, 103
linetype library files, 103
Linetype object, 227
Linetype property

AcadEntity object, 454
AcadLayer object, 536
AcadObject object, 530
Layer object, 99

LinetypeGeneration property
AcadLWPolyline object, 548
AcadPolyline object, 563

linetypes
accessing, 101
changing description, 108–9
checking for existing linetypes, 102–3
deleting, 107
getting linetype’s handle, 108
loading, 103–4
making active, 105–6
overview, 100–101
renaming, 106
scaling, 109–10

Linetypes property
AcadDatabase object, 480
AcadDocument object, 522

LinetypeScale property
AcadEntity object, 454
AcadObject object, 530

Lineweight property
AcadDatabasePreferences object, 481, 651
AcadEntity object, 454, 651
AcadGroup object, 651
AcadLayer object, 537, 651
AcadObject object, 530

LineweightDisplay property,
AcadDatabasePreferences object, 481

LISPCancelled event
AcadApplication object, 465
AcadDocument object, 524

LISPINIT system variable, 684
ListARX method, AcadApplication object, 462
ListBox control, 62
ListBox data type, 25
lngColor color, 224
Load method

AcadLineTypes collection, 546
AcadMenuGroups object, 550
MenuGroups collection, 356–57

LoadAcadLspInAllDocuments property,
AcadPreferencesSystem object, 579

LoadARX method, AcadApplication object, 462
LoadDVB method, AcadApplication object, 462
loading

linetypes, 103–4
menu groups, 356, 358–59
and running applications, 15–17

■INDEX 721

5793idx_final.qxd 8/24/05 12:04 AM Page 721

LoadShapeFile method, AcadDocument object,
520

local scope, 25
local variables, 26
LOCALE system variable, 684
LocaleID property, AcadApplication object, 463
LocalFile parameter

GetRemoteFile method, 139
IsRemoteFile method, 140
PutRemoteFile method, 140

LOCALROOTPREFIX system variable, 684
Locals window, 48
Lock property, AcadLayer object, 537
locking/unlocking layers, 95
LOCKUI system variable, 684
LOGFILEMODE system variable, 684
LOGFILENAME system variable, 684
LogFileOn property, AcadPreferencesOpenSave

object, 574
LogFilePath property, AcadPreferencesFiles

object, 573
LOGFILEPATH system variable, 684
LOGINNAME system variable, 684
Long data type, 28
LONG data type declaration, 392
loop structures

Do Until.Loop and Do Loop.Until, 38–39
Do While.Loop, 37–38
Do.Loop While, 38
For.Each.Next, 40
For.Next, 39
overview, 37

LowerLeftCorner property
AcadViewport object, 623
Viewport coordinates, 328–29

LPARAM data type declaration, 392
LPCSTR data type declaration, 392
LPDWORD data type declaration, 392
LPINT data type declaration, 392
LPRECT data type declaration, 392
LPSTR data type declaration, 392
LPUINT data type declaration, 392
LPVOID data type declaration, 393
LPWORD data type declaration, 393
LRESULT data type declaration, 393
LTSCALE system variable, 684
LUNITS system variable, 131, 684
LUPREC system variable, 684
LWDEFAULT system variable, 684
LWDISPLAY system variable, 684
LWPolyline object, 151–52, 154
LWSCALE system variable, 685
LWUNITS system variable, 685
Lz32.dll library, Windows API, 394

■M
M system variables, 685
Macro parameter

AddMenuItem method, 371
AddToolbarButton method, 377

Macro property
AcadPopupMenuItem object, 566
AcadToolbarItem object, 614

macros, 18
Macros dialog box, 19
MainDictionary property, AcadPreferencesFiles

object, 573
MajorAxis parameter, AddEllipse method, 148
MajorAxis property, AcadEllipse object, 527
MajorRadius property, AcadEllipse object, 527
managing projects. See projects, managing
Mask property, LayerStateManager object, 630
mass properties, 201, 203
Matrix parameter, GetSubEntity method, 126
MaxActiveViewports property,

AcadDatabasePreferences object, 481
MAXACTVP system variable, 325, 327, 685
MaxAutoCADWindow property,

AcadPreferencesDisplay object, 570
MAXSORT system variable, 685
MBUTTONPAN system variable, 685
MClose property, AcadPolygonMesh object, 560
MDensity property, AcadPolygonMesh object,

560
MEASUREINIT system variable, 685
measurement annotations. See dimensions
Measurement property

AcadDim3PointAngular object, 486
AcadDimAligned object, 490
AcadDimArcLength object, 496
AcadDimDiametric object, 500
AcadDimOrdinate object, 503
AcadDimRadial object, 507, 516
AcadDimRadialLarge object, 511

MEASUREMENT system variable, 685
MENU command, 357
Menu Customization dialog box, 358
MenuBar collection, 356, 362
MenuBar property, AcadApplication object, 463
MENUCTL system variable, 685
MENUECHO system variable, 685
MenuFileName parameter, Load method, 357
MenuFileName property, AcadMenuGroup

object, 550
MenuFileType parameter, SaveAs method, 361
MenuGroup object

accelerator keys, 362
editing menus

adding menu items to shortcut menu, 375
adding menu items to the shortcut menu,

376
adding new menu items, 370–72
adding separators, 372
creating cascading submenus, 372, 374
creating new menus, 369–70
deleting menu items, 374–75
overview, 369

editing toolbars
adding separators, 380
adding toolbar buttons, 377–79

■INDEX722

5793idx_final.qxd 8/24/05 12:04 AM Page 722

creating new toolbars, 376–77
defining toolbar button image, 379–80
deleting toolbars and toolbar buttons,

382
floating and docking toolbars, 381–82
overview, 376

menu bar
adding menus to, 363–65, 367
overview, 362–63
removing menus from, 367–68

menu groups
saving, 361–62
unloading, 362

overview, 359–60
MenuGroups property, AcadApplication object,

463
MENULOAD command, 357, 362
MenuName parameter

Add method, 369
InsertMenuInMenuBar method, 366

MENUNAME system variable, 685
Menus property, AcadMenuGroup object, 550,

566
MENUUNLOAD command, 362
Merge parameter, Bind method, 309
MergedCells method, AcadTable object, 600
Message parameter, 113
messages, 1–2
Method function, 49
methods, editing objects with

copying objects, 206
deleting objects, 206–7
exploding objects, 207–8
highlighting entities, 208–9
mirroring objects, 209–12
moving objects, 212–13
object arrays, 219–23
offsetting objects, 213–14
overview, 205
rotating objects, 215–17
scaling objects, 218–19

Microsoft Access database
advanced database issues, 411
closing the connection, 410
connecting database files, 408–9
connectivity automation objects, 411
overview, 408
retrieving set of records, 409
working with other databases, 410–11
working with services and other APIs, 411,

413
writing values to database file, 410

Microsoft ActiveX Data Objects (ADO) library,
408

Microsoft Document Imaging (MDI), 343
Microsoft Excel

accessing worksheets, 406
class identification, 405
creating workbooks, 405
creating worksheets, 405

overview, 405
saving and exiting, 406
writing and reading cells, 406

Microsoft MSDN Web site, 410
Microsoft Word

adding text to documenst, 407
class identification, 405
creating documents, 407
creating new document, 440
creating session of, 439–40
creating table with document, 440
overview, 407
saving and exiting, 408
setting document header and footer, 408
setting margins, 407
setting page orientation, 407

Microsoft Word Object Library, 438
Microsoft Word Table object, 444
Microsoft’s Microsoft Data Access and Storage

Developer CenterWeb site, 410
MinimumTableHeight property, AcadTable

object, 603
MinimumTableWidth property, AcadTable

object, 603
MinorAxis property, AcadEllipse object, 527
MinorRadius property, AcadEllipse object, 527
MInsertBlock objects, 301–5
Mirror method, 209
Mirror3D method, 211, 453
mirroring objects, 209–12
MirrorObject method, AcadEntity object, 453
MIRRTEXT system variable, 210, 685
MLine object, 154–55
Mode parameter

AddAttribute method, 311
Select method, 262
SelectByPolygon method, 270

Mode property, AcadAttribute object, 467, 634
Model Coordinate System (MCS), 126
*MODEL_SPACE block name, 553
*MODEL_SPACE layout, 287
ModelCrosshairColor property,

AcadPreferencesDisplay object, 570
ModelSpace collection, 143
ModelSpace property

AcadDatabase object, 480
AcadDocument object, 523

model-space viewport, 325, 327–30
ModelType parameter, Add method, 344
ModelType property, AcadLayout and

AcadPlotConfiguration objects, 540
MODEMACRO system variable, 685
Modified event, 73–74, 451
module variables, 26
modules

Class, 32
overview, 31
Standard, 31
UserForm, 31

■INDEX 723

5793idx_final.qxd 8/24/05 12:04 AM Page 723

MomentOfInertia property
Acad3DSolid object, 461
AcadRegion object, 586

Move method, 212, 453
MoveAbove property, AcadSortEntsTable object,

592
MoveBelow property, AcadSortEntsTable object,

592
MoveToBottom property, AcadSortEntsTable

object, 592
MoveToTop property, AcadSortEntsTable

object, 592
moving objects, 212–13
Mpr.dll library, Windows API, 394
MRUNumber property,

AcadPreferencesOpenSave object, 574
MsgBox dialog box, 61–62
MsgBox function, 111
MSOLESCALE system variable, 685
MSpace property, AcadDocument object, 519,

523, 581
MText object, 165–66, 248
MTEXTED system variable, 685
MTEXTFIXED system variable, 685
MTJIGSTRING system variable, 685
MultiPage control, 65
MVertexCount property, AcadPolygonMesh

object, 560
MYDOCUMENTSPREFIX system variable, 685

■N
N system variables, 686
Name parameter, Add method, 279, 343
Name parameter, SelectionSets collection, 260
Name property

AcadApplication object, 463
AcadBlock object, 476
AcadBlockReference object, 477
AcadDictionary object, 484
AcadDimStyle object, 518
AcadDocument object, 523
AcadExternalReference object, 528
AcadLayer object, 537
AcadLayout and AcadPlotConfiguration

objects, 540
AcadLineType object, 546
AcadMenuGroup object, 550
AcadMInsertBlock object, 551
AcadObject object, 530
AcadPopupMenu object, 565
AcadRasterImage object, 584
AcadRegisteredApplication object, 587
AcadSelectionSet object, 589
AcadShape object, 590
AcadTableStyle object, 605
AcadTextStyle object, 608
AcadToolbar object, 613
AcadToolbarItem object, 614
AcadUCS object, 617

AcadView object, 622
AcadViewport object, 623
AcadXRecord object, 627
ActiveLayer, 93
Block object, 292
Linetype object, 106

NameNoMnemonic property, AcadPopupMenu
object, 565

NameNoMneumonic property, 360
NClose property, AcadPolygonMesh object, 560
NDensity property, AcadPolygonMesh object,

561
Near override, 198, 200
Negative Boolean A parameter, 198
nested control structures, 40–41
nesting, 40
Netapi32.dll library, Windows API, 394
New method, AcadDocument object, 520
NewDimStyle object, 232
NewDrawing event, AcadApplication object,

465
NewOwner parameter, CopyObject method,

290
NOMUTT system variable, 686
nonuniform rational B-spline (NURBS) curve,

593
Norm parameter, TranslateCoordinates

method, 135
Normal property

AcadArc object, 466
AcadAttribute object, 467
AcadBlockReference object, 477
AcadCircle object, 478
AcadDimension object, 455
AcadEllipse object, 527
AcadExternalReference object, 528
AcadHatch object, 533
AcadLeader object, 543
AcadLine object, 545
AcadLWPolyline object, 548
AcadMInsertBlock object, 551
AcadMText object, 554
AcadPoint object, 558
AcadPolyline object, 563
AcadRegion object, 586
AcadShape object, 591
AcadSolid object, 592
AcadText object, 606
AcadTolerance object, 610
AcadTrace object, 616

NULL data type declaration, 393
Num Lock keys, 400–401
Number property, Err object, 50, 52
NumberOfColumns parameter

AddTable method, 415
ArrayRectangular method, 222

NumberOfControlPoints property, AcadSpline
object, 595

NumberOfCopies property, AcadPlot object,
557

■INDEX724

5793idx_final.qxd 8/24/05 12:04 AM Page 724

NumberOfFaces property, AcadPolyfaceMesh
object, 559

NumberOfFitPoints property, AcadSpline
object, 595

NumberOfLevels parameter, ArrayRectangular
method, 222

NumberOfLoops property, AcadHatch object,
533

NumberofObjects parameter, ArrayRectangular
method, 219

NumberOfRows parameter
AddTable method, 415
ArrayRectangular method, 222
Float method, 381

NumberOfVertices property, AcadPolyfaceMesh
object, 559

NumberOfWindows parameter, Split method,
327–28

NumCustomInfo method
AcadSummaryInfo object, 596
SummaryInfo object, 432

Numerator parameter
GetCustomScale method, 351
SetCustomScale method, 352

NVertexCount property, AcadPolygonMesh
object, 561

■O
O system variables, 686
object arrays

overview, 219
polar arrays, 219–21
rectangular arrays, 221–23

Object boxes, VBAIDE, 6
Object browser

embedded projects, 17
loading and running applications

Acaddoc.lsp, 16–17
Acad.dvb, 15–16
overview, 15

Object Grouping dialog box, 278
Object list box, 67
object parameter

Algorithm property, 385
Issuer property, 385
ProviderName property, 386
SecurityParams property, 386
Subject property, 387
TimeServer property, 387

Object parameter, StyleName property, 233, 254
ObjectAdded event, AcadDocument object, 525
ObjectARXPath property, AcadPreferencesFiles

object, 573
ObjectErased event, AcadDocument object, 525
ObjectID property, AcadObject object, 450
ObjectIDToObject method, 126

AcadDatabase object, 479
AcadDocument object, 520

object-level events, 73–74

ObjectModified event, AcadDocument object,
525

ObjectName property, AcadObject object, 450
object-oriented programming overview

debugging basics
adding a watch, 47
breakpoints, 48–49
Call Stack window, 48
Err object, 51–53
On Error statements, 50–51
Immediate window, 46–47
Locals window, 48
overview, 46
stepping through your code, 49

object data, 45
objects and classes, 44
object’s behavior, 45–46

events, 46
methods, 46
properties, 46

overview, 44
private variables, 45
public variables, 45

objects, editing. See editing objects
Objects layer, 71
Objects parameter, CopyObject method, 290
ObjectsArray parameter, AddRegion method,

168
ObjectSnapMode property, AcadDocument

object, 523
ObjectSortByPlotting property,

AcadDatabasePreferences object, 481
ObjectSortByPSOutput property,

AcadDatabasePreferences object, 481
ObjectSortByRedraws property,

AcadDatabasePreferences object, 481
ObjectSortByRegens property,

AcadDatabasePreferences object, 481
ObjectSortBySelection property,

AcadDatabasePreferences object, 481
ObjectSortBySnap property,

AcadDatabasePreferences object, 481
objEnts variable, 169
ObliqueAngle property

AcadAttribute object, 467
AcadShape object, 591
AcadText object, 606
AcadTextStyle object, 608
TextStyle properties, 253

OBSCUREDCOLOR system variable, 686
OBSCUREDLTYPE system variable, 686
Offset method

AcadArc object, 465
AcadCircle object, 478
AcadEllipse object, 527
AcadLine object, 544
AcadLWPolyline object, 547
AcadPolyline object, 562
AcadSpline object, 594
AcadXline object, 626

■INDEX 725

5793idx_final.qxd 8/24/05 12:04 AM Page 725

OFFSETDIST system variable, 686
OffsetDistance parameter, Offset method, 213
OFFSETGAPTYPE system variable, 686
offsetting objects, 213–14
OLEFRAME system variable, 686
OLEHIDE system variable, 686
OLELaunch property,

AcadDatabasePreferences object, 481
OLEQuality property, AcadPreferencesOutput

object, 576, 653
OLEQUALITY system variable, 686
OLESTARTUP system variable, 686
On Error statements

On Error Goto, 51, 128
On Error Resume Next, 50, 128
Exit Sub, Exit Function, and Exit Property, 51
overview, 50

OnMenuBar property, 363, 565
Open Drawings combo box, 438
Open method

AcadDocument object, 520
AcadDocuments collection, 525

OpenButtonAlwaysEnabled parameter,
LaunchBrowserDialog method, 137

OpenButtonCaption parameter,
LaunchBrowserDialog method, 137

OpenFile common control dialog, replacement
for VBA, 395, 397

opening projects, 10, 12
OpenSave property, AcadPreferences object,

568
operands, 265
Operation parameter, Boolean method, 194
OptionBits method, 120
OptionBits parameter, InitializeUserInput

method, 113
OptionButton control, 63
OptionButton data type, 25
options, for controlling how AutoCAD handles

VBA projects, 20
Options dialog box, 75, 342
Options Dialog box, VBAIDE, 8–9
ORBIT command, 194
ordinate-style dimension, 241
Orientation property, PageSetup object, 407
Origin, AcadRasterImage object, 584
Origin property

AcadBlock object, 476
AcadUCS object, 617

OriginalPoint parameters, PolarPoint method,
133

ORTHOMODE system variable, 686
OrthoOn property, AcadViewport object, 623
OSMODE system variable, 16, 686
OSNAPCOORD system variable, 686
OSNAPHATCH system variable, 686
OSNAPZ system variable, 686
Output property, AcadPreferences object, 568
OutputURL parameter, IsRemoteFile method,

140

Overlay parameter, AttachExternalReference
method, 306

OverrideCenter property, AcadDimRadialLarge
object, 511

Owner parameter, CopyObject method, 290
OwnerID property, AcadObject object, 450

■P
P system variables, 687–88
page header and footer, adding, 445
PageSetup object, 407
PALETTEOPAQUE system variable, 687
*PAPER_SPACE block name, 555
*PAPER_SPACE layout, 287
PaperSpace collection, 143–45
PaperSpace property

AcadDatabase object, 480
AcadDocument object, 523
Document object, 144

paper-space viewport, 331, 333–36
PaperUnits property

AcadLayout and AcadPlotConfiguration
objects, 540

AcadLayout object, 654
AcadPlotConfiguration object, 654

PAPERUPDATE system variable, 687
Parent property

AcadMenuBar collection, 549
AcadMenuGroup object, 550
AcadMenuGroups object, 551
AcadPopupMenu object, 565
AcadPopupMenuItem object, 566
AcadToolbar object, 613
AcadToolbarItem object, 614

ParentAcadMenuGroup property
AcadPopupMenus collection, 567
AcadToolbars collection, 615

Password property, SecurityParams object,
628

Password Protection feature, 387–89
Path parameter, AddExtrudedSolidAlongPath

method, 189
Path property

AcadApplication object, 463
AcadDocument object, 523
AcadExternalReference object, 528

PatternAngle property, AcadHatch object, 533
PatternDouble property, AcadHatch object,

533
PatternName parameter, AddHatch method,

162
PatternName property, AcadHatch object, 533
PatternScale property, AcadHatch object, 534
PatternSpace property, AcadHatch object, 534
PatternType parameter, 163
PatternType parameter, AddHatch method,

162, 647
PatternType property, AcadHatch object, 534,

653

■INDEX726

5793idx_final.qxd 8/24/05 12:04 AM Page 726

PDMODE system variable, 557, 687
PDMODE variable, 166
PDSIZE system variable, 557, 687
PDSIZE variable, 166
PEDITACCEPT system variable, 687
PELLIPSE system variable, 687
Perimeter property, AcadRegion object, 586
PERIMETER system variable, 687
Perpendicular override, 198, 200
PFACEVMAX system variable, 687
PickAdd property, AcadPreferencesSelection

object, 578
PICKADD system variable, 687
PickAuto property, AcadPreferencesSelection

object, 578
PICKAUTO system variable, 687
PICKBOX system variable, 687
PickBoxSize property, AcadPreferencesSelection

object, 578
PickDrag property, AcadPreferencesSelection

object, 578
PICKDRAG system variable, 687
PickedEntity parameter

GetEntity method, 125
GetSubEntity method, 126

PickFirst property, AcadPreferencesSelection
object, 578

PickFirst selection set, 277
PICKFIRST system variable, 687
PickFirstSelectionSet property, 277–78, 523
PickGroup property, AcadPreferencesSelection

object, 578
PickPoint parameter

GetEntity method, 125
GetSubEntity method, 126

PICKSTYLE system variable, 278, 687
Picture property, of ToggleButton control,

63
PitchAndFamily parameter

GetFont method, 251
SetFont method, 250

_PKSER system variable, 687
PlanePoint1 parameter

Mirror3D method, 211
SectionSolid method, 200
SliceSolid method, 198

PlanePoint2 parameter
Mirror3D method, 211
SectionSolid method, 200
SliceSolid method, 198

PlanePoint3 parameter
Mirror3D method, 211
SectionSolid method, 200
SliceSolid method, 198

PLATFORM system variable, 687
PLINEGEN system variable, 687
PLINETYPE system variable, 156, 687
PLINEW system variable, 687
Plot dialog box, 347

Plot object, 337
controlling plot parameters, 347, 350

CanonicalMediaName property, 348
GetCanonicalMediaNames method,

348
GetPaperSize method, 348–50

plot configurations, 343, 347
PlotConfiguration objects, 343–44
PlotType property, 344
SetWindowToPlot method, 346–47
ViewToPlot property, 345–46

plot scale, 350
GetCustomScale method, 351–52
PlotRotation property, 353–54
SetCustomScale method, 352
StandardScale property, 350–51
UseStandardScale property, 352–53

plotting drawing
DisplayPlotPreview method, 338–39
plotting with Layouts, 339–40
PlotToDevice method, 341
PlotToFile method, 342–43
SetLayoutsToPlot method, 340–41

plot preview, 338–39
Plot Preview box, 338
Plot property, AcadDocument object, 523
Plot Style Table Search Path, 79
PlotConfig1 object, 344
PlotConfiguration objects, 343–44
PlotConfiguration parameter

PlotToDevice method, 341
PlotToFile method, 343

PlotConfigurations property
AcadDatabase object, 480
AcadDocument object, 523

PlotFile parameter, PlotToFile method, 342
PlotHidden property, AcadLayout and

AcadPlotConfiguration objects, 540
PLOTID system variable, 687
PlotLegacy property, AcadPreferencesOutput

object, 576
PLOTLEGACY system variable, 687
PLOTOFFSET system variable, 687
PlotOrigin property, AcadLayout and

AcadPlotConfiguration objects, 540
PlotPolicy property, AcadPreferencesOutput

object, 654
PlotRotation property, 353–54

AcadLayout and AcadPlotConfiguration
objects, 540

AcadLayout object, 654
AcadPlotConfiguration object, 654

PLOTROTMODE system variable, 687
PlotStyleName property

AcadEntity object, 454
AcadLayer object, 537
AcadObject object, 530

Plottable property, AcadLayer object, 537
PLOTTER system variable, 687

■INDEX 727

5793idx_final.qxd 8/24/05 12:04 AM Page 727

PlotToDevice method, 340–41, 556
PlotToFile method, 340, 342–43, 556
PlotType property

AcadLayout and AcadPlotConfiguration
objects, 540

AcadLayout object, 656
AcadPlotConfiguration object, 656

PlotViewportBorders property, AcadLayout and
AcadPlotConfiguration objects, 540

PlotViewportsFirst property, AcadLayout and
AcadPlotConfiguration objects, 540

PlotWithLineweights property, AcadLayout and
AcadPlotConfiguration objects, 540

PlotWithPlotStyles property, AcadLayout and
AcadPlotConfiguration objects, 540

PLQUIET system variable, 688
Point object, 166–68
Point parameter

SelectAtPoint method, 269
TranslateCoordinates method, 135

Point1 parameter
AddDim3PointAngular method, 235
AddDimAligned method, 237
AddDimAngular method, 238
AddDimRotated method, 244
AddSolid method, 170
Mirror method, 209
Move method, 212
Select method, 262

Point2 parameter
AddDim3PointAngular method, 235
AddDimAligned method, 237
AddDimAngular method, 238
AddDimRotated method, 244
AddSolid method, 170
Mirror method, 209
Move method, 212
Select method, 262

Point3 parameter, AddSolid method, 170
Point4 parameter, AddSolid method, 170
PointPosition parameter, AddPoint method,

166
PointsArray parameter, AddLeader method,

257
polar arrays, 219–21
POLARADDANG system variable, 688
POLARANG system variable, 688
POLARDIST system variable, 688
POLARMODE system variable, 688
PolarPoint method, Utility object, 133–34
PolarPoint property, AcadUtility object, 621
PolarTrackingVector property,

AcadPreferencesDrafting object, 571
Polyline object, 155–58
POLYSIDES system variable, 688
PopupMenu object, 363, 369–70, 374
PopupMenuItem object, 370, 372, 380
PopupMenus collection, 359, 369
POPUPS variable, 114, 688

PostScriptPrologFile property,
AcadPreferencesFiles object, 573

Precision parameter
AngleToString method, 130
RealToString method, 132

Preferen property, AcadApplication objectces
property, 463

preferences, AAAsee user preferences, 85
Preferences object, 174
Preferences property

AcadDatabase object, 480
AcadDocument object, 523

PreferencesDisplay object, CursorSize property,
78

PreferencesDrafting object,
AutoSnapMarkerColor property, 637

PreferencesFiles object, SupportPath property,
77

PreferencesProfiles object, 76
PreferencesSelection object

GripColorSelected property, 637
GripColorUnselected property, 637

PreferencesSystem object, EnableStartupDialog
property, 82

Preserve keyword, 30
Preset property, AcadAttribute object, 467
Preview constants, 338
Preview mode, 338
PREVIEWEFFECT system variable, 688
PREVIEWFILTER system variable, 688
PrimaryUnitsPrecision property

AcadDimAligned object, 490
AcadDimArcLength object, 496
AcadDimDiametric object, 500
AcadDimOrdinate object, 503
AcadDimRadial object, 507, 516
AcadDimRadialLarge object, 511
AcadTolerance object, 610, 641

PrincipalDirections property
Acad3DSolid object, 461
AcadRegion object, 586

PrincipalMoments property
Acad3DSolid object, 461
AcadRegion object, 586

Printer Configuration Search Path, 79
Printer Description File Search Path, 79
printer support path, getting and setting, 79–80
PrinterConfigPath property,

AcadPreferencesFiles object, 573
PrinterDescPath property, AcadPreferencesFiles

object, 573
PrinterPaperSizeAlert property,

AcadPreferencesOutput object, 576
PrinterSpoolAlert property,

AcadPreferencesOutput object, 576,
657

PrinterStyleSheetPath property,
AcadPreferencesFiles object, 573

PrintFile property, AcadPreferencesFiles object,
573

■INDEX728

5793idx_final.qxd 8/24/05 12:04 AM Page 728

PrintSpoolerPath property,
AcadPreferencesFiles object, 573

PrintSpoolExecutable property,
AcadPreferencesFiles object, 573

Private keyword, 26–27, 32
private variables, 45
procedural vs. event-driven programming, 2–3
Procedure boxes, VBAIDE, 6
procedure variables, 26
procedures

calling, 34
Event, 33
Function, 32–33
overview, 32
passing arguments to, 34
Sub, 32

PRODUCT system variable, 688
ProductOfInertia property

Acad3DSolid object, 461
AcadRegion object, 587

Profiles property, AcadPreferences object, 568
PROGRAM system variable, 688
Project Explorer, VBAIDE, 5
PROJECTNAME system variable, 688
projects, managing

adding, saving, and removing files, 12
adding ActiveX controls and code

components, 13–14
AutoCAD VBA commands, 22
creating, opening, and saving projects, 10, 12
macros, 18
Macros dialog box, 19
Object browser, 15–17
overview, 9
project structure, 9–10
VBA Manager, 20
VBARUN, 17–18

PROJMODE system variable, 688
Prompt method, 113, 126
Prompt parameter

AddAttribute method, 311
GetAngle method, 121
GetCorner method, 119
GetDistance method, 120
GetEntity method, 125
GetInteger method, 117
GetOrientation method, 121
GetPoint method, 118
GetReal method, 117
GetSubEntity method, 126

Prompt property, AcadUtility object, 621
Prompt String parameter, of GetString method,

116
PromptString property, AcadAttribute object,

467
properties, 46

editing objects with
color, 223–24, 226
layers, 226–27
Linetype, 227–28

overview, 223
TrueColor property, 225–26
Update method, 229
visibility, 228

Properties window, VBAIDE, 6
PropertyName property,

AcadDynamicBlockReferenceProperty
object, 526

ProviderName parameter, ProviderName
property, 386

ProviderName property
Digital Signatures feature, 386
SecurityParams object, 628

ProviderType property, SecurityParams object,
628

PROXYGRAPHICS system variable, 688
ProxyImage property,

AcadPreferencesOpenSave object, 574,
657

PROXYNOTICE system variable, 688
PROXYSHOW system variable, 688
PROXYWEBSEARCH system variable, 688
PSLTSCALE system variable, 688
PSPOOLALERT system variable, 688
PSPROLOG system variable, 688
PSQUALITY system variable, 688
PSTYLEMODE system variable, 688
PSTYLEPOLICY system variable, 688
PSVPSCALE system variable, 688
Public keyword, 26–27
Public subprocedures, 18
public variables, 45
PUCSBASE system variable, 688
PurgeAll method, AcadDocument object, 520
PurgeFitData method, AcadSpline object, 594
PutRemoteFile method

parameters, 140
Utility object, 140–41

PutRemoteFile property, AcadUtility object,
621

Pviewport object, ShadePlot property, 660

■Q
Q system variables, 689
QAFLAGS system variable, 689
QCSTATE system variable, 689
QTEXTMODE system variable, 689
QuietErrorMode property, AcadPlot object,

557
Quit method

AcadApplication object, 462
Word.Application object, 408

■R
R system variables, 689
radial dimension, 243
RadiiOfGyration property

Acad3DSolid object, 461
AcadRegion object, 587

■INDEX 729

5793idx_final.qxd 8/24/05 12:04 AM Page 729

Radius parameter
AddCircle method, 147
AddCylinder method, 178
AddSphere method, 179

Radius property
AcadArc object, 466
AcadCircle object, 478

RadiusRatio property, AcadEllipse object, 527
RASTERDPI system variable, 689
RASTERPREVIEW system variable, 689
Ray object, 158–59
ReadOnly property

AcadDocument object, 523
AcadDynamicBlockReferenceProperty

object, 526
RealToString method

AcadUtility object, 666
parameters, 132
Utility object, 131–32

RealToString property, AcadUtility object, 621
RecomputeTableBlock method, AcadTable

object, 600
RECOVERYMODE system variable, 689
rectangular arrays, 221–23
Red property, AcCmColor object, 629
ReDim statement, 30
REFEDITNAME system variable, 689
Reference .dvb file, 10
ReferenceCount property, AcadFileDependency

object, 529
References dialog box, 14
RefreshPlotDeviceInfo method, 348
RefreshPlotDeviceInfo method, AcadLayout

and AcadPlotConfiguration objects,
539

.reg files, 83
Regen method

AcadDocument object, 520, 657
Document object, 145

RegenerateTableSuppressed property, 416
AcadTable object, 603
parameters, 416

REGENMODE system variable, 689
Region object, 168–70, 199, 207
Region objects, 186
Region parameter

AddExtrudedSolid method, 187
AddExtrudedSolidAlongPath method, 189
AddRevolvedSolid method, 192

regions variable, 169
RegisteredApplications property

AcadDatabase object, 480
AcadDocument object, 523

RegistryRootKey parameter,
LaunchBrowserDialog method, 137

RE-INIT system variable, 689
Reload method

AcadBlock object, 475
Block object, 308–9

reloading external references, 308–9

REMEMBERFOLDERS system variable, 689
Remove Module pop-up menu, 12
Remove property, AcadDictionary object, 483
RemoveCustomByIndex method

AcadSummaryInfo object, 596
SummaryInfo object, 433

RemoveCustomByKey method
AcadSummaryInfo object, 596
SummaryInfo object, 433

RemoveEntry method, AcadFileDependencies
object, 529

RemoveFromMenuBar method
AcadPopupMenu object, 564
PopupMenu object, 367

RemoveHiddenLines property, AcadPViewport
object, 582

RemoveItem method, 273, 280
RemoveItems method

AcadObject object, 530
AcadSelectionSet object, 589

RemoveMenuFromMenuBar method
AcadPopupMenus collection, 567
PopupMenus collection, 367–68

removing
files, 12
menus from menu bars, 367–68

Rename method, LayerStateManager object,
630

Rename property, AcadDictionary object, 483
RenameProfile method,

AcadPreferencesProfiles object, 577
renaming

Block object, 292–93
layers, 96
linetypes, 106

RenderSmoothness property,
AcadDatabasePreferences object, 482

Replace property, AcadDictionary object, 483
REPORTERROR system variable, 689
reports, printing, 446
Require Variable Declaration box, 24
Require Variable Declaration option, 9
Requires numeric value error message, 118
ReselectSubRegion method, AcadTable object,

600
ResetProfile method, AcadPreferencesProfiles

object, 577
Restore method, LayerStateManager object, 630
Resume statement, 52
RetVal parameter, NumCustomInfo method,

432
Reverse method, AcadSpline object, 594
RevisionNumber parameter, 429
RevisionNumber property, 429

AcadSummaryInfo object, 596
SummaryInfo object, 429

revolved solid objects, 191, 193
rich text format (RTF) control codes, 166
ROAMABLEROOTPREFIX system variable, 689
Rotate method, 215

■INDEX730

5793idx_final.qxd 8/24/05 12:04 AM Page 730

Rotate method, AcadEntity object, 453
Rotate3D method, 216, 453
rotated dimension, 244
rotating objects, 215–17
Rotation, AcadRasterImage object, 584
Rotation property

AcadAttribute object, 467
AcadBlockReference object, 477
AcadDimension object, 455
AcadExternalReference object, 528
AcadMInsertBlock object, 552
AcadMText object, 554
AcadShape object, 591
AcadText object, 607

RotationAngle parameter
AddDimRotated method, 244
AddMInsertBlock method, 301
AttachExternalReference method, 306
InsertBlock method, 295
Rotate method, 215
Rotate3D method, 216

RoundDistance property
AcadDimAligned object, 490
AcadDimArcLength object, 496
AcadDimDiametric object, 500
AcadDimOrdinate object, 504
AcadDimRadial object, 507, 516
AcadDimRadialLarge object, 512

Row parameter
GetText method, 416
SetText method, 417

RowHeight parameter
AddTable method, 415
InsertRows method, 420

RowHeight property, AcadTable object, 603
Rows parameter

AddMInsertBlock method, 302
InsertRows method, 420

Rows property
AcadMInsertBlock object, 552
AcadTable object, 603

RowSpacing parameter, AddMInsertBlock
method, 302

RowSpacing property, AcadMInsertBlock
object, 552

RowType parameter
GetTextHeight method, 418
SetTextHeight method, 419

RTDISPLAY system variable, 689
Run button, Macros dialog box, 19
Run to Cursor method, 49
RunMacro method, AcadApplication object,

462

■S
S system variables, 690–92
Save method

AcadDocument object, 520
AcadMenuGroup object, 549, 652
LayerStateManager object, 630

SaveAs method
AcadDocument object, 521, 652
AcadMenuGroup object, 549, 652
Document object, 80, 408
parameters, 361

SaveAs type file, getting and setting, 80–81
SaveAsFile common control dialog,

replacement for VBA, 398–400
SaveAsType property,

AcadPreferencesOpenSave object, 575,
659

SaveAsType setting, 82
Saved property, AcadDocument object, 523
SAVEFILE system variable, 690
SAVEFILEPATH system variable, 690
SAVENAME system variable, 690
SavePreviewThumbnail property,

AcadPreferencesOpenSave object,
575

SAVETIME system variable, 690
saving

files, 12
menu groups, 361–62
personal preferences, 83–84
projects, 10, 12

ScaleEntity method, 218, 453
ScaleFactor parameter, ScaleEntity method,

218
ScaleFactor property

AcadAttribute object, 467
AcadDimension object, 455
AcadLeader object, 544
AcadShape object, 591
AcadText object, 607
AcadTolerance object, 610

ScaleLineweights property, AcadLayout and
AcadPlotConfiguration objects, 541

scaling
linetypes, 109–10
objects, 218–19

SCMCommandMode property,
AcadPreferencesUser object, 580, 644

SCMDefaultMode property,
AcadPreferencesUser object, 580, 644

SCMEditMode property, AcadPreferencesUser
object, 580, 644

scope, 25
SCREENBOXES system variable, 690
SCREENMODE system variable, 690
SCREENSIZE system variable, 690
Scroll Lock keys, 400–401
ScrollBar control, 65
SDI system variable, 690
SecondPoint parameter

AddRay method, 159
AddXline method, 161

SecondPoint property
AcadRay object, 585
AcadXline object, 626

sectioning solids, 199, 201

■INDEX 731

5793idx_final.qxd 8/24/05 12:04 AM Page 731

SectionSolid method, 199
Acad3DSolid object, 460
parameters, 200

security. See drawing security
SecurityNumber parameter, SecurityParams

property, 386
SecurityParams object, 383–84, 627–28
SegmentPerPolyline property,

AcadDatabasePreferences object, 482
Select Case structure, 36–37
Select File dialog box, 55
Select method, 262, 264–65, 267, 589, 600, 659
Select Project dialog box, 19
SelectAtPoint method, 268–70, 589
SelectByPolygon method, 270, 272–73, 589,

659
SelectedURL parameter, LaunchBrowserDialog

method, 137
Selection property, AcadPreferences object,

568
selection sets

accessing and iterating, 260–61
adding and removing items, 273, 276
adding SelectionSet object, 259–60
Clear method, 276
Delete method, 276
Erase method, 276–77
overview, 259
PickFirstSelectionSet property, 277–78
selecting entities

overview, 261
Select method, 262, 264–65, 267
SelectAtPoint method, 268, 270
SelectByPolygon method, 270, 272–73
SelectOnScreen method, 267–68

SELECTIONAREA system variable, 690
SELECTIONAREAOPACITY system variable, 690
SelectionChanged event, 277–78, 525
SELECTIONPREVIEW system variable, 690
SelectionSet object, 259–60, 265
SelectionSet parameter, WBlock method, 300
SelectionSetName parameter, 260
SelectionSets collection, iterating, 261
SelectionSets property, AcadDocument object,

523
SelectOnScreen method, 267–68

AcadSelectionSet object, 589
parameters, 267

SelectSubRegion method
AcadTable object, 600, 660
SelType parameter, 660

SelectXXX methods, 261
self-intersecting paths, 190
self-signed certificates, 383–84
SelType parameter, SelectSubRegion method,

660
SendCommand method, 116, 521
SerialNumber property

Digital Signatures feature, 386
SecurityParams object, 628

SetAlignment method
AcadTable object, 600
AcadTableStyle object, 604
CellAlignment parameter, 635

SetAutoScale method, AcadTable object, 600
SetBackgroundColor method

AcadTable object, 601
AcadTableStyle object, 604

SetBackgroundColorNone method
AcadTable object, 601
AcadTableStyle object, 605

SetBitmaps method, 379
SetBitmaps method, AcadToolbarItem object,

614
SetBlockAttributeValue method, AcadTable

object, 601
SetBlockRotation method, AcadTable object,

601
SetBlockScale method, AcadTable object, 601
SetBlockTableRecordId method, AcadTable

object, 601
SetBulge method

AcadLWPolyline object, 547
AcadPolyline object, 562

SetCellAlignment method
AcadTable object, 601
CellAlignment parameter, 635

SetCellBackgroundColor method, AcadTable
object, 601

SetCellBackgroundColorNone method,
AcadTable object, 601

SetCellContentColor method, AcadTable object,
601

SetCellGridColor method, AcadTable object,
601

SetCellGridLineWeight method, AcadTable
object, 601, 631

SetCellGridVisibility method, AcadTable object,
601

SetCellTextHeight method, AcadTable object,
601

SetCellTextStyle method, AcadTable object,
602

SetCellType method
AcadTable object, 602, 637
CellType property, 637

SetColor method, AcadTableStyle object, 605
SetColorBook method, 226
SetColorBookColor method, AcCmColor object,

628
SetColumnWidth method, AcadTable object,

602
SetContentColor method, AcadTable object,

602
SetControlPoint method, AcadSpline object,

594
SetCustomByIndex method

AcadSummaryInfo object, 596
SummaryInfo object, 434–35

■INDEX732

5793idx_final.qxd 8/24/05 12:04 AM Page 732

SetCustomByKey method
AcadSummaryInfo object, 596
SummaryInfo object, 434

SetCustomScale method, 352
AcadLayout and AcadPlotConfiguration

objects, 539
SetDatabase method, LayerStateManager

object, 630
SetFitPoint method, AcadSpline object, 594
SetFont method, 249–50, 608
SetGridColor method

AcadTable object, 602, 647
AcadTableStyle object, 605, 647
GridLineTypes parameter, 647

SetGridLineWeight
AcadTable object, 647
AcadTableStyle object, 647

SetGridLineWeight method
AcadTable object, 602
AcadTableStyle object, 605
GridLineTypes parameter, 647

SetGridLineWeight property
AcadTable object, 631
AcadTableStyle object, 631

SetGridSpacing method
AcadPViewport object, 581
AcadViewport object, 623

SetGridVisibility method
AcadTable object, 602, 647
AcadTableStyle object, 605, 647
GridLineTypes parameter, 647

SetInvisibleEdge method, Acad3DFace object,
457–58

SetLayoutsToPlot method, 340–41, 556
SetNames method, AcCmColor object, 628
SetPattern method, AcadHatch object, 532, 653
SetProjectFilePath method,

AcadPreferencesFiles object, 572
SetRelativeDrawOrder property,

AcadSortEntsTable object, 593
SetRGB method, AcCmColor object, 628
SetRowHeight method, AcadTable object, 602
SetSnapSpacing method

AcadPViewport object, 581
AcadViewport object, 623

SetSubSelection method, AcadTable object, 602
SetText method, 417–18

AcadTable object, 602
parameters, 417

SetTextHeight method, 419–20
AcadTable object, 602
AcadTableStyle object, 605

SetTextRotation method, AcadTable object, 602
SetTextRotation property

AcadTable object, 658
TextRotation parameter, 658

SetTextStyle method
AcadTable object, 602
AcadTableStyle object, 605

SetVariable method, 167, 521, 671–72

SetView method
AcadViewport object, 623
Views collection, 324

SetWeight method, AcadSpline object, 594
SetWidth method

AcadLWPolyline object, 547
AcadPolyline object, 562

SetWindowText function, 394
SetWindowToPlot method, 346–47, 539
SetXData method, AcadObject object, 450
SetXRecordData method, AcadXRecord object,

627
SHADEDGE system variable, 690
SHADEDIF system variable, 690
ShadePlot property, Pviewport object, 660
Shell32.dll library, Windows API, 394
SHORT data type declaration, 393
shortcut menu, adding menu items to, 375–76
ShortcutMenu property

AcadPopupMenu object, 565
PopupMenu object, 375

SHORTCUTMENU system variable, 690
ShortCutMenuDisplay property,

AcadPreferencesUser object, 580
Show property,

AcadDynamicBlockReferenceProperty
object, 526

SHOWLAYERUSAGE system variable, 690
ShowPlotStyles property, AcadLayout and

AcadPlotConfiguration objects, 541
ShowProxyDialogBox property,

AcadPreferencesOpenSave object, 575
ShowRasterImage property,

AcadPreferencesDisplay object, 570
ShowRotation, AcadRasterImage object, 584
ShowWarningMessages property,

AcadPreferencesSystem object, 579
SHPNAME system variable, 690
Signatures, Digital. See Digital Signatures

feature
SIGWARN system variable, 690
simple block, 286
simple solid objects

box, 174–76
cone, 176–77
cylinder, 177, 179
overview, 174
sphere, 179–80
torus, 180–81
wedge, 181, 183

Single data type, 28
SingleDocumentMode property,

AcadPreferencesSystem object, 579
SKETCHINC system variable, 690
SKPOLY system variable, 690
SliceSolid method, 198, 461
slicing solids, 198–99
SmallIconName parameter

GetBitmaps method, 379
SetBitmaps method, 379

■INDEX 733

5793idx_final.qxd 8/24/05 12:04 AM Page 733

SNAPANG system variable, 690
SNAPBASE system variable, 691
SnapBasePoint property

AcadPViewport object, 582
AcadViewport object, 624

SNAPISOPAIR system variable, 691
SNAPMODE system variable, 691
SnapOn property

AcadPViewport object, 582
AcadViewport object, 624

SnapRotationAngle property
AcadPViewport object, 582
AcadViewport object, 624

SNAPSTYL system variable, 691
SNAPTYPE system variable, 691
SNAPUNIT system variable, 691
Solid object, 170–71
SOLIDCHECK system variable, 691
SOLIDEDIT operations, 173
SolidFill property, AcadDatabasePreferences

object, 482
SolidObject parameter

Boolean method, 194
CheckInterference method, 196

solids. See 3-D objects
Sorted option, 444
SORTENTS system variable, 691
SourceObject parameter, DimStyle object, 232
sphere, 179–80
SphereCenter parameter, AddSphere method,

179
SpinButton control, 65
SPLFRAME system variable, 691
Spline object, 160–61, 214
SPLINESEGS system variable, 691
SPLINETYPE system variable, 691
Split method

AcadViewport object, 623, 668
Viewports collection, 327–28

SSFOUND system variable, 691
SSLOCATE system variable, 691
SSMAUTOOPEN system variable, 691
SSMPOLLTIME system variable, 691
SSMSHEETSTATUS system variable, 691
SSMSTATE system variable, 691
S::STARTUP, 16–17
Standard (.bas) modules, 23
Standard module, 10, 31
StandardScale property, 350–51

AcadLayout and AcadPlotConfiguration
objects, 541

AcadLayout object, 654
AcadPlotConfiguration object, 654
AcadPViewport object, 582, 667

STANDARDSVIOLATION system variable, 691
StartAngle parameter, AddArc method, 145
StartAngle property

AcadArc object, 466
AcadEllipse object, 527

StartBatchMode method, AcadPlot object, 556
StartPageURL parameter,

LaunchBrowserDialog method, 137
StartParameter property, AcadEllipse object,

527
StartPoint parameter

AddLine method, 150
AddRay method, 159
AngleFromXAxis method, 132

StartPoint property
AcadArc object, 466
AcadEllipse object, 527
AcadLine object, 545

StartTangent parameter, AddSpline method,
160

StartTangent property, AcadSpline object, 595
StartUndoMark method, AcadDocument

object, 521
Startup dialog box, enabling and disabling, 82
STARTUP system variable, 691
<statements>, 36
Static keyword, 26
StatusID property, AcadApplication object,

464
Step Into button, Macros dialog box, 19
Step Into method, 49
Step Out method, 49
Step Over method, 49
stepping through code, 49
StoreSQLIndex property,

AcadPreferencesSystem object, 579
String data type, 25, 28
strings, working with procedures that use,

394
StyleName property, 233–34, 254–55

AcadAttribute object, 467
AcadDimension object, 455
AcadLeader object, 544
AcadMLine object, 552
AcadMText object, 554
AcadTable object, 603
AcadText object, 607
AcadTolerance object, 610
DimStyle object, 233
TextStyle object, 254

StyleSheet property
AcadLayout and AcadPlotConfiguration

objects, 541
AcadPViewport object, 582

Sub procedure, 32, 34, 42
subentity, 125
Subject parameter, 429
Subject property

AcadSummaryInfo object, 596
Digital Signatures feature, 386–87
SecurityParams object, 628
SummaryInfo object, 429–30

SubMenu property, AcadPopupMenuItem
object, 566

■INDEX734

5793idx_final.qxd 8/24/05 12:04 AM Page 734

SummaryInfo object
adding custom SummaryInfo, 430

AddCustomInfo method, 430–31
GetCustomByIndex method, 432
GetCustomByKey method, 431–32
NumCustomInfo method, 432
RemoveCustomByIndex method, 433
RemoveCustomByKey method, 433
SetCustomByIndex method, 434–35
SetCustomByKey method, 434

overview, 427–28
properties of, 428

Author property, 428–29
RevisionNumber property, 429
Subject property, 429–30
Title property, 430

support paths, getting and setting, 77
SupportPath property

AcadPreferencesFiles object, 573
of PreferencesFiles object, 77

SuppressTrailingZeros property,
AcadDimension object, 455

SuppressZeroFeet property
AcadDimAligned object, 490
AcadDimArcLength object, 496
AcadDimDiametric object, 500
AcadDimOrdinate object, 504
AcadDimRadial object, 507, 516
AcadDimRadialLarge object, 512

SuppressZeroInches property
AcadDimAligned object, 490
AcadDimArcLength object, 496
AcadDimDiametric object, 501
AcadDimOrdinate object, 504
AcadDimRadial object, 508, 516
AcadDimRadialLarge object, 512

SURFTAB1 system variable, 691
SURFTAB2 system variable, 692
SURFTYPE system variable, 692
SURFU system variable, 692
SURFV system variable, 692
SwapOrder property, AcadSortEntsTable object,

593
SymbolPosition property, AcadDimArcLength

object, 496, 639
SYSCODEPAGE system variable, 692
System property, AcadPreferences object, 568
system state, 2
SysVarChanged event, AcadApplication object,

465

■T
T system variables, 692–93
Table object, 415, 445
TABLEINDICATOR system variable, 692
tables, creating

AddTable method, 415–16
GetText method, 416–17
GetTextHeight method, 418–19

InsertColumns method, 421–22
InsertRows method, 420–21
overview, 415
RegenerateTableSuppressed property, 416
SetText method, 417–18
SetTextHeight method, 419–20

TablesReadOnly property,
AcadPreferencesSystem object, 579

TableStyleOverrides property, AcadTable object,
603, 661

TABMODE system variable, 692
TabOrder property, AcadLayout and

AcadPlotConfiguration objects, 541
TabStrip control, 64
Tag parameter, AddAttribute method, 311
TagString function, 317–19
TagString property

AcadAttribute object, 467
AcadPopupMenu object, 565
AcadPopupMenuItem object, 566
AcadToolbar object, 613
AcadToolbarItem object, 614

TaperAngle parameter, AddExtrudedSolid
method, 187

Target property
AcadPViewport object, 583
AcadView object, 622
AcadViewport object, 624
Add method, 323

TARGET system variable, 692
TBCUSTOMIZE system variable, 692
TDCREATE system variable, 692
TDINDWG system variable, 692
TDUCREATE system variable, 692
TDUPDATE system variable, 692
TDUSRTIMER system variable, 692
TDUUPDATE system variable, 692
TempFileExtension property,

AcadPreferencesOpenSave object, 575
TempFilePath property, AcadPreferencesFiles

object, 573
TemplateDWGPath property, 79, 573
TEMPOVERRIDES system variable, 692
TEMPPREFIX system variable, 692
TempXrefPath property, AcadPreferencesFiles

object, 573
TestTranslateCoordinates, 136
text editor, 20–21
Text object, 171–72, 248
Text parameter

AddTolerance method, 245
SetText method, 417

Text property, Content Range object, 407
Text Style dialog box, 248
TextAlignmentPoint property

AcadAttribute object, 468
AcadText object, 607

TextBox control, 2–3, 58–59, 61

■INDEX 735

5793idx_final.qxd 8/24/05 12:04 AM Page 735

TextColor property
AcadDimension object, 637
AcadTolerance object, 611, 637
Dim3PointAngular object, 637
DimAligned object, 637
DimAngular object, 637
DimArcLength object, 637
DimDiametric object, 637
DimOrdinate object, 637
DimRadial object, 637
DimRadialLarge object, 637
DimRotated object, 637
Tolerance object, 637

TextDirection parameter, AddTolerance
method, 245

TextEditor property, AcadPreferencesFiles
object, 573

TEXTEVAL system variable, 692
TEXTFILL system variable, 692
TextFont property, AcadPreferencesDisplay

object, 570
TextFontSize property, AcadPreferencesDisplay

object, 570
TextFontStyle property, AcadPreferencesDisplay

object, 570, 665
TextFrameDisplay property,

AcadDatabasePreferences object, 482
TextGap property

AcadDimension object, 455
AcadLeader object, 544

TextGenerationFlag property
AcadAttribute object, 468, 665
AcadAttributeReference object, 665
AcadText object, 607, 665
AcadTextStyle object, 608
TextStyle properties, 253–54

TextHeight parameter, SetTextHeight method,
419

TextHeight property
AcadDimension object, 455
AcadTolerance object, 611

TextInside property
AcadDim3PointAngular object, 486
AcadDimAligned object, 490
AcadDimArcLength object, 496
AcadDimDiametric object, 501
AcadDimOrdinate object, 504
AcadDimRadial object, 508, 516
AcadDimRadialLarge object, 512

TextInsideAlign property
AcadDim3PointAngular object, 486
AcadDimAligned object, 491
AcadDimArcLength object, 496
AcadDimDiametric object, 501
AcadDimOrdinate object, 504
AcadDimRadial object, 508, 516
AcadDimRadialLarge object, 512

TextMovement property, AcadDimension
object, 455, 642

TextOutsideAlign property
AcadDimArcLength object, 496
AcadDimRadialLarge object, 512

TextOverride property, AcadDimension object,
456

TextPosition parameter
AddDim3PointAngular method, 235
AddDimAligned method, 237
AddDimAngular method, 238

TextPosition property, AcadDimension object,
456

TextPrecision property
AcadDim3PointAngular object, 486, 641
AcadDimAngular object, 641

TextPrefix property, AcadDimension object,
456

TEXTQLTY system variable, 692
TextRotation parameter, SetTextRotation

property, 658
TextRotation property, AcadDimension object,

456
TEXTSIZE system variable, 692
TextString parameter

AddMText method, 165
AddText method, 171

TextString property
AcadAttribute object, 468
AcadMText object, 554
AcadText object, 607
AcadTolerance object, 611

TextStyle object
creating, 248–49
overview, 248
retrieving and setting text styles, 249

FontFile property, 252
GetFont method, 250, 252
SetFont method, 249–50
TextStyle properties, 253–54

using
ActiveTextStyle property, 255–56
overview, 254
StyleName property, 254–55

TextStyle properties, 253–54
TextStyle property

AcadDimension object, 456
AcadTolerance object, 611

TEXTSTYLE system variable, 692
TextStyleName parameter

Add method, 249
StyleName property, 254

TextStyleObject parameter, ActiveTextStyle
property, 255

TextStyles property
AcadDatabase object, 480
AcadDocument object, 523

TextSuffix property, AcadDimension object,
456

textual annotations. See annotations

■INDEX736

5793idx_final.qxd 8/24/05 12:04 AM Page 736

TextureMapPath property, AcadPreferencesFiles
object, 573

TextWinBackgrndColor property,
AcadPreferencesDisplay object, 570

TextWinTextColor property,
AcadPreferencesDisplay object, 570

Thickness property
AcadArc object, 466
AcadAttribute object, 468
AcadCircle object, 478
AcadLine object, 545
AcadLWPolyline object, 548
AcadPoint object, 558
AcadPolyline object, 563
AcadShape object, 591
AcadSolid object, 592
AcadText object, 607
AcadTrace object, 616

THICKNESS system variable, 692
ThisDrawing function, 288
ThisDrawing module, 70, 277, 423
ThisDrawing object, 5
3-D objects, 194

3DSolid object, 173–74
border effects, 65
editing solids

Boolean operations, 194–95
interference operation, 196–97
overview, 194
sectioning solids, 199, 201
slicing solids, 198–99

elliptical 3-D objects
elliptical cone, 183, 185
elliptical cylinder, 185–86
overview, 183

extruded solid objects, 187, 189–91
mass properties, 201, 203
overview, 173
revolved solid objects, 191, 193
simple solid objects

box, 174–76
cone, 176–77
cylinder, 177, 179
overview, 174
sphere, 179–80
torus, 180–81
wedge, 181, 183

three-element array, 30
TILEMODE system variable, 693
TimeServer parameter, TimeServer property,

387
TimeServer property

Digital Signatures feature, 387
SecurityParams object, 628

TimeStamp property, AcadFileDependency
object, 529

Title parameter, 430
Title property, 430

AcadSummaryInfo object, 596
SummaryInfo object, 430

TitleSuppressed property
AcadTable object, 603
AcadTableStyle object, 605

To parameter, TranslateCoordinates method,
135

ToggleButton control, 63
tolerance feature flag, 246–47
Tolerance object, 245–48

DimensionLineColor property, 637
TextColor property, 637

Tolerance parameter, CopyFrom method, 232
ToleranceDisplay property, AcadDimension

object, 456, 642
ToleranceHeightScale property,

AcadDimension object, 456
ToleranceJustification property,

AcadDimension object, 456, 642
ToleranceLowerLimit property, AcadDimension

object, 456
TolerancePrecision property, AcadDimension

object, 641
TolerancePrecisionAcDimPrecision property,

AcadDimension object, 456
ToleranceSuppressLeadingZeros property,

AcadDimension object, 457
ToleranceSuppressTrailingZeros property,

AcadDimension object, 457
ToleranceSuppressZeroFeet property

AcadDimAligned object, 491
AcadDimArcLength object, 496
AcadDimDiametric object, 501
AcadDimOrdinate object, 504
AcadDimRadial object, 508, 517
AcadDimRadialLarge object, 512

ToleranceSuppressZeroInches property
AcadDimAligned object, 491
AcadDimArcLength object, 497
AcadDimDiametric object, 501
AcadDimOrdinate object, 504
AcadDimRadial object, 508, 517
AcadDimRadialLarge object, 512

ToleranceUpperLimit property, AcadDimension
object, 457

Toolbar object, 376
ToolbarItem object, 372, 377, 380
ToolbarName parameter, Add method, 376
toolbars

adding separators, 380
buttons, 377–79, 382
creating, 376–77
defining toolbar button image, 379–80
deleting, 382
floating and docking, 381–82
overview, 376

Toolbars collection, 359, 376
Toolbars property, AcadMenuGroup object, 550
Toolbox, 58
Toolbox window, 60
Tools/Options dialog, 58

■INDEX 737

5793idx_final.qxd 8/24/05 12:04 AM Page 737

TOOLTIPMERGE system variable, 693
TOOLTIPS system variable, 693
Top parameter, Float method, 381
Top property

AcadToolbar object, 613
UserForm, 57–58

torus, 180–81
TorusCenter parameter, AddTorus method, 180
TorusRadius parameter, AddTorus method, 180
TotalAngle property, AcadArc object, 466
TRACEWID system variable, 693
TRACKPATH system variable, 693
TransformBy method, AcadEntity object, 453
TranslateCoordinates method

AcadUtility object, 638
Utility object, 134–36

TranslateCoordinates property, AcadUtility
object, 621

TranslateIDs property, AcadXRecord object, 627
Transparency, AcadRasterImage object, 585
TRAYICONS system variable, 693
TRAYNOTIFY system variable, 693
TRAYTIMEOUT system variable, 693
TREEDEPTH system variable, 693
TREEMAX system variable, 693
treeview, 5, 8
TRIMMODE system variable, 693
True (nonzero), 35
True Boolean A parameter, 198
True Boolean parameter,

RegenerateTableSuppressed property,
416

True parameter, AddDimOrdinate method, 241
True property, AcadDimRadial object, 506
TrueColor object, AcColorMethod object, 637
TrueColor property, 225–26

AcadDimArcLength object, 497
AcadDimRadialLarge object, 512
AcadEntity object, 454
of Layer object, 99

TrueColorImages property,
AcadPreferencesDisplay object, 570

TSPACEFAC system variable, 693
TSPACETYPE system variable, 693
TSTACKALIGN system variable, 693
TSTACKSIZE system variable, 693
TubeRadius parameter, AddTorus method, 180
TwistAngle property, AcadPViewport object, 583
Type property

Acad3DPolyline object, 459, 631
AcadLeader object, 544, 650
AcadMenuGroup object, 550, 652
AcadPolygonMesh object, 561, 656
AcadPolyline object, 563, 656
AcadPopupMenuItem object, 566, 652
AcadToolbarItem object, 614, 666

TypeFace parameter
GetFont method, 251
SetFont method, 249

■U
U system variables, 693–94
UBound function, 30
UCSAXISANG system variable, 693
UCSBASE system variable, 693
UCSFOLLOW system variable, 693
UCSICON system variable, 693
UCSIconAtOrigin property

AcadPViewport object, 583
AcadViewport object, 624

UCSIconOn property
AcadPViewport object, 583
AcadViewport object, 624

UCSNAME system variable, 693
UCSORG system variable, 693
UCSORTHO system variable, 694
UCSPerViewport property, AcadPViewport

object, 583
UCSVIEW system variable, 694
UCSVP system variable, 694
UCSXDIR system variable, 694
UCSYDIR system variable, 694
UINT data type declaration, 392
UNDOCTL system variable, 694
UNDOMARKS system variable, 694
Uniform Resource Locators (URLs), 136
Unit parameter

AngleToReal method, 129
AngleToString method, 130
DistanceToReal method, 131
RealToString method, 132

UNITMODE system variable, 694
UnitsFormat property

AcadDimAligned object, 491
AcadDimArcLength object, 497
AcadDimDiametric object, 501
AcadDimOrdinate object, 504
AcadDimRadial object, 508, 517
AcadDimRadialLarge object, 512
dimension object, 641

UnitsType property,
AcadDynamicBlockReferenceProperty
object, 526, 645

Unload method, 362
AcadBlock object, 475
AcadMenuGroup object, 549–50
Block object, 307

UnloadARX method, AcadApplication object,
462

UnloadDVB method, AcadApplication object,
462

unloading
external references, 307
menu groups, 362

UnmergeCells method, AcadTable object,
602

Update method, 229
AcadApplication object, 462
AcadEntity object, 453

■INDEX738

5793idx_final.qxd 8/24/05 12:04 AM Page 738

AcadObject object, 530
AcadSelectionSet object, 589
Application object, 145

UpdateEntry method, AcadFileDependencies
object, 529

UPDATETHUMBNAIL system variable, 694
UploadURL parameter, PutRemoteFile method,

140–41
UpperRightCorner property

AcadViewport object, 624
Viewport coordinates, 328–29

UpperRightCorner variant, 346
UpsideDown property

AcadAttribute object, 468
AcadText object, 607

URL property, AcadHyperlink object, 535
URLDescription property, AcadHyperlink

object, 535
URLNamedLocation property, AcadHyperlink

object, 535
UseLastPlotSettings property,

AcadPreferencesOutput object, 576
user interaction. See Utility object
user interface, VBAIDE

Code window, 5
Immediate window, 7–8
Object and Procedure boxes, 6
Options Dialog box, 8–9
overview, 4
Project Explorer, 5
Properties window, 6

user preferences
controlling cursor size, 78
enabling and disabling the Startup dialog

box, 82
getting and setting AutoSaveInterval

property, 78
getting and setting support paths, 77
getting and setting the drawing template file

path, 79
getting and setting the file SaveAs type,

80–81
getting and setting the printer support path,

79–80
overview, 75–76
saving and retrieving personal preferences,

83–84
user preferences changes in AutoCAD 2004,

84–85
User property, AcadPreferences object, 568
User32.dll library, Windows API, 394
UserCoordinateSystems property

AcadDatabase object, 480
AcadDocument object, 523

UserForm, designing
adding UserForm to application, 55–56
overview, 55
setting UserForm properties, 56–57

UserForm modules, 10, 23, 31

UserForm object, 6
UserForm Toolbox, 296, 298
Userform_Initialize property, 438
UserForm.Caption property, 56
UserForms, 111
USERI1-5 system variable, 694
USERR1-5 system variable, 694
USERS1-5 system variable, 694
UseStandardScale property, 352–53, 541
UseXAxis parameter, AddDimOrdinate method,

241
Utility input methods, 115
Utility object

conversion methods
AngleFromXAxis method, 132–33
AngleToReal method, 129
AngleToString method, 130
DistanceToReal method, 130–31
overview, 129
PolarPoint method, 133–34
RealToString method, 131–32
TranslateCoordinates method, 134–36

interface methods
GetAngle method, 120–21
GetCorner method, 119
GetDistance method, 119–20
GetEntity method, 124–25
GetInput method, 122–24
GetInteger method, 117
GetKeyword method, 115–16
GetOrientation method, 121
GetPoint method, 118
GetReal method, 117–18
GetString method, 116–17
GetSubEntity method, 125–26, 128
handling errors in user input, 128–29
InitializeUserInput method, 113–15
input methods and dialogs, 111–12
overview, 111
Prompt method, 113

Internet methods
GetRemoteFile method, 139
IsRemoteFile method, 140
IsURL method, 136
LaunchBrowserDialog method, 137–38
overview, 136
PutRemoteFile method, 140–41

Utility property, AcadDocument object, 523

■V
V system variables, 694–95
Value parameter

AddAttribute method, 311
AddCustomInfo method, 430
GetCustomByIndex method, 433
GetCustomByKey method, 431
SetCustomByIndex method, 434
SetCustomByKey method, 434

■INDEX 739

5793idx_final.qxd 8/24/05 12:04 AM Page 739

Value property
AcadDynamicBlockReferenceProperty

object, 526
AcadIDPair object, 536

variable prefixes, 25
variable scope, 26
VariableName parameter, SetVariable method,

672
variables

arrays
detecting an array’s bounds, 30
dynamic arrays, 30–31
fixed-length arrays, 30
overview, 29–30

constants, 27
data types

converting data types, 29
exchanging numbers and strings, 28–29
overview, 27

declaring
explicit declaration, 24
implicit declaration, 24
overview, 23–24
variable names, 24–25

overview, 23
private, 45
public, 45
scope and lifetime

global variables, 26–27
module variables, 26
overview, 25–26
procedure variables, 26

VariableValue parameter, SetVariable method,
672

Variant data type, 9, 27
VBA application example

overview, 437–38
writing code

add page header and footer, 445
adjust fonts, 444
Autofit column text, 445
creating column headings, 440–41
creating new document in Word, 440
creating session of Word, 439–40
creating table with Word document, 440
helper functions, 442–44
initial declarations, 438–39
overview, 438
populating table with AutoCAD layer data,

441–42
printing reports, 446
sort table, 444–45

VBA error handler, 90, 102
VBA Integrated Development Environment

(VBAIDE), 11
managing projects

adding, saving, and removing files, 12
adding ActiveX controls and code

components, 13–14

creating, opening, and saving projects, 10,
12

macros, 18
Macros dialog box, 19
Object browser, 15–17
overview, 9
overview of AutoCAD VBA commands, 22
project structure, 9–10
VBA Manager, 20
VBARUN, 17–18

overview, 1
starting the editor, 3
user interface

Code window, 5
Immediate window, 7–8
Object and Procedure boxes, 6
Options Dialog box, 8–9
overview, 4
Project Explorer, 5
Properties window, 6

and Visual Basic concepts
developing applications interactively, 3
event-driven vs. procedural

programming, 2–3
overview, 1
windows, events, and messages, 1–2

VBA Manager, 20
VBAIDE command, 22
VBALOAD command, 11, 22
VBAMAN command, 22
VBARUN command, 17–18, 22, 371
VBASTMT command, 22
VBATestMenu, 369
VBAUNLOAD command, 22
VBE property, AcadApplication object, 464
Verify property, AcadAttribute object, 468
_VERNUM system variable, 694
Version property, AcadApplication object, 464
Version.dll library, Windows API, 394
VersionGUID property, AcadFileDependency

object, 529
VertCellMargin property

AcadTable object, 603
AcadTableStyle object, 605

Vertex parameter, AddDimAngular method, 238
VertexPoint parameter, AddDim3PointAngular

method, 235
VerticalAlignment property

AcadAttribute object, 468, 667
AcadAttributeReference object, 667
AcadText object, 607, 667

VerticalTextPosition property
AcadDimension object, 457, 643
AcadLeader object, 544, 643

Vertices parameter
AddLightWeightPolyline method, 152
AddMLine method, 154
AddPolyline method, 156
SelectByPolygon method, 270

■INDEX740

5793idx_final.qxd 8/24/05 12:04 AM Page 740

View dialog box, 322, 345
VIEWCTR system variables, 324, 694
VIEWDIR system variables, 324, 694
VIEWMODE system variable, 694
ViewName parameter, Add method, 322
ViewObject parameter, SetView method, 324
ViewPort object, 174
ViewportDefault property, AcadLayer object,

537
ViewportName parameter, Add method, 327
ViewportOn property, AcadPViewport object,

583
viewports

model-space viewport, 325, 327–30
overview, 325
paper-space viewport, 331, 333–36

Viewports property
AcadDatabase object, 480
AcadDocument object, 523

views
creating, 322–24
deleting, 324–25
overview, 321–22
setting as current, 324

Views collection, 321–22
Views property

AcadDatabase object, 480
AcadDocument object, 523

VIEWSIZE system variable, 694
ViewToPlot property, 345–46, 541
VIEWTWIST system variable, 694
visibility of objects, changing, 228
VisibilityEdge1 property, Acad3DFace object,

458
VisibilityEdge2 property, Acad3DFace object,

458
VisibilityEdge3 property, Acad3DFace object,

458
VisibilityEdge4 property, Acad3DFace object,

458
Visible property

AcadApplication object, 464
AcadEntity object, 454
AcadObject object, 530
AcadToolbar object, 613

VISRETAIN system variable, 694
Visual Basic concepts

developing applications interactively, 3
event-driven vs. procedural programming,

2–3
overview, 1
windows, events, and messages, 1–2

Visual Basic data types, 28
Visual Basic programming overview. See also

object-oriented programming overview
application writing techniques, 43–44
control structures, 34–37, 41
exiting a Sub or Function procedure, 42

loop structures
Do Until.Loop and Do Loop.Until, 38–39
Do While.Loop, 37–38
Do.Loop While, 38
For.Each.Next, 40
For.Next, 39
overview, 37

modules, 31–32
nested control structures, 40–41
overview, 23
procedures

calling, 34
Event, 33
Function, 32–33
overview, 32
passing arguments to, 34
Sub, 32

variables
arrays, 29–31
constants, 27
data types, 27–29
declaring, 23–25
overview, 23
variable scope and lifetime, 25–27

Visual Basic-to-DLL calling conventions,
392–93

vkKey parameter, 401
VOID data type declaration, 393
Volume property, Acad3DSolid object, 461
VPMAXIMIZEDSTATE system variable, 695
VSMAX system variable, 695
VSMIN system variable, 695
VTDURATION system variable, 695
VTENABLE system variable, 695
VTFPS system variable, 695

■W
W system variables, 695
watches, adding, 47
WBlock method, for manipulating and defining

blocks, 299–301
WBlock61.420 method, AcadDocument object,

521
wedge, 181, 183
Weights property, AcadSpline object, 595
WHIPARC system variable, 695
WHIPTHREAD system variable, 695
Width, AcadRasterImage object, 585
Width parameter

AddBox method, 175
AddMText method, 165
AddPViewport method, 331
AddWedge method, 182

Width property
AcadApplication object, 464
AcadMText object, 554
AcadPViewport object, 583
AcadTable object, 603
AcadTextStyle object, 608

■INDEX 741

5793idx_final.qxd 8/24/05 12:04 AM Page 741

Width property (continued)
AcadToolbar object, 613
AcadView object, 622
AcadViewport object, 624
Add method, 323
TextStyle properties, 253
UserForm, 57

WINDOWAREACOLOR system variable, 695
WindowChanged event

AcadApplication object, 465
AcadDocument object, 525

WindowLeft property, AcadApplication object,
464

WindowMovedOrResized event
AcadApplication object, 465
AcadDocument object, 525

windows, 1–2
Windows API

declarations, 391
examples

OpenFile common control dialog
replacement for VBA, 395, 397

retrieving the status of Caps Lock, Num
Lock, and Scroll Lock keys, 400–401

SaveAsFile common control dialog
replacement for VBA, 398–400

overview, 391
passing arguments by value or by reference,

395
specifying libraries, 393
Visual Basic-to-DLL calling conventions,

392–93
Windows data structures, 392
Windows DLLs, 394
working with procedures that use strings, 394

Windows data structures, 392
Windows DLLs, 394
Windows Registry, 83
WindowState property

AcadApplication object, 464, 669
AcadDocument object, 523, 669

WindowTitle property, AcadDocument object,
523

WindowTop property, AcadApplication object,
464

Winmm.dll library, Windows API, 394
WinNT object, 412
Winspool.drv library, Windows API, 394
With.End With, 42
WMFBKGND system variable, 695
WMFFOREGND system variable, 695
Word. See Microsoft Word
WORD data type declaration, 393
Word.Application object, 408
Word.Document object data type, 407
work spaces, 362
Workbook object, 406
workbooks, Excel, 405
worksheets, Excel, 406

WORKSPACE command, 363
WorkspacePath property, AcadPreferencesFiles

object, 573
WORLDUCS system variable, 695
WORLDVIEW system variable, 695
WPARAM data type declaration, 393
write block, 299
WRITESTAT system variable, 695
WSCURRENT system variable, 695
WSSAVE command, 363

■X
X parameter, Bind method, 309
X system variables, 696
XCLIPFRAME system variable, 696
XEDIT system variable, 696
XFADECTL system variable, 696
XLength parameter

AddEllipticalCone method, 183
AddEllipticalCylinder method, 185

XLine object, 161–62
XLOADCTL system variable, 696
XLOADPATH system variable, 696
XREFCTL system variable, 696
XrefDatabase property, AcadBlock object,

476
XrefDemandLoad property,

AcadPreferencesOpenSave object,
575, 669

Xref-dependent layers, 97
Xref-dependent linetypes, 107
XrefEdit property, AcadDatabasePreferences

object, 482
XrefFadeIntensity property,

AcadPreferencesDisplay object,
570

XrefLayerVisibility property,
AcadDatabasePreferences object,
482

XREFNOTIFY system variable, 696
XREFTYPE system variable, 696
Xscale parameter

AddMInsertBlock method, 301
AttachExternalReference method, 306
InsertBlock method, 295

XScaleFactor property
AcadBlockReference object, 477
AcadExternalReference object, 528
AcadMInsertBlock object, 552

XVector property, AcadUCS object, 617

■Y
YLength parameter

AddEllipticalCone method, 183
AddEllipticalCylinder method, 185

Yscale parameter
AddMInsertBlock method, 301
AttachExternalReference method, 306
InsertBlock method, 295

■INDEX742

5793idx_final.qxd 8/24/05 12:04 AM Page 742

YScaleFactor property
AcadBlockReference object, 477
AcadExternalReference object, 528
AcadMInsertBlock object, 552

YVector property, AcadUCS object, 617

■Z
Z system variables, 696
ZoomAll method, AcadApplication object, 462
ZoomCenter method, AcadApplication object,

462
ZoomExtents method, AcadApplication object,

462
ZOOMFACTOR system variable, 696
ZoomPickWindow method, AcadApplication

object, 463

ZoomPrevious method, AcadApplication object,
463

ZoomScale method, AcadApplication object,
669

ZoomScaled method, AcadApplication object,
463

ZoomWindow method, AcadApplication object,
463

Zscale parameter
AddMInsertBlock method, 301
AttachExternalReference method, 306
InsertBlock method, 295

ZScaleFactor property
AcadBlockReference object, 477
AcadExternalReference object, 528
AcadMInsertBlock object, 552

■INDEX 743

5793idx_final.qxd 8/24/05 12:04 AM Page 743

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

5793idx_final.qxd 8/24/05 12:04 AM Page 744

	AutoCAD 2006 VBA: A Programmer’s Reference
	Table of Content
	Chapter 1 The VBA Integrated Development Environment (VBAIDE)
	Chapter 2 Introduction to Visual Basic Programming
	Chapter 3 Application Elements
	Chapter 4 AutoCAD Events
	Chapter 5 User Preferences
	Chapter 6 Controlling Layers and Linetypes
	Chapter 7 User Interaction and the Utility Object
	Chapter 8 Drawing Objects
	Chapter 9 Creating 3-D Objects
	Chapter 10 Editing Objects
	Chapter 11 Dimensions and Annotations
	Chapter 12 Selection Sets and Groups
	Chapter 13 Blocks, Attributes, and External References
	Chapter 14 Views and Viewports.
	Chapter 15 Layout and Plot Configurations
	Chapter 16 Controlling Menus and Toolbars
	Chapter 17 Drawing Security
	Chapter 18 Using the Windows API.
	Chapter 19 Connecting to External Applications
	Chapter 20 Creating Tables
	Chapter 21 The SummaryInfo Object.
	Chapter 22 An Illustrative VBA Application
	Appendix A AutoCAD Object Summary
	Appendix B AutoCAD Constants Reference
	Appendix C System Variables
	Index

